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In this paper, the initial-boundary value problems for the two-dimen-
sional nonlinear Schrédinger equation with a special gradient term with
purely imaginary coefficients in the nonlinear part, when the coefficients
of the equation are measurable bounded functions, are considered. The exi-
stence and uniqueness of solutions of the first and second initial-boundary
value problems is proved almost everywhere.
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1. Introduction

In this paper we study the correct formulation of the initial-boundary value
problems for the nonlinear Schrédinger equation with a special gradient term. As
it is well known, the Schrédinger equation with a special gradient term and the
initial-boundary value problems for this equation appear in quantum mechanics,
nuclear physics, nonlinear optics and other fields of modern physics and engi-
neering [3,15,19]. Especially in quantum mechanics and nonlinear optics in the
study of the motion of charged particles in a nonhomogeneous environment, the
Schrédinger equation has a special gradient term. Therefore, the study of bound-
ary value problems of this type of Schrodinger equations is of interest both for
theoretical and practical problems. It should be noted that the initial-boundary
value problems for the linear and nonlinear Schrodinger equations in various for-
mulations were previously studied in detail in [1,2,4-8, 16, 18]. However, even
for the linear Schrodinger equation with a special gradient term, initial-boundary
value problems are poorly investigated [10,17]. In this paper, we study the ques-
tions of the existence and uniqueness of solutions of boundary value problems
for the linear one-dimensional and two-dimensional Schrodinger equations with a
special gradient term, where the coefficients are square integrable functions. Note
that the initial-boundary value problem for the nonlinear Schrédinger equation
with a special gradient term has not been studied yet. Therefore, the study of the
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existence and uniqueness of the initial-boundary value problems for the nonlinear
Schrodinger equation with a special gradient term is of scientific and practical
interest.

2. The existence and uniqueness of a solution of the first
initial-boundary value problem

In this paper, we will first examine the first initial-boundary value problem
for the nonlinear Schrodinger equation with a special gradient term with purely
imaginary coefficients in the nonlinear part in the case when the coefficients of
the equation are bounded measurable functions.

Let D be a bounded convex domain in R?, with the boundary I', that is
assumed to be smooth enough; x = (21, 22) be an arbitrary point of the domain
D; T > 0beagiven number; 0 <t <T;Q = Dx(0,t); Q= Qp; S =Ix(0,T) be
the lateral surface of ; C* ([0, 7], B) be a Banach space of the functions, k-times
differentiable in the interval [0, 7] with values in the Banach space B; L, (D) be
a Lebesque space of the functions summerable over the module with an order
p > 1 of functions for which the p-th power of the absolute value is summable;
Ly (0,T; B) be a Banach space of the functions defined and square-summable on
the interval [0, T with values from the Banach space B; Lo, (0,T'; B) be a Banach
space of measurable bounded functions on (0,7) with values from the Banach
space B. The Sobolev spaces Wzi“ (0,1), Wf’m (Q,p>1,k >0, m>0 are
defined as in [11,13].

Consider the initial-boundary problem of determination of a function ¢ =
¥ (x,t) in the domain €2 from the conditions

z%lf + apAY + iay (x) Vi

—a(@)Y+o@)y Fialpfe=f(t), (@t)eQ (21
w(x70>:(p(x)7 xeDaWS:O, 2.2
where i = v/—1; ap > 0,a2 > 0 are given numbers; A = 66—;% + 88725 is the

Laplace operator; V = (%, %); a(x),v (z) are measurable bounded functions

satisfying the conditions

0<a(x) < po, r €D, o = const > 0; (2.3)
lv(x)| < bo, r €D, by = const > 0; (2.4)

a1 (z) = (a11 (z),a12 (z)) is a given vector-function with the components satisfy-
ing the conditions

oaq ;
‘(11]' (.T)| SM17 aal‘;:(x) S,U’27 ]"ED7 juk:1727 Ml,MQZCOHSt>O; (25)
k

o (z), f(z,t) are complex valued functions satisfying the conditions

e W2(D), fewd (q). (2.6)
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It is clear that the problem of determination of ¢ = v (z,t) from conditions
(2.1), (2.2) is an initial-boundary problem for the two-dimensional nonlinear
Schrodinger equation of the form (2.1).

