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Non-Differentiable Functions Defined in
Terms of Classical Representations of Real
Numbers
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The present paper is devoted to the functions from a certain subclass
of non-differentiable functions. The arguments and values of the considered
functions are represented by the s-adic representation or the nega-s-adic
representation of real numbers. The technique of modeling these functions
is the simplest as compared with the well-known techniques of modeling
non-differentiable functions. In other words, the values of these functions
are obtained from the s-adic or nega-s-adic representation of the argument
by a certain change of digits or combinations of digits.

Integral, fractal and other properties of the functions are described.
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1. Introduction

A nowhere differentiable function is a function whose derivative equals infinity
or does not exist at each point from the domain of definition.

The idea of the existence of continuous non-differentiable functions appeared
in the nineteenth century. In 1854, Dirichlet speaking at lectures at Berlin Uni-
versity said on the existence of a continuous function without derivative. In
1830, the first example of a continuous non-differentiable function was modeled
by Bolzano in “Doctrine on Function” but the paper was published one hun-
dred years later [1,2]. In 1861, Rieman gave the following example of a non-
differentiable function without proof [37]:

>, sin(nx
f(flf)=Z:§l2 ) (1.1)
n=1

It was also studied by Hardy [3], Gerver [4], and Du Bois-Reymond. The function
has a finite derivative that equals % at the points of the form &m, where £ is a
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rational number with an odd numerator and an odd denominator. Function (1.1)
does not have other points of differentiability.
In 1875, Du Bois-Reymond published the following example of the function [5]:

f(z) = i a" cos(b"mx),
n=1

where 0 < a < 1 and b > 1 is an odd integer number such that ab > 1+ %7‘[‘. The
last-mentioned function was modeled by Weierstrass in 1871. This function has
the derivative that equals (+00) or (—oo) on an uncountable everywhere dense
set. The following example of non-differentiable function was modeled nearly
simultaneously and independently by Darboux in the paper [6]:

oo .
fla) = Z Sln((nn—{'— lz)
n=1

In the sequel, other examples of the functions were constructed and classes
of non-differentiable functions were founded. The major contribution to these
studies was made by the following scientists: Dini [9, p. 148-158], Darboux [7],
Orlicz [8], Hankel [10, p. 61-65].

In 1929, the problem on the massiveness of the set of non-differentiable func-
tions in the space of continuous functions was formulated by Steinhaus. In 1931,
this problem was solved independently and by different ways by Banach [11] and
Mazurkiewicz [13]. So the following statement is true.

Theorem 1.1 (Banach-Mazurkiewicz). The set of non-differentiable func-
tions in the space C[0,1] of functions, that are continuous on [0,1], with the
uniform metric is a set of the second category.

There also exist functions that do not have a finite or infinite one-sided deriva-
tive at any point. In 1922, an example of such function was modeled by Besicov-
itch in [12]. The set of continuous on [0, 1] functions whose right-sided derivative
equals a finite number or equals +00 on an uncountable set is a set of the second
Baire category in the space of all continuous functions. Hence the set of func-
tions, that do not have a finite or infinite one-sided derivative at any point, is a
set of the first category in the space of continuous on a segment functions. The
last-mentioned statement was proved by Saks in 1932 (see [14]).

Now researchers are trying to find simpler examples of non-differentiable func-
tions. Interest in such functions is explained by their connection with fractals,
modeling of real objects, processes, and phenomena (in physics, economics, tech-
nology, etc.).

The present paper is devoted to the simplest examples of non-differentiable
functions defined in terms of the s-adic or nega-s-adic representations.

In addition, we consider some examples of nowhere differentiable functions
defined by other ways.
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2. Certain examples of non-differentiable functions

Example 2.1. Consider the functions

3 _ 2 S _ 2
F(Atiasan) = Ao @) onte).. 04 9 (Adiasan..) = Bg@ipa@).gn(@).

where s > 2 is a fixed positive integer number,

AS = i % an €{0,1,...,s— 1},
n=1
)0 if ai(z) =0 o vj—1(x) for aj(z) = a1 ()
P1(@) = {1 if ap(z)#0 2il®) {1 —pjo1(z) for aj(z) # aj_1(z)

In 1952, the function g was introduced by Bush in [15], and the function f was
modeled by Wunderlich in [38]. The functions f and g are non-differentiable.

