Journal of Mathematical Physics, Analysis, Geometry
2018, Vol. 14, No. 1, pp. 54-66
doi: https://doi.org/10.15407/magl4.01.054

The Interaction of the Maxwell Flows of
General Form for the Bryan—Pidduck Model
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The interaction between the two Maxwell flows of general form in a gas
of rough spheres is studied. The approximate solution of the Bryan—Pidduck
equation describing the interaction is a bimodal distribution with specially
selected coefficient functions. It is shown that under certain additional condi-
tions imposed on these functions and hydrodynamic parameters of the flows,
the norm of the difference between the parts of the Bryan—Pidduck equation
can be arbitrarily small.
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1. Statement of the problem

This article describes a model of rough spheres [4] first introduced by Bryan in
1894. The methods developed by Chapman and Enskog for general non-rotating
spherical molecules were extended to Bryan’s model by Pidduck in 1922. The
advantage of the model over all other variably rotating models is that no variables
specifying its orientation in the space are required.

The statement that the molecules are perfectly elastic and perfectly rough is
to be interpreted as follows. When two molecules collide, the points which come
into contact will not, in general, possess the same velocity. It is supposed that the
two spheres grip each other without slipping; first each sphere is strained by the
other, and then the strain energy is reconverted into kinetic energy of translation
and rotation, no energy being lost; the effect is that the relative velocity of the
spheres at their point of contact is reversed by the impact.

The model is applied to monatomic molecules and taking into account its
ability to rotate, is considered to be more physical than the model of hard spheres
and thus more interesting to explore.

The Boltzmann equation for the model of rough spheres (or the Bryan—
Pidduck equation) has the form [3,4,6,7]:

D(f) = Q(f, f); (1)
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Here d is the diameter of the molecule, which is associated with the moment
of inertia I by the relation

bd?

where b, b € (0, %], is the parameter characterizing the isotropic distribution of
matter inside the gas particles; ¢ is the time; x = (z', 2%, 23) € R? is the spatial
coordinate; V = (V1 V2 V3) and w = (w',w? w®) € R? are the linear and
angular velocities of the molecule, respectively; g—i is the gradient of the function
f of the variable x; ¥ is the unit sphere in the space R®; « is the unit vector of
R3 directed along the line connecting the centers of the colliding molecules;

B(V—Vl,a):|(V—V1,a)|—(V—V1,a) (5)

is the collision term.
The linear (V*,V}*) and angular (w*, w}) molecular velocities after the colli-
sion can be expressed by the appropriate values before the collision:

V*:V—lHl_l<b(V1—V)—b2daX("J+W1)+O‘(O‘7V1_V))’
i 1 bd

Vi :V1+b+1<b(V1—V)—2a><(w+w1)+0<(avvl_v)>’
w :w+d(b+1){ax(V—V1)+2[a(w+w1,a)—w—w1]}a
W1ZW1+d(b+1){Oéx(V_‘/l)_‘_2[a(w+w1’a)_w_w1]}’

where the symbol x indicates the vector product. These formulas can be obtained
using the laws of conservation of momentum, the total energy of translational and
rotational motion (for the first time they were given in [1]).

As is known, the general form of the Maxwellian solution of the Boltzmann
equation for the model of hard spheres was obtained in [5,8,11], and its description
and study can also be found in [2,9,12]. A similar problem for the Bryan—Pidduck
model was finally solved in [9].

In [9], it is shown that the most general form of local Maxwellians, which is
feasible for the Bryan—Pidduck model, has the form
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where p; is the gas density (here and throughout what follows, the index i takes
values 1 and 2) which has the following analytical representation:

(@2r2 —2w;
pi = Pozeﬁl( i) (7)

)

po; is the positive constant, §; = # is the value inverse to the temperature T;,
w; is the angular velocity of the gas flow; r? denotes the scalar expression

2 1

r; = = [Wi X (v — To; — uoit)]; (8)
wi

the mass velocity of molecules V; has the form
Vi = ‘7@ + w;t + [@- X (ZL‘ — X0; — ﬂgit)] , (9)

the vector up; Lw;, the axis of speed zg; and the density Zp; at the moment of
time ¢t = 0 have the form

1 ~ 1 ~
Toi = —5 [@' X Vz] s T0i = —5 [@; X <Vz —ﬂmﬂ ; (10)
wi Wi
17; are the arbitrary constant vectors of the space R3, but arbitrary vectors ‘Z,@i
are parallel to the angular velocity w;.