Definition 2.1. The function ¥ = ¢ (z,t) from the space
By = (071, W3 (D)) (1€ (0.71, L2 (D)

is called a generalized solution to (2.1), (2.2) if it satisfies equation (2.1) for almost
all x € D and for any ¢ € [0,7], and initial and boundary conditions (2.2) for
almost all z € D and almost all (§,t) € S, correspondingly.

Theorem 2.2. Let the functions a (z), v (), a1 (x), ¢ (z), f (x,t) satisfy con-
ditions (2.3)~(2.6). Then the initial-boundary problem (2.1), (2.2) has a unique
solution in the space By, and for this solution the estimate

‘,t o + 27
H¢<>M@m H o o) (2.7)
< . 3 t T, (2.
_%@MwwﬁWﬂWMWWMWw)’ € 0,77, (2.8)

1s valid, where the constant cg > 0 does not depend on ¢, f andt.

Proof. We choose the fundamental in W (D) and orthonormal in Ly (D)
system of functions uy = ug (), k = 1,2,..., for example, the system of eigen-
functions of the following spectral problem:

LX (z)=XX(z), z€D, X|r =0 (2.9)
at A= M\, k=1,2,..., where the operator L is defined by the formula

L =—apA+a(x) (2.10)

with Dirichlet boundary conditions.

Notice that (2.9) is a spectral problem for the two-dimensional equation of
elliptic type studied in [15]. Therefore, by the help of the result obtained in this
paper, we can state that the spectral problem (2.10) has nontrivial solutions X =
up (), k =1,2,...,at A = X\, K = 1,2,..., forming a spectra of the problem,

and these solutions form a basis in the spaces W, (D), W3 (D). The conditions of

orthonormality in Ly (D) and orthogonality in W4 (D), W (D) are given in the
form

(Uks Um) (D) = /D ug () up, () de = 03", (2.11)

where ;" are Kronecker symbols

1 k=
g = ™ km=1,2,... (2.12)
0, k#m
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It is clear that the functions uy (x), k = 1,2,... are orthogonal in the following
sense:

(ks um] = (ug, um) o = (Lug, um) p,(p)

W3 (D)
ou 6um
_e / Z 8x’; Gl )ukum> de
= \dp', kom=1,2,...; (2.13)
{ug, um} = (Luk,Lum)LQ(D) = (uk’um)vffg([)) = \0p', kom=1,2,.... (2.14)
Due to the assumption a (x) > 0, all eigenvalues A = A\ , k = 1,2,... are real,

positive and numbered in the increasing order
0< A < A< 3< <A <een A — 00 as k — oo. (2.15)

We additionally assume that

o <d, =1,2,... 2.1
||ukHW22(D) = dk < 400, k 5 &y ; ( 6)

where Jk, k=1,2,..., are positive constants.
By Galerkin’s method, we seek the approximate solution in the form

OV (x,t) =) e () up (2), (2.17)

T

where c]kv (t) = (1/)N (1) ug k=1,2,...,N, are defined by the conditions

)L2(<9)’

e (R N B (L SR
Film OO (0 w), 4 @O (0w,
i (a2|wN|2¢N,uk) — fu(t), k=1,2... N, te[0,T], (2.18)
cr (0) = (¥N (-,0), uy) = g, k=1,2,...,N. (2.19)

Lo (D)

Here fi (t) = (f (-, 1) ,uk)L2(D), or = (¢, uk)LQ(m, k=1,2,...,N. System (2.18)
consists of the system of N nonlinear ordinary differential equations. It fol-
lows from assumptions (2.3)—(2.6) and the properties of uy (z), k = 1,2,... that
the second, third, fourth and fifth terms in the left- and the right-hand sides
are continuous on each set {t € [0,717, |c{€V ’ < const} of the functions ¢, c]kv , k=
1,2,..., N. Therefore, for the existence of a solution to the Cauchy problem, it
is sufficient to show that the solutions are bounded uniformly with respect to ¢t €
[0,T] for any T' > 0 (see [9,12-14]). To establish the boundedness, we have to
prove the following.