In [17], Salem modeled the function

00 n—1
S(f]f) =S (Agxlag...an...) = Bal + Z <BO¢" H qaz) = y = Agfag...an..ﬁ
n=2 i=1

where g9 > 0, ¢1 > 0, and qo + ¢ = 1. That is, 85, = 0 whenever «a,, =
0, Ba, = qo whenever o, = 1, and q,, € {qo,q1}. This function is a singular
function. However, generalizations of the Salem function can be non-differentiable
functions or do not have the derivative on a certain set.

In October 2014, generalizations of the Salem function such that their argu-
ments are represented in terms of positive [16] or alternating [36] Cantor series or

the nega-Q-representation [29-31] were considered by Serbenyuk in [25-28,32,35].
Consider these generalizations of the Salem function.

Example 2.2 ([28]). Let (dy) be a fixed sequence of positive integers, d,, > 1,
and (A,) be a sequence of the sets A, ={0,1,...,d, — 1}.
Let z € [0, 1] be an arbitrary number represented by a positive Cantor series

o
D €n
r=A :E —————  whereg, € A,,.
E1€2...En ... ) n n
162--En ol dids . ..dy,

Let P = ||pin| be a fixed matrix such that p;,, > 0, n = 1,2,..., and i =
0,d, — 1, Zfialpi,n = 1 for an arbitrary n € N, and [[,2, pi,» = 0 for any
sequence (iy,).

Suppose that elements of the matrix P = ||p; || can be negative numbers as
well, but

Bom =0,B8im >0 for i#0, and max Ipin| < 1.

0 ifep, =0
ngvk - Ek*l . . °
Ei:() Dik if ey, 7é 0

Then the following statement is true.

Here
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Theorem 2.3. Given the matrix P such that for all n € N the following
are true: De, nPe,—1,n < 0, moreover dppg,—1n = 1 or dppa,—1,n < 1; and the
conditions

n n
Jim kl:[l dypok 7 0, lim ’}:[1 dipdy, -1,k # 0

hold simultaneously. Then the function

o0 k—1
F(‘T) = ﬁz—:l(m),l + Z (ﬁsk(x),k H psn(m),n>
k=2 n=1

is non-differentiable on [0, 1].

Example 2.4 ([35]). Let P = ||p; || be a given matrix such that n =1,2,...
and i = 0,d, — 1. For this matrix the following system of properties holds:

1°. VneN pin € (—1,1);
o dn—1
2°. VneN YT pin =1,
3°. V(in),in S Adn H?LOZI ‘pin,n‘ =0

4°. Vi € Ag, \ {0} 1> Bin =0 pin > Bom = 0.

Let us consider the function

( Bel ,1 + Z ﬁen(x)7 H pe] )

where

3 Ben(z)m if n is odd

BE"(‘T = . . ’
Bdp—1-en(z)n if 1 is even

~ Dep(z),n if n is odd

pe"(x) = f . 9
Pd,—1—e,(z);n 1 N 1S €ven

TN T\ b fen A0

Here x is represented by an alternating Cantor series, i.e.,

0o
1+e¢
xr = 5152 En Z dl - 1)n+17

where (d,) is a fixed sequence of positive integers, d,, > 1, and (44, ) is a sequence
of the sets Ay, = {0,1,...,d,, — 1}, and ¢, € Ag,.



Non-Differentiable Functions 201

Theorem 2.5. Let pe, nDe,—1n < 0 for alln € N, g, € Ag, \ {0} and
conditions

n n
nlggo 1}_[1 dipo,k 7 0, nlglgo kl_Il dxpa,—1,k 7 0

hold simultaneously. Then the function F is non-differentiable on [0, 1].