We consider the problem of constructing the approximate solution of the
Bryan—Pidduck equations (1)—(3) in the form of a bimodal distribution

[ =p1Mi + @aMo, (11)

where Maxwellians M; are described by (6), and the desired coefficient func-
tions ;(t, x) are chosen to be such that the deviation between the parts of equa-
tion (1) is arbitrarily small due to the conditions imposed on the hydrodynamic
parameters included in distribution (6). In this work, as a deflection between the
parts of equation (1), we use the uniform-integral error from [10]:

A= sup /R av /R dw|D(f) - QU P (12)

(t,x)eER*

2. The main results

Theorem 2.1. Let the coefficient functions p;(t,x) in distribution (11) have
the form

it @) = Wy(t, w)e (@i 2miz), (13)

where ;(t,x) are smooth, nonnegative and bounded on R* functions. Assume

that the expressions
O
t 14

ti, (2, U0i) i, o ‘ s
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are also bounded. In addition, consider the representations:

_ Woi . Woi
Wi =—, W;= , n, k> 1. (15)
tosp Lo

Then there exists a value A’ such that A < A’, and we have the equality

2

, 0Y; o ~ = 1 ~

1 A/——E i + | 5 Vit Vi— —=wou (woi, Vi
6¢—>1r-rs—loo — po (t7i§1£R4 ot < oz’ w%iwo (wo >> ‘

+ dmd® po1 o2 ( sup (¢1¢2>) N-Th+Vi-V,

(t,z)eR*
1 /7 = 1 _ /. =
— —5-Wo1 (WOh V1> + —5Wo2 (woz,V2> - (16)
“wo1 wWo2

Proof. Substitute bimodal distribution (11) to the differential operator D(f):

D(f) = M1D(p1) + MaD(p2)

_ o (991 0 O¢2 | 002
_M1<(9t +V8x>+M2<5’t +V8x .

After elementary transformations, the collision integral takes the form

Qf, f) = p192 [Q (M1, Ma) + Q (Ma, My)].

Further we will use the well-known decomposition of the collision integral

Qf.9) =G(f,9) — fL(9), (17)

where the gain and the loss terms of the collision integral have the form (see [2,4]):

2
G(f,9) :d/ dVl/ dwl/ daB(V — Vi, a) f(t,x, V", w])g(t, z, V* w"),
2 Jgs R3 »

and 2
L(g) = / dvl/ dwl/ daB(V — Vi, a)g(t,z, Vi,w1).
2 Jps R3 »

As it was shown in [10],
/ av dwQ(M;, M;) =0, j=1,2.
R3 R3
By the above equality and (17), we get the equality

/R3 dV/R3 dwG(M;, M;) = /R3 dV/Rg dwM; L(M;). (18)

Then it is possible to obtain the inequality

[D(f) = Q(f, f)l < My (ID(¢1)| + 192 L(M2)) + My (| D(p2)| + p1ep2L(M1))
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+ @192 (G(My, Ma) + G(Ma, My)) .