)LQ(D)
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Lemma 2.3. For the solutions of problem (2.18), (2.19), the estimate

N N4y [2 N 2
N (]2 dey ( N oY
Sl f +3 < ol g+ |
k=1 k=1 dt WQ(D) L2(D)
< 2
< (1613, + 11200 0, 1615, )
te0,T],N=1,2,.... (2.20)

1s valid.

Proof. Multiplying each k-th equation from (2.18) by ¢ (), summing the
obtained equalities over k from 1 to N, integrating over t from zero to t < T and
then using the formula of integration by parts and the condition uy|p =0, k =
1,2,..., we get

/Q (‘% N —ag () |V + iay () VNN
—a(x) WN‘Z +v(z) WN‘Q + iag ‘ril) dxdr
—2@/ Im (f¢™) dzdr, te[0,T).
Q

Subtracting from this equality its complex conjugate, we get the validity of the
equality

z/ (WNW ‘%NW) dz dr
Qy

ot
+i / (a1 (2) VNN + ay (z) VN V) dadr
Q¢

+ 2ias {@ZJN{4dxdT = 22’/ Im (f?,[_)N) dz dr, te0,7T].
Qt Qt

Using differentiability of the functions ai;(x),j = 1,2, the last one may be
written as

0 N2 - 9 . N2 N4
At&‘w ‘ dﬂ?dT—f—/Qt;axj(alj (:E)‘w ‘ ) da:d7+2a2/9t ‘Qb ‘ dx dT
/ Zaau ¢N| dz dr +2/ Im (f¢") dvdr, te€[0,T]. (2.21)

Considering that the functions ux = uy () ,k = 1,2,. .. satisfy the homogeneous
boundary conditions ug|p =0, k =1,2,..., from decomposition (2.17) we have

YN (z,t)|r =0, t€(0,T),N=1,2,.... (2.22)
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Taking into account the second terms and the conditions imposed on the coefhi-
cients of the equation from equality (2.21), one can easily obtain the validity of
the inequality

2 4
HwN(.,t)HLQ(D)j%aQ/Qt [N|" da dr
t
<o 017,y + 11 5 + 202+ 1) /0 1Y () dr (229

for all t € [0,T]. Using formula (2.17), we can write the relation

N [e'S)
16 0, = Dol OF <Y lerl? =llelf,m) - (2:24)
k=1 k=1
With the help of this relation, from (2.23), we get
H¢N HL2(D) —|—2a2/ WN‘ dx dr

t
2
< 10lZ,(py + 11750 + (12 + 1)/0 (R ('7T)HL2(D) dr, te€l0,T7].

Using this inequality and Gronwall’s lemma, it is not difficult to get the estimate

[N (-, HL +2a2/Q [N |* da dr
< (183,00 + If13 0 ) » £ € 10,71 (2.25)

Now we estimate at . For this purpose, we write system (2.18) in the form

. d

Z% (¢N ('7t) ’uk)LQ(D) - (aﬂva ’t) vuk) - (a () ¢N (‘775) 7uk)L2(D)

(-
+ (0 ()N (1), u) D) +i (ar (')VwN("t)’uk)L2<D>

(zam} 1) ( ) ():fk(t), k=1,2,...,N. (2.26)

Lo (D)

We differentiate both sides of this system with respect to t and multiply the k-th

equation of the obtained system by dc’“ ( ) , and then sum the obtained equations
over k from 1 to N. Then, integrating the obtained equality on the interval (0,1),

we have
.82¢N G&N aZwN 2 . 2 82¢N &ZN
/Qt (l o ot 2ot “;““ @) 5w,0t ot
N |2 N |2
— a(x) agt —i—v(:z:)’(iif ) dx dr




220 G. Yagub, N.S. Ibrahimov, and M. Zengin

—i—iag/ - (Je* oY) S O e

Of (x,7) 0PN (z,7)
0 ot ot

dedr, te][0,T].