Example 2.6 ([32]). Let Q = ||¢i.n|| be a fixed matrix, where i = 0,m,,, m, €
N2 =NuU{0,00}, n =1,2,..., and the following system of properties is true for
elements ¢; ,, of the last-mentioned matrix:

1°. Qin > 0;
20 VneN ™ g, =1;

3% V(in),in e NU{0} TI02, Gipm =0.
The expansion of z € [0, 1),

i1—1 o] fe'e) 2n—1

n—1
x = Z gi1+ Z (=1)"15, . H Gijj| + Z H dij.j | (2.1)
i=0 n=2 j=1 n=1 \ j=1

is called the nega-Q-expansion of z. By x = A9 denote the nega-Q-expan-

11910 ~
sion of . The last-mentioned notation is called the nega-Q-representation of x.
Here

1 if n is even and i,, = m,,
5o ZZ’Z’;M_M ¢in if nis even and i, # my,
in,m — . . .
" 0 if n is odd and i,, =0
in—1 e )
Yoty Gim if n is odd and i, # 0

)

and the first sum in expression (2.1) is equal to 0 if i; = 0.

Suppose that m,, < oo for all positive integers n.

Numbers from some countable subset of [0,1] have two different nega-Q-
representations, i.e.,

Ailg~--in—linmn+10mn+30mn+5~n = Ailg...in_l[in—l]Omn+20mn+4...’ in 7é 0.
These numbers are called nega-Q-rationals, and the rest of the numbers from
[0,1] are called nega-Q-irrationals.

Suppose we have matrixes of the same dimension Q = ||| (the properties
of the last-mentioned matrix were considered earlier) and P = ||p; ,,||, where ¢ =
0,my, my, € NU{0}, n=1,2,..., and for elements p; ,, of P the following system
of conditions is true:

1°. pin € (—1,1);
2°.VneN Y Mipin, =1,

3°. V(in), in € NU {0} Hﬁozl |pin,n| = 0;
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4°. Vi, €N 0= Bon < Bipn = >omy pim < L.
Theorem 2.7. If the following properties of the matriz P hold:
e forallneN, i, € ernn ={1,2,...,my},

DinnPin—1,n < 0;

e the conditions
n n
Do,k

lim [T 2% 0, lim T2 20

n—oo iy CIO,k: n—oo Pt} qu,kﬁ
hold simultaneously, then the function
oo ~ k—1
F(x) = B (@)1 + Z Bir (), H Dij(x),j
k=2 j=1

does not have a finite or infinite derivative at any nega-Q-rational point from the
segment [0, 1].

Here
5 Din,n if n is odd
pinyn = . . )
DPrmn—in,n if n is even
~ Bin.m if n is odd
/Bin, = . . )
B —in,n if n is even

g — S pin >0 ifd, #£0
In, ep . .
0 if i, =0
The last-mentioned examples of non-differentiable functions are difficult.
However, there exist elementary examples of these functions.

3. The simplest example of non-differentiable function and its
analogues

In 2012, the main results of this subsection were represented by the author of
the present paper in [18-20), 34]

We will not consider numbers whose ternary representation has the period
(2) (without the number 1). Let us consider a certain function f defined on [0, 1]
in the following way:

_ A3 fooA3 _ _
T = Aoqozg...oan... - Ago(al)go(ag)...cp(an),,, - f(.%) =Y,

where (i) = %, i€ N =1{0,1,2}, and A2 is the ternary repre-

a1Q2...0n...
sentation of x € [0,1]. That is, the values of this function are obtained from the
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ternary representation of the argument by the following change of digits: 0 by 0,
1 by 2, and 2 by 1. This function preserves the ternary digit 0.

In this subsection, differential, integral, fractal, and other properties of the
function f are described; equivalent representations of this function by addition-
ally defined auxiliary functions are considered.

We begin with the definitions of some auxiliary functions.

Let ¢, 7, k be pairwise distinct digits of the ternary numeral system. First, let
us introduce a function ¢;;(«) defined on the alphabet of the ternary numeral
system by the following;:

i|J
ij(a) |00 ] 1

That is, fi; is a function given on [0,1] in the form

A3 fij A3 e .
T = A041€Y2~--Oén~~ = Acpij(aﬂgoi]’(OéQ)...goij(ocn)... - fl] ('I) =Y.

Remark 3.1. From the definition of f;; it follows that fo1 = fi0, fo2 = fe0,
and fi2 = fo1. Since it is true, we will use only the notations fo1, foo, fi2-

Lemma 3.2. The function f can be represented by:

J .
1. f(.%') = 2xr — 3f01($), where A21a2_”anm —0§ Aim(041)@01(042)--~§001(04n)~--’ @01(2) =
7:22—7:’ ZG Ng,
f
2. f(@) = 5 =@ = 3f2x), where AZ 0y o T AL a1)erm(0n).pra(an)..