After integrating the last inequality over the space of linear and angular ve-
locities and taking into account (18), we get the estimation

/dv dw |D(f) — Q. f)|
R3 R3

Z/RddV/Rgdw |D(:)| + i L(M;)) M;

t,j=1
i#]

+2(p1g02/ dV/ de(Ml,Mg)
R3 R3

2
gZ/ dv dw|D(¢i)|Mi+4¢1¢2/ dV | dwG(My, Ms).
o1 JR3 R3 R3 R3

From [7], we use the relation

/ dV/ de(Ml,MQ)
R3 R3
S

d?p1p2 / g
= dq/ dgre 4%
72 Jps Jpe VB \/52

to continue the estimation by using (19) and the form of Maxwellians (6):

[oav [ asipt)-Qu.p)
R3 R3
2 3 —

0¢i < 3%) gy (@) —6:((V-V.i)*+10?)
= av V7 ’LI _
X fo fnef T (v (2)

4d?
+ p21p2801902/ d(I/ dgre™ 4
™ R3 R3

3/2
Calculating the integral of the angular velocity || R3 dwe=Bile? = (ﬁ) , We

(19)

q q1 54 54
eV V.
B VP2 ! 2

will have

/ av [ dwD(f) - QU 1)l

2 3/2 _
/Bi / 8@1 8301 ,6(‘/,‘/_)2

< i | — av V, : i
;p <7r o T\ )|
4d?p1 pa / —?— q

+ dq/ dgie? | L I Ly T,
w2 O J O e B VB ?
Next, let us change the variables in the integral under the sum V = \/% +

Vi, whose Jacobian is J = ﬁ, to get the estimation

7

/R;W /R dw |D(f) = Q(f. /)]
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&pz P O0vi\| 2
7r3/22p1/ <\/E v 837)‘6 dp
L—7+V1 VQ .

Ad*p1p2 2
d d —-q 7(1
T QOMOQ/R?’ q/R3 e VB VB

Then we have to find the derivatives of the functions ¢;(¢,x) by the variable ¢
basing on its representation (13):

dp; _ e—ﬁi(wfr?—Qﬁix) (5’1/1@

(20)

9 5 + 2815 { 2(2,To;) — Ut — <wi X YZ,UOi)]) )

Thus the gradient over the spatial coordinate x has the form

Opi _ —pi(@ri-2wx) (5%

4d o+ 28 [+ @1 () — B i~ )] ).

Continue to evaluate (20) by using the derivatives of the coefficient func-
tions ¢;(t, =) and the expression for the density (7):

/ dV/ w|D(f) —Q(f, f)]
R3 R3
B 5127‘1.272@1’$ —p?
<77r3/22p016 ( )/R3dpep
=1
+ 2@?/% |: (SU UOZ) - E(Q)z’w?t - (wi X ‘Zauﬂz>}}

+V, e—,Bi(wfr?—Qﬁiz) {81/]2

6767; (wf’rff2@im) { 81/}1
ot

b
+ <\/E ox

+ 26;1; [@Z + w;(w;, ) — w?(ﬂf — Toi — ﬂOit)} }) ’
Ly

4d
Po1po2¢1¢2/ dq/ g7
RS JR3 /32

After elementary transformations and substitution of the expression for mass
velocity, V; (9), into the above estimation, we have

/ av [ dw|D(f) - QUL )]

2
1
LS [
73 " s

p
VB

%Z)Z

+ 285 ( 7 (2, o) — Wpwit — (@‘ X Vﬂo))

+ ‘71 + w;t + [wi X (1‘ — Xo; — Uoﬂf)} ,

5@% + 289 [wz + wi (Wi, T) — W%(ﬂf — To; — UOit)]> ‘

4d?
n 001P;)2¢11/12/ dq/ dge Pt
T R3 R3

+
7 N

\/%—\/ﬁJer ‘724-(@1—@2)15
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+ [@1 % (z — zo1 — T t)] — [WQ X (x — xo2 — ’LL(]Qt):| ‘ . (21)

Let us regroup the terms in the right-hand side of the last inequality in the
following way:

/ av [ dw|D(f) - QU 1)

\ﬁ Z poi / dpe P

+ <aa7il, % + ‘//\; + w;t + [@i X (x — Xo; — uoﬂf)])
+ 289 ( ?(z, Uo;) — Ugwit — (wi X ‘71'7501')) + 203/ B, (p, @) (@i, )
+ 2B:; < b

VBi

4d2P01Po2¢1’¢2/ ——qg2| 4 o
2 PorPozvL e dq/ dgre 9% |- — L L U V) 4 (w) — W)t
2 R3 R3 VB \/E

+ [@1 X (CE — o1 — ﬂoﬂf)] — [@2 X (a: — X2 — H(]Qt)] .