Subtracting the complex conjugate from this equality, we get
2

o oy |? 0 2
/ﬂat‘ gt dazdr—i—/ﬂ Z&C(au(a;) )dde
t tj=1 J

o [ o (2 () 2 2 () 22

op
ot

N |2
= —/ Zalj (.%') ag dr dr
2 t
of oyYN

It is clear that the equality
N
2|0 ke [(z/;N)Q (%&;V)] (2.28)

ot
holds true. From the other hand, using equality (2.17) and the condition uy|p =
0, k=1,2,..., we can write
o™
ot

:4}

=0, N=1,2,... (2.29)
S

Using (2.28), (2.29), the Cauchy—Bunyakovsky—Schwartz inequality and estimate
(2.25), it can be obtained from (2.27) that the inequality

2

N (. N
Haw (-,1) +2a / | 01# dde
La(D
81/}N ’7 ?
< H +c3 (”¢H%Q(D) + Hf”iQ(Q)>
La(D)
t N(. ¢ 2
+ (202 + 1)/ W drdr te I 250
0 L2 (D)
holds true.

To estimate the first term of the right-hand side of this inequality, we use
system (2.18) and establish the inequality

H(%}N(wO)

2
6
<520V ()7, o) + 503 [0 (2 0)]|7,

La(D)
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+5 15 (0,00 + 2063 [ VOV (0|7 + 553 [V (Ol ) (2:3D)

Using the Gagliardo—Nirenberg inequality (see [16, p.79]), for n = 2 we have

167 Ol < BIVEY GO0 1Y O30 (2:32)
where 3 > 0 is some constant. With the help of formula (2.17), from this we get

2 1
HQDNHLf;(D) <p HV‘PNHEZ(D) HQONHEQ(D)- (2.33)

Since f € W20’1 (€2), it is easy to set

1 COypy < eallfllyoay - t€ 0.7 (2.34)
It is clear that
N N
L™ (2,0) = ¢ (0 =Y (Lo, wr) oy uk (). (2.35)
k=1 k=1
Then we get
N
12" 017, ) Z\ Lo, u) 1, (py wk (@ >( < |ILel}py -
k=1

[¢]
It follows from the last inequality, the condition ¢ € WZ(D) and the conditions
set on the coefficients of equation (2.1) that we can get the estimate

[ L™ (., HL2 (D) S5 H¢H 20’ (2.36)

In a similar way, we obtain

199" €01y < cslol, - (2.37)

Considering inequalities (2.32)—(2.37) and (2.31), we have

|2 L (239)

<cr (613, + 11

La(D) Wy (@) HQZ)HWQ <D>>

Consideration of (2.30) gives

e

2

+ 2&2 / ’
La(D) Q4

< 2
< s (1613, 11200 0, 1015, )

N (. ¢ 2
+(2M2+1)/0 ﬂ)ai’)

2
—— | dzxdr

dedr, te€[0,T]. (2.39)
L2(D)
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Using Gronwall’s lemma, one can derive from (2.39):

+2a2/ |wN|2 %
D) Q

< % 2 5, T]. (2.4
<o (1013, ) 112, 0 1615, ) € 0.7]. (20)

2

N (. 2
Haw t(’t) dx dr

To estimate V¥ (z,t) in the Ly (D) norm for any ¢ € [0, 7], we multiply each
dck (t)

k-th equation of system (2.18) by and take a sum of all obtained equalities
over k=1up to k = N. Then, mtegrating the obtained equation on the interval
(0,t), we get

Ll -
Q/)N

+o(z)yN —— ¢ az [N |* wNa >d dr | =g dadr, te0,7).