. 2 g .
p12(i) = #, i€ NJ.

x f .
3. flx) =5+ %fgg(x), where Aila}“anm = A?ooz(al)cpoz(az)...soog(oan)...’ wo2(i) =
—i% 4 2i, i € NY.

Lemma 3.3. The functions f, fo1, fo2, fi2 have the properties:
L 0 (0170 108 00 ) U {5
2. the point xg = 0 s the unique invariant point of the function f;
3. the function f is not bijective on a certain countable subset of [0, 1];
4. the following relationships hold for all x € [0,1]:
f(@) = f(1 —2) = for(z) — fi2(2),

fl@)+ f(1—2)= % + 3fo2(x),

fou(@) + foa(@) + frala) = =,

T2
2fo1(z) + foo(x) =
for(z) = fr2(z) = = —

)

)

N =
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5. the function f is mot monotonic on the domain of definition; in particular,
the function f is a decreasing function on the set

/\1‘2:A3

{r:x1 <z9= (21 = A3 Clmcnozﬁnoﬁgnoﬁ,,,)}a

Cl...Cng 1an0+2an0+3...

where ng € Zo = NU{0}, c1,¢2,...,¢n, is an ordered set of the ternary digits,
Ungti € NS, Brori € NS, i € N; and the function f is an increasing function
on the set

/\.CCQZA3

{2 <x9= (21 = A3 01...Cnorﬁn0+2ﬁn0+3--~)}’

cl...cn00an0+2an0+3...
where r € {1,2}.

Let us consider the fractal properties of all level sets of the functions

fot, fo2, fi2.
The set

F o) = {z: g(x) = yo},

where g is a fixed element of the range of values E(g) of the function g, is called
a level set of g.

Theorem 3.4. The following statements are true:

o if there exists at least one digit 2 in the ternary representation of yo, then
') = @;

e if yo = 0 or yo is a ternary-rational number from the set C[3,{0,1}] = {y :
y=A3 yan € {0,1}}, then

a1ag...om...
ao(f; (y0)) = logs 2;
e if yo is a ternary-irrational number from the set C[3,{0,1}], then
0 < ao(f;;' (o)) <logy 2,

where ag(figl(yo)) is the Hausdorff-Besicovitch dimension of figl(yo).

Let us describe the main properties of the function f.

Theorem 3.5. The function f is continuous at ternary-irrational points, and
ternary-rational points are points of discontinuity of the function. Furthermore,
a ternary-rational point xq = Ailaz...anOOO... is a point of discontinuity 23%
whenever a, = 1, and is a point of discontinuity (—23%) whenever o, = 2.

Theorem 3.6. The function f is non-differentiable.

Let us consider one fractal property of the graph of f. Suppose that

[o¢] o0
(6
Xz[o,l]x[o,l]z{(x,m:xzz3;2‘, am € NG, yzzﬁ—z, ﬁmeNS}-
m=1 m=1
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Then the set

_ A3 3
ﬂ(alﬁl)(a252)---(0¢mﬁm) - AOqOéz---Otm X A/31/82~~ﬁm

is a square with a side length of 37". This square is called a square of rank m

with base (alﬂl)(agﬂg) - (amﬁm).
If £ C X, then the number

o (E) = inf{a : Hy(E) = 0} = sup{a : Hy(E) = oo},

where

o o
H.(E) = 21_% [érgng(E,d)d ] ,
and K(E,d) is the minimum number of squares of the diameter d required to
cover the set F, is called the fractal cell entropy dimension of the set E. It is
easy to see that o (E) > ag(F).

The notion of the fractal cell entropy dimension is used for the calculation of
the Hausdorff—Besicovitch dimension of the graph of f, because, in the case of
the function f, we obtain that o (E) = ag(E) (it follows from the self-similarity
of the graph of f).

Theorem 3.7. The Hausdorff-Besicovitch dimension of the graph of f is
equal to 1.