81#1

+@+w¢+hux@—xm—mm»wrwﬁ@—xm—ww)‘

As we know from vector algebra, for arbitrary three vectors @, b, ¢, the equality

[ax [bx¢]] =b(a,c) —¢(a,b)
is true. Then, taking into account (10), we arrive at

1 ~ ~
@i % x0i) = = wi(@;, Vi) — Vi, (22)
w

i

and due to some elementary transformations, we have

+ Vi +wit + [0i X (x — mo; — Uoit)] , Wi — W; (& — Toi — Uoﬁ))

(7
w2 (:1: — Tp;t, V ) — %(@i,wi)(@', ‘71)

%

+ Vi + Vi + Wit, W; — W2 (x — Toit)

(7
o (71— 0]l - )

Thus, we have the following estimation:

av | dw|D(f s | dpe P’
J [, 100 X e

oY; p S~ _ _ 1 =
+<ax,m+vz+vl+wzt+[wlx<x—uOlt>]—w$wz<wl,m)

0
ot
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+ 28;; ( S (z,uos) — uolw 2p (wi X ‘N/i?ﬂ()i)) + 21#1-\/@-(}?, w; ) (W4, x)
+ 26@1{ (a: — Tgit, V; — EOi) - %(m,wi)(@, Vi)

i

+ Vi + Vi +wit, w; — w; (z — Ugit)

+( D
VBi
+ [@; X (‘N/z - ﬂmﬂ + (W, [ x (z — ﬂOﬂf)]))H
+4dpo1002¢1¢2/1%3dq/]%3dq16q T_T+‘/l Vot Vi — Vs

+ (w1 — wQ)t [wl X (1‘ — u01t)] — [OJQ X (J? — UOQt)]
1 ~ 1 ~

+ — w2 (W2, V2) — w1 (w1, V1)| .
w3 w1

In the last inequality, let us turn to the supremum of both parts, the existence
of which follows from conditions (14) of Theorem 2.1:

= sup /dV/ w|D(f) —Q(f, [)]
(t,x)eR* JR3 R3

1 o;
<—=)> p z/ dpe " sup
\/7? ; 0 R3 (t,z)ER* ot
o; o 1 =~
+( aw B w;t + [w; X (z —pit)] — *ZQW i (@, Vz)>
+ 2Bi; ( T, Ugi) — Ugwit — (@' X ‘Z‘ﬂm)) + 207/ B,(p, @) (@i, )
1 _
+ 25#/1@{ — Toit, Vi — ) — ?(@i,@)(wu Vi)
+ +17,+~i+mt,w,—w T — Ug;t
+[@ox (V=) | + (@3 @0 x (@ =T0t) ||
4d? po1 po2 q1

———5 —— sup 1/111/12/ dQ/ dgre™® 4
T (t,x)ER4 R3
+VL = Va+ Vi = Voo (W1 — W)t

51\/?2

1 ~ 1 ~
+[@1 x (z —wo1t)] — (@2 x (z — wpat)] + ?52(527 Va) — ?wl(wl, )i,
5 1

which implies the representation for the value of A’:

0Y;
ot

1 )
A’:mZpOi/g)dpe P~ sup

(t,x)eR*

+ (aaqih \/pé Ai ~i wit + [w; x (x — ug;t)] — (j%wi(wi’ ‘Z))
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(x,To;) umw 2t — (wi X XN/Z-,ﬂm)) + 2%\/@(1),@2-)(@-,56)

i (@

+ 2B {wf @ —Tgit, V; — ﬂm’) - %(@uwi)(@, ‘71)
+
(v

%

—|—<\/ﬁ— Vi + V; + wt, Wi — @2 (z — Toyt)
n [(,uz _ UOZ):| w“ [(,uz X (:L' - UOlt)D) }‘
4d? i)ro21po2 (til)lé:)R4 Y12 / dq / dgre™" \/E \;];72