TN
WN (WN) +iay(x )WN%

ot

Summing this equality with its complex conjugate and applying to the obtained

Cauchy—-Bunyakovsky—Schwartz inequality and using then the conditions on the

coefficients and estimates (2.25), (2.40), one can easily get the inequality
Vo™ ¢,

< VoY GOy

-MN@w@wﬂwm% +loll, ) te.T

M izaio)

Here the constant cjg > 0 does not depend on N. The last inequality and (2.37)
give the estimate

N 2 6
V0™ O < q(wumnuﬂwmwww@QQJGMmem

Here the constant ¢y; > 0 does not depend on N.

Now we estimate ¥ (x,t) in the norm of W2 (D). For this purpose, we
multiply each k-th equation of system (2.18) by AxcY (¢) and sum all obtained
equalities over k =1 up to k = N. Then we get

N(z
/D ’L@Z)N (x,t)}Qdm = /D [1W + a1 VN (z,t) + v (2) N (z,1)

+m2y¢N(z,t)\2¢N(x,t)—f(x,t)]Lz/;N(a:,t) de, te€l0,T]. (2.42)

From this equation, using the Cauchy—-Bunyakovsky—Schwartz inequality, we ob-
tain the inequality

8¢N('7t)2
2 0l <3

Lo (D)

5083 [ V9 (D[, 0
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6 2
+5a3 [0 ()| oy + 508 1N 0y + 5 IO,y 5 ¢ € [0, T (243)
With the help of inequalities (2.32), (2.34) and estimates (2.25), (2.40), (2.41),
from (2.43) we get

N 2 6
200l oy < a2 (B0l ) 112, + 10l ). t€ 0T (240

Here the constant c12 > 0 does not depend on N. By the definition of the operator
L, we have

12 G0 oy = =a0d™ () +aC)e™ ()] )
> ao [ AYY ()| ) = 0 [0 GOy -

This implies
[aw™ (, HWN

HLQ = HLQ(D CTO HwN Ht HL2(D)'

Substituting (2.25) and (2.44) in this inequality, we get the validity of

86 () < e (B0l )+ IR g 0l ) (209

Here the constant ¢13 > 0 does not depend on N. Using the well-known inequality
(see [11, p. 124]), for the convex domain D we obtain

I Ol
Consideration of (2.45) and (2.46) gives

< e ||AYN (1), t € [0,T]. (2.46)

2

[ O < e (161, + 1 g oy + 0l ) e 0.7 (27
2

Here the constant c;5 > 0 does not depend on N. Thus, taking into account
estimates (2.40) and (2.47), we finally get

HwN HawN 2

Ly(D)
< 20 2 6O )
< aa (1615, + 10 0y + 01, ) € 0.7 (249

where the constant cig > 0 does not depend on N. Using this estimate and the
inequality

N N
del¥ (t)
e ()] + > |
2 > |
NP N ()|
Hw t)HW22(D) + H t LQ(D) ’ te [O7T] )

denoting ¢; = ¢4, we come to the statement of the lemma. Lemma 2.3 is proved.
O
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Now we continue the proof of the theorem. Let us consider the functions
Ing (t) = (VN (), uk)LQ(D), N,k=1,2,.... It follows from (2.20) and orthog-
onality of the functions uy = ug (z), k = 1,2,..., that the families of functions
INg(t), N;k = 1,2,..., and their derivatives led’;(t), N,k = 1,2,..., are uni-
formly bounded on the interval [0, 77,

din (t)
dt

‘Sclg, N,k=1,2,...,te[0,T]. (2.49)

Let us show that for the fixed k£ and any N > k, the functions (x4 (), N,k =
1,2,..., are equicontinuous on the interval [0,7]. Indeed, integrating the k-th
equation from (2.18) on the interval [t,t + At], we get

t+At
|lN,k (t—f—At) _lN,k (t)‘ < / dr
t

/ aoAYN (z,7) uy, (z) d
D

/t+At /D ia () vy (z,7)ug (z) dx| dr

t+At

/a(:r) YN (2, 7) uy, (z) dz| dr
D

J
/:*Af /Dv(a?) N (z,7) uy, () da
J

dr

+
+
+

t+At
+

/Diaz ‘wN (a:,7’)}2¢N (z,7)ug (z)dz| dr

+f o [ 7@

Together with the Cauchy—Bunyakovsky—Schwartz inequality this gives the in-
equality

dr.