The integral properties of f are described in the theorem below.
Theorem 3.8. The Lebesque integral of the function f is equal to %

There exist several analogues of the function f which have the same properties
and are defined by analogy. Let us consider these functions.
One can define 3! = 6 functions determined on [0, 1] in terms of the ternary
numeral system in the following way:
AP In A3
Qrag...Qn... em(a1)pm(az)...om(an)...)

where the function ¢,,(a;,) is determined on an alphabet of the ternary numeral
system, and f,,(z) is defined by using the table for each m = 1, 6.

NN~ OO o
| OoOIN O N | =
OO NN
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Thus one can model a class of functions whose values are obtained from the
ternary representation of the argument by a certain change of ternary digits.

It is easy to see that the function fi(z) is the function y = = and the function
fe(x) is the function y = 1 — z, i.e.,

Y= fl(.%') = fl (Azlag...an...) = Aguxz...an... =,
y = fo(@) = fo (A% 10z an.) = Db arlp—as] 2an].. = 1 — -

We will describe some application of the function of the last-mentioned form
in the next subsection.

Lemma 3.9. Any function fp, can be represented by the functions f;; in the
form ) o I
fm = aiDz 40 4 D f,.(), where ol 09 9) € Q.

One can formulate the following corollary.

Theorem 3.10. The function fp, such that f,(z) # x and f(z) # 1 —x is:

e continuous almost everywhere;

o non-differentiable on [0, 1];

e a function whose Hausdorff-Besicovitch dimension of the graph is equal to 1;
e a function whose Lebesgue integral is equal to %

Generalizations of the results described in this subsection will be considered
in the following subsection.

4. Generalizations of the simplest example of non-differenti-
able function

In 2013, the investigations of the last subsection were generalized by the
author in several papers [21,22,33]. Consider these results.

We begin with the definitions.

Let s > 1 be a fixed positive integer number, and let the set A = {0,1,...,s—
1} be an alphabet of the s-adic or nega-s-adic numeral system. The notation z =

Aifa%an,__ means that x is represented by the s-adic or nega-s-adic representa-
tion, 1.e.,
[e.e]
e=3 0 A
- N a10...0n...
n=1
or
[e. 9]
(<)@,
— — —S
T = E o ALlosom. s 0n €A
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Let Ag be a class of functions of the type
+ +
fra= Aafag...an... - AﬁlsﬁQ,,ﬂnm = f(x) =Y,

where (Brmt1, Bemt2s -+ Bamak) = 0 (Whmt1s Qhmt2, - - -5 Qng1yi), the num-
ber k is a fixed positive integer for a specific function f, m = 0,1,2,..., and
0(v1,72, - - -7k is some function of the k variables (it is the bijective correspon-
dence) such that the set

AP =AxAx.. . xA

k

is its domain of definition and range of values.

Each combination (v1,72,...,7) of k s-adic or nega-s-adic digits (according
to the number representation of the argument of a function f) is assigned to the
single combination (71,72, . . .,Yx) of the k s-adic or nega-s-adic digits (according
to the number representation of the value of a function f). The combination
O(~v1,72,---,7k) is assigned to the unique combination (’y;,vé, . ,’y,;) that may
not match with (71,72, ...,7). The 6 is a bijective function on AF.

It is clear that any function f € Ay is one of the functions:

fl§7 f+7 f—;lv f—l—ofliv fijof_:l, f—l—oflfof;lv

where
f]i (Azum---an---) = A%LBQ-uBnm’
(Brm+15 Bemt2, - -+ Bima)k) = 0 (Qhkma1, @ema2s -+ > Ami1)k)
form=0,1,2,..., and some fixed positive integer number k, i.e.,
(51,/827--~ 7/Bk:) - 0(0[1,0[2,... 7ak)7
(Brt1s Brras -+ Bak) = 0 (1, agga, - -5 aop)
(Brm+1: Brma2s - -+ Banak) = 0 (Qkmats Gkma2s -5 Qms1)k)
and

f—l— (Azlaz...an...) = A(;fag...an..J
f—;l (A;fagan) = Azlagu.an...'