Vi —Va+ V1 — V2+(w1 wa)t

+ [@1 % (@ — Toit)] — [@2 X (& — Tgat)] + 9@(@,172) - ﬁwl(wl, )| .
2 1

Using condition (15) of Theorem 2.1 and passing to the low-temperature limit,
the validity of which follows from the lemma proved in [7], we have

2 | 0Y;

lim A = ; dpe V" | =

Bir s Zp " taers /Rs T

7 1 17
+< 1/} Vit Vi— 2w0¢<w0i,‘/%>)‘
Oz “o;

4d? po1poz 2l o
+——— sup (Y1e) [ dq [ dqe LV = Vs

0 (t,x)ER4 R3 R3

1

SO 1 - -
+Vi = Vo — 5w (wm, V1) + —Wo2 (502, V2> :
wo1 wWo2

Calculating the integrals in the right-hand side of the last equality, we get that
assertion (16) of Theorem 2.1 holds. O

Corollary 2.2. Let all the conditions of Theorem 2.1 be valid and the func-
tions v; be of the form

Yi(t,x) = C; (m —t (‘71 +V; - LL%MM (wou ‘Z))) ; (23)

where C; are nonnegative, smooth and bounded functions on R*. In addition, one
of the conditions:

d—0 (24)

or
o~ o~ 1 ~ o~ 1 -
Vi+Vi— —wn (wm, V1> =Va+ Vo — —Wp2 (502, Vz) (25)
wo1 Wo2
1s required to be fulfilled.
Then we have the statement:

Ve>0 dBy VB, >0y A<e. (26)
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The validity of this corollary obviously follows from the inequality A < A.
If we substitute the functions ; of the form (23) into (16), then its first term
vanishes. If we use any of additional conditions (24) or (25), then the last term
of (16) also vanishes.

Corollary 2.3. As a function v;, one can consider an arbitrary function of

the form
Yi(t,z) = C; <[3€ X <‘7z +V; - %%i (WOiaVz))}) ;

017

where C; are also nonnegative, smooth and bounded functions on R*. If addition-
ally one of the conditions (24) or (25) is satisfied, then (26) remains true.

In this case, the functions ; depend only on spatial coordinates and naturally
the first sum on the right-hand side of (16) vanishes. If one of the conditions (24),
(25) is satisfied, then (26) remains true.

Theorem 2.4. Suppose that the coefficient functions @;(t,z) are of the form

wilt,z) = i(t, x)e*ﬂiwlzr?, (27)

where the same conditions as in Theorem 2.1 are imposed on the functions 1,
but expressions (14) remain bounded even after multiplying them by the factor
e~20 - Then, if condition (15) is satisfied, the statement (16) of Theorem 2.1
s also valid.

Proof. Estimation (20) remains true, so let us calculate the derivatives of the
coefficient functions:

aai":e&“ <8¢1+2/3sz[ i (2, T0i) — g}t = (‘”im’uo"‘)D’

Dp;
ox

= e_ﬁlw ri (81/]2 + 281 [wz(wzax) - w?(x — Toi — uOit)]) :

Next, substituting the functions ¢;(¢,x) (27), the obtained derivatives, the
density (7) and the mass velocity V; in the right-hand side of inequality (20),
we have:

2

1 28,1 2
SV [, 2190 = QUD€ 5 S e [ e

i=1

i
ot

+ 26;1; ( (:E Up;) — uOZw ( X Vl,uol))

+ <6¢Z + 2Bi%i (Wz(wz, r) — ( Zoi — Uoi ))7

p

3

+ Vi +wit + [w; x (& — zo; — u0it)]> ‘

2
+%We_aﬁm—wm / dq / dqre—t 7 |4
™ R3 R3

D
B VB2
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+ ‘71 — ‘/}2 + (@1 — @g)t + [@1 X ($ — X1 — ﬂ()lt)] — [EQ X (CE — T2 — ﬂogt)] .