t+At
vk (B4 AL) = Iy (B)] < ao/t AN (1) o) Nl ooy d7

t+At
+ \/iﬂl/t ||V¢N (‘77-)HL2(D) ||Uk||L2(D) dr

t+At
+(H0+b0)/t Hd}N ("T)HLQ(D) HukHLQ(D) dr
AL 5
+ az/t [0 Co ) o Nkl oy a7

t+At
4 / 1 P el

Therefore, taking into account (2.32), estimates (2.20), (2.45) and assumption
(2.16), we get the relation

‘ZN,k (t + At) — l]\”C (t)’ < codipAt, N,k=1,2,..., (250)
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where the constant cij9 > 0 does not depend on N, k, 1.

Performing the integration by parts in the second and third terms of the
left-hand side of equations (2.18) and differentiating the obtained relations with
respect to ¢, and then integrating on the interval [t,¢ + At], one can get

ding (t+At)  ding (t) /HN / oYM (x,7)
9 _ ) < - N’ 7
o pm =) i a0 ——_ Auy, (z) dx| dr
t+At N
+ / / iMV (a1 (x) ug (x)) dz|dr
t D 87'

t+AL N (g +
+/t /Da(z) %85-’)% (z)dz|dr

4 /t o /D v (@) WNa(f’T)uk (z) da

dr

dr

From this, by virtue of Cauchy—Bunyakovsky—Schwartz inequality, we get

A L4+ AL )
divi (t+ A vk ()| _ / O (1) dr || dugl )
dt dt ; ot Ly ’
LA By (1)
vV / HL.7) dr | V|
t or (D) La(D)
t+At aw ( 7_)
+ (1o + bo + V202 / — dr [|u
( ) t or Ly(D) Fa(D)
t+At N
g [ [P ) (0)] e
t D
A ag ()
+/ L s dr ||u . 2.51
t s A [ (2.51)

Now, let us estimate the fourth term of the right-hand side of this inequality.
Then, by virtue of the Cauchy—Bunyakovsky—Schwartz inequality, we get

t+At a N
30/2/t /D 1/)85—:17’7—) ‘wN (3}77')‘2 ‘Uk ([E)‘ de dr

t+At
o]
t D

« (/D [ (.7 fu (:L‘)|2dm>; i (252)

If we apply the Cauchy—Bunyakovsky—Schwartz inequality to the second multi-
plier in the integrant in the right-hand side of this inequality, then we get

YN (z,7)
or

2 ) 3
|¢N (z, 7')| d:v)
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</[)WN(CL“’T)}2!U1€($)\QCZ$>;
< </D |¢N(x,7')|4dx>}l</D|uk(:17)|4dx>}1. (2.53)

By virtue of the inequalities from [13, pp. 84 and 88|, we have

||uk||L4(D) < ¢20 ||Vuk||L2(D) ) (2.54)

H¢N ('77—)HL4(D) < C21 H@DN ('77—) V?/Ql(D) . (2'55)

Then, taking into account (2.53)—(2.55), from (2.52) we get

t+At
o)
t D

N
W | (1‘,7')‘2 lug (z)| dzdr

t+At N 2
< 3020021a2/ </ ‘&b 8(;10,7‘) W’N (9377')‘2 dm)
t D T

X H¢N (-,7) v?/,}(D) dr ||Vuk||L2(D) . (2.56)

N

Substituting (2.56) into (2.51), with the help of (2.20), (2.40) and assumption
(2.16) it is easy to establish the inequality

‘leJg (§t+ At) dch,; (t)‘ < copdy (A1)?, Nk=1,2,..., (2.57)

where the constant coe > 0 does not depend on N, k,¢.