Let us consider several examples.
The function f considered in the last subsection is a function of the f; type.
In fact,

_ A3 3 — _
T = Aalaz...an... - Ago(al)go(ag)...cp(an)... - f(:L’) =Y

where ¢ (o) is a function defined in terms of the s-adic numeral system in the
following way:
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Qp 0|1
olan) |0 2] 1]

Now we give the example of the function f7. The function

2
f2 a1a2 Q.. _>AB152---/3TL---’

where (B2m+1a 62(m+1)) = 9(a2m+11 a2(m+1))> m = Oa 1> 27 37 C) and

a2m+1a2(m+1) 00 | 01 10 11
Bom+1B2(m+1) | 10 | 11 [ 00 | 01 |

is an example of the f2-type function.

It is obvious that the set of f? functions consists only of the functions y = z
and y = 1 — z in the binary numeral system. But the set of f2 functions has the
order, which is equal to 4!, and includes the functions y = z and y = 1 — z as
well.

Remark 4.1. The class A of functions includes the following linear functions:

Yy=x,
y=fz)=1rf (quaz Qi .. ) = [Ss—l—al][s—l—az]...[s—l—an]... =1-uz,

s s s—1
Y= f< ) f (Aamz Ne7P0 ) = A[s—l—al][s—l—ozg]...[s—l—ozn]... = _S +1 -

These functions are called As-linear functions.

Remark 4.2. The last-mentioned two functions in the last remark are inter-
esting for applications in certain investigations. For example, in the case of a
positive Cantor series, the function may have the form

fe'e) En
fle)= (A8, —f(deQd>

dp —1—€n
A[dl 1—e1][d2—1—¢2]...[dn—1—¢n]... Z d1d2

It is easy to see that this function is a transformation preserving the Hausdorff—
Besicovitch dimension.
Consider the following representations by the alternating Cantor series:

Z 5n
61 £2...€n.. dl dg

oo
1+5
5152 sn Zdl “ 1)n+1‘

In 2013, the study of the relations between positive and alternating Cantor
series, as well as other investigations of alternating Cantor series, were presented
in [23,24]. These results were later published in [36].

Consider the following results that follow from the relations between positive
and alternating Cantor series.
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Lemma 4.3. The following functions are identity transformations:

_ AD T —(dn) — —
x A‘&‘152---57%-- = El[dQ*l*EQ]...EQn_l[d2n71752n}... - f(x) =Y
—(dn 9g D _ —
T = AE1(EQ..).€n... - Asl[d2—1—€2]...62n,1[dgn—l—z?zn}... - g(l’) =Y.

Therefore the functions below are the DP-functions (the functions preserving
the fractal Hausdorff-Besicovitch dimension):

_ AD fo A—(dn) _ _
T = A<5152~~-5n~~- - A[dlflfsﬂeg...[dznflflfsgr,bfl}EQn... - f($) - y’
—(dn, g D _ _
T = A€1(€2‘.).En... - A[dl—1—51}32...[dgnfl—l—agn,ﬂ@n.,_ - g({L‘) =Y.

A new method for the construction of the metric, probabilistic and dimen-
sional theories for the families of representations of real numbers via studies of
special mappings (G-isomorphisms of representations), under which the symbols
of a given representation are mapped onto the same symbols of the other rep-
resentation from the same family, when these mappings preserve the Lebesgue
measure and the Hausdorff-Besicovitch dimension, follows from Remark 4.2 and
investigations of the functions f4, f;l.

Let us describe the main properties of the functions f € As.

Lemma 4.4. For any function f from A, except for Ag-linear functions,
the values of the function f for different representations of s-adic rational num-

bers from [0, 1] (nega-s-adic rational numbers from [— respectively) are
different.

_s_ L]
s+17 s+117

Remark 4.5. From the unique representation for each s-adic irrational number
from [0, 1], it follows that the function f; is well-defined at s-adic irrational points.

To reach that any function f € As such that f(x) # z and f(z) # 1 —z is
well-defined on the set of s-adic rational numbers from [0, 1], we will not consider
the s-adic representation with period (s — 1).

Analogously, we will not consider the nega-s-adic representation with period
(0fs — 1))

Lemma 4.6. The set of functions f; with the defined operation “composition
of functions” is a finite group of order (sk)!.