Thus, we have expression (21) with accuracy up to the factor e~ 28T and the
term ;. Further, in the same way as in the proof of Theorem 2.1, performing the
same transformations, but imposing an additional condition of boundness on the
functions (14) with the factor e=2%™i% due to condition (15), we get convinced
of the correctness of assertions (16), which proves Theorem 2.4. O

Theorem 2.5. Let the coefficient functions p;(t,x) be of the form
pilt,x) = i(t, ), (28)

where the same conditions as in Theorem 2.1, are imposed on the functions v,
but expressions (14) remain bounded even after multiplying them by the factor
P Then, if condition (15) remains true, the statement (16) of Theorem 2.1
1$ also valid.

Proof. Using again (20), calculate the derivatives of the coefficient func-
tions (28):

8901' _ Qﬁ,wlxaw

ot ot ”’
or e (6 + 28w )

Further, as in the proves of previous theorems, we substitute the expressions
for ¢; of the form (28), the density (7) and the mass velocity V; into inequal-
ity (20):

@W@mw QU.1)

1 522 0 ;i
ﬁzpm@ﬁl P /R3 dpe™? 877[; <a¢ + 28w,
i=1
p wit + [w; X (x — xo; — UOZt)]) ‘

q1

Bl\/E

+‘71 - V2 + (@1 —@2)75 + [@1 X (.’E — Zo1 —ﬂ()lt)] — [@2 X (CE — 202 —ﬂogt)]‘ .

+MMWW%%BW@WWﬁ/)@/‘m€q
R3 R3

T2

The obtained expression is simpler than the estimation (21). Using the conditions
of the theorem, we prove it in the same way as Theorem 2.1. O

So, in the paper, the bimodal distribution (11) with Maxwell modes M; of
the most general form is obtained for the model of rough spheres, which with
arbitrary degree of accuracy minimizes the uniform-integral error (12) between
the sides of the Bryan-Pidduck equation (1).

From the physical point of view, the obtained solution can be interpreted
as follows: with descending of temperatures of flows, their rotational movement
slows down and simultaneously their linear acceleration is reduced.
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Bzaemoziss MakcBe/LIIBCbKUX IIOTOKIB 3arajibHOro
Buy AJs mozaesi Bpaitana—Iliagmaka
0.0. I'ykasios, B.J1. Topaeschkuit

BuBuaernhcsa B3aeMo/Iis MizK TBOMAa MAKCBEJITIBCHKUMU TTOTOKAMU 3arajIb-
HOTO BUIJISITY B ra3i i3 mopcTkyBaTux cdep. Habanxkennit po3s’si30K piBHSH-
us Bpaitana-Ilingaka, sike onucye 1o B3a€MOJI0, € 6GIMOJAJIBLHUM PO3IIOIi-
JIoM 3i cremniaabHo migidopanuMu kKoedimienTauMu dyaKIigaMmu. [lokasamno,
IO 3a TEeBHUX JIOJIATKOBUX YMOB, HaKJIaJIEHUX Ha I (DYHKIHI 1 Ha Tigpo-
JUHAMIYHI MapaMeTpHu IMOTOKIB, HOPMa PI3HUI MiXK YacTUHAMY PiBHSHHS
Bpaitana—Tlinmaka Moxke OyTr SKOIO 3aBIOIHO MaJIO0.

KirrouoBi ciioBa: mopcTKyBaTi cepn, piBaauus bpaitana—Ilinnaka, Bia-
XMJI, MAKCBEJITIBChbKI MOTOKH, 6IMOIAIBHII PO3TOIL/, TiIPOIMHAMITHI TTapa-
METPH.
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