It follows from (2.50) and (2.57) that the families of functions {lnx (¢)},

dlink(t)
dt

and arbitrary N > k. Then, by a standard diagonal procedure, we can choose a
subsequence Np,, m = 1,2,..., such that the corresponding functions ix,, 1 (%),

. .. dl t .
m =1,2,.... and their derivatives N%’“(), m =1,2,..., converge uniformly on

the interval [0,7] to the continuous functions I (t), dl(’}gt) for each k = 1,2,....

The functions I (), k = 1,2,..., and their derivatives define the functions

}, N,k =1,2,..., are equicontinuous on the interval [0, 7] for a fixed k

v =Yk, B D, 0 oy
k=1

k=1

Then, as in [4,8], we can state the subsequences {¢Nm (z, t)} , {%}, de-

fined by formulas (2.58), converge weakly in W3 (D), Ly (D) to the functions

Y (z,t), %, respectively, uniformly with respect to ¢ € [0,7]. The limit
function 1 (x,t) belongs to the space By.
Now we show that the limit function ¢ (z,t) is a solution of problem (2.1),

(2.2) in the sense of Definition 2.1. For this purpose, we first prove that this
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function satisfies equation (2.1) for almost all € D and arbitrary ¢ € [0,7]. We
set N = N,,, and multiply the k-th equation from (2.18) by a continuous function
flx (t) and sum up the obtained equations with respect to k from k =1 to N’ <
N,,. Then we get

N (g
/D (zawat(’t) — apAYN™ (x,t) +iday (x) VN (z,t) — a (2) V™ (2, 1)

+ v (2) N (2, 1) + dag [N (2, 0)|F N (2, 1)

—f (a:,t)) N (z,t)de =0, tel0,T], (2.59)

for any function ﬁfjl (x,t) = Zszll e (t) ug (), N' < Np,.
The sequence {wN m (x, t)} converges uniformly to the function ¥ = 9 (z,t) as
m — oo, and the space W3 (D) is compact embedded into Ly (D) (see [15, 16, 19]).

Therefore, there exists a subsequence of {wNm (:U,t)} which converges strongly
in Lo (D) to the function ¥ = ¢ (z,t) as m — oo, i.e.,

[ (1) =9 () ) = O (2.60)

uniformly with respect to ¢t € [0,7] as m — oco. Consequently, there exists a
subsequence of {@ZJNT” (z, t)} which converges to the function ¢ = 1 (x,t) almost
everywhere in D. For the sake of simplicity, this subsequence is denoted again
by {¢"m (x,¢)}. Then we can write

YN (z,t) = 1p (z,t)  almost everywhere in D (2.61)

uniformly with respect to ¢ € [0,7] as m — co. Besides, due to uniform estimate
(2.20) and inequality (2.32), for N = N,,, the inequality

[l ofven|, o < le™ CollL,m

La(D

holds true. From the known lemma (see [13, pp. 530-531]), we obtain
that {WNW (x,t)|2wNm (x,t)} converges weakly in Lo (D) to the function
[ (2, t))* ¢ (x,t) uniformly with respect to ¢ € [0,T] as m — oo, i.e.,

[ 16 @ o @ n @0 do
D
— / 1o (@, 8))2 0 (2, ) Y (z,t)dz asm — oot €[0,T] (2.62)
D

for any continuous on the interval [0, 7] in the Ly (D) norm function 7 (z,t) =
Z]kvzll Mk (t) ug (), N < N,,. Using this limit relation and the convergence of the
subsequence {wNm (x, t)} to the function v (z,t), passing to limit as m — oo, in
(2.59), we get

O (1)

/D (iat — oA (2,8) + iar (2) Vb (2,8) — a (@) ¥ (,4) + v (2) 0 (, 1)
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+ia2|1,b(:c,t)]2¢(az,t)—f(a:,t)) 7V (z,t)dr =0, te[0,T] (2.63)

for any function 77y (z,t) = Zgle Mk (£) ug (x), N’ < N,,. Since all functions of
the form 7’ (,t) = Zszll Tk (t) ug, (z) are dense in C° ([0,7], Lo (D)), we obtain
immediately from identity (2.63) that the limit function v (x,t) satisfies equation
(2.1) for any ¢ € [0, T] and for almost all x € D. The fulfillment of the initial and
boundary conditions (2.2) for the limit function ¢ (z,t) follows from the limit
relation (2.60) for ¢ = 0 and the fact that the space By is compactly embedded
into Ly (5).