Lemma 4.7. The function f € A, such that f(x) # z, f(x) # — 2 — z,
and f(x) # 1 — x has the following properties:
1) f reflects [0,1] or [- 15, S_%l] (according to the number representation of the
argument of a function f) into one of the segments [0, 1] or [, SJ%l] with-
out enumerable subset of points (according to the number representation of
the value of a function f);

2) the function f is not monotonic on the domain of definition;

3) the function f is not a bijective mapping on the domain of definition.
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Lemma 4.8. The following properties of the set of invariant points of the
unction f{ are true:
tion f{ are t

e the set of invariant points of f;; is a continuum set, and its Hausdorff-Besi-
covitch dimension is equal to %logsj, when there exists a set {o1,09,...,0;}
(j > 2) of k-digit combinations o1, ...,0; of s-adic digits such that

o( (@) (@) (i)) _ (a(i) (4) (i))’

ay’ Qg ..., 0 1,05 ., a

where o; = (agi)a(;) e ag)), i=1,7;

e the set of invariant points of f; is a finite set, when there exists a unique
k-digit combination o of s-adic digits such that

O(ar,az,...,a;) = (a1,as,...,a;), 0 = (araz...a);

e the set of invariant points of f; is an empty set, when there does not exist
any k-digit combination o of s-adic digits such that

0(a,az,...,ax) = (a1,a2,...,ax), 0 = (a1a2...ay).

In addition, the functions f; and f;l have the following properties.

Lemma 4.9. For each x € [0, 1], the function fi satisfies the equation

s—1

1—2)=— .

fa)+ f0—a) = =15

Lemma 4.10. For each y € [—SJ%I, SJ%I], the function f;l satisfies the equa-
tion )
—1 -1 s —
- —y) =1
Pt (< )

Lemma 4.11. The set of invariant points of the function fy, as well as f;l,
1s a self-similar fractal, and its Hausdorff-Besicovitch dimension is equal to %

The following theorems are the main theorems about the properties of the
functions f € As.

Theorem 4.12. A function f € Ag such that f(z) # z, f(x) # —i% -z,
and f(x) #1—x is:
e continuous at s-adic irrational or nega-s-adic irrational points, and s-adic ra-

tional or nega-s-adic rational points are points of discontinuity of this function
(according to the number representation of the argument of the function f);

e a non-differentiable function.

Theorem 4.13. Let f € A;. Then the following are true:

e the Hausdorff-Besicovitch dimension of the graph of any function from the
class Ag is equal to 1;
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/ f(z)de = %, where D(f) is the domain of f.

So, in the present paper, we considered historical moments of the development

of the theory of non-differentiable functions, difficult and simplest examples of
such functions. Integral, fractal, and other properties of the simplest example
of a nowhere differentiable function and its analogues and generalizations are
described. Equivalent representations of the considered simplest example by ad-
ditionally defined auxiliary functions were reviewed.
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HenudepenniiioBui dbyHKIIil, BU3HaAYeHi B TepMiHax
KJIACUYHUX MPe/ICTaBJIeHb IiMICHUX YUCeJI
S.0. Serbenyuk

IIro pobory mpucBsiaeHO AesdAKOMY MiAKJIAcy HeandepeHIiioBHuX (QyH-
KIilA. AprymMmeHTH i 3Ha4eHHs QPYHKIN, 10 PO3IVISAAIOTHCS, MIOJAHO Uepe3
s-Be abo Hera-s-Be 300parkeHHs JICHUX Uncesi. TexHika MOJETIOBAHHS Ta-
KUX (DYHKIN € MpOCTIIIo B MOPIBHSHHI 3 100pe BIOMUMU TEXHIKAMHI MO-
JleJTIOBaHHs HeudepeHinoBHnx GyHKIi. [HImuMu cjioBaMu, 3HAYEHHST [TAX
QYHKIIIH OTPpUMAHO 3 S-TO ab0 Hera-s-ro 300parkKeHHsl apryMEeHTY 3a JIOTO-
MOTH TI€BHOI 3aMiHu Tudp Iu KOMOIHAINN mudp.

Omnucano iHTErpajibHi, ppakTaJbHi Ta IHII BJIACTUBOCTI PO3IJISHYTHX
byHKITIT.

KirogoBi cioBa: Hime uemudepeHIiiioBai QyHKI, S-aIudHi MpeIcTaB-
JICHHSI, Hera-s-aJudHi MpeICTaBICHHs, HEMOHOTOHHI (DYHKIII, pO3MipHICTH
Taycnopda—besikoBuya.
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