Thus, we have proved that the limit function % (x,t) is a solution of the
initial-boundary problem (2.1), (2.2), and this solution belongs to the space By
and satisfies (2.7), which follows immediately from (2.20) after passing to the
lower limit over the weakly convergent subsequence {¢N’" (z, t)} from By to the
function ¢ (x,t).

Now, continuing the proof of the theorem, we prove the uniqueness of the
solution of the initial-boundary value problem (2.1), (2.2). Let ¢ (z,t) and ® (x,t)
be two arbitrary solutions for problem (2.1), (2.2). Let w (z,t) = ¢ (x,t)—® (x, t).
Then it is clear from condition (2.1), (2.2) that w = w (x,t) can be a solution of
the following initial-boundary problem:

i%f%—ako%—ial () Vw —a(z)w+v(z)w
+ i (|¢12 + \q>|2) wtiads =0, (z,6)€Q,  (2.64)
w(z,0) =0, ze€D, wlg=0. (2.65)

To establish the estimate for the solution of this problem, we multiply (2.64)
by the function w (z,t) and integrate on the domain €,. Using the boundary
condition from (2.65) and integrating by parts, we get

/ (Z%Z}w — ag |Vw|® +iay (2) Vww — a (z) [w]* + v () [w]?
Q

+ iag (|¢|2 + |<I>|2> lw|? + ia1y® (w)2> dedr =0, tel0,T].

Subtracting from this equality its complex conjugate and using boundary condi-
tion (2.65), we obtain

/ i <8ww + 8ww> drdr + i2a2/ (\w|2 + |<I>|2) \w|? da dr
O 87’ 6’7’ 9]

t
2. day; (x)
= —i2a2/ Im [1/@ (w)ﬂ dx dr —i/ Z U ) dedr
Qi Q j=1 amj
for any t € [0,T]. Together with (2.65) this gives

o (Ol + 202 [ (6 +10F) fu? dodr

Q4
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+ 2a2/ || | D] ]w|2dacd7 + 2/@/ ]w]Q dr dr
Qy Q
for any ¢ € [0, T]. Application of the inequality 2|¢| |®| < [¢|* + |®|* implies

t
o0 (Ol oy +a2 [ (10 + 197) o dodr < 2 [ (0l 0
t

for any t € [0, 7]. With the help of Gronwall’s lemma, we get the relation
||w ('7t)HiQ(D) =0, te [O,T],

which proves the validity of
w(x,t)=0, xze€D,tel0,T].

The uniqueness of the solution of the initial-boundary problem (2.1), (2.2) follows
immediately. Theorem 2.2 is proved. O

Remark 2.4. A similar result can be established when the set D belongs to R3.

3. The existence and uniqueness of a solution of the second
initial-boundary value problem

Consider the initial-boundary problem on determining the function ¢ =
¥ (z,t) in the domain Q subject to

z%ﬁ + agAY + iay () VY —a () ¢
+u(@) Y +ia [Py =f, (2,t) €, (3.1)

ok
where ¢ = v/—1; ag > 0, a2 > 0 are given numbers; v is an outward normal to the
boundary I'; A = 8%2% + 88—;% is the Laplace operator; V = (8%1’ %), a(x),v(x)
are measurable bounded functions satisfying the conditions

po <a(z) <p, x €D, po, 1 = const >0, (3.3)
lv(z)] < by, x€ D, by=const > 0; (3.4)

ay () = (a11 (z) , a12 (z)) is a given vector-function whose components satisfy the
conditions

day; (x)

; <
‘alj (m)’ — lu’27 8xk

<uws, x €D, jk=1,2 pg,us=const>0; (3.5)

¢ (x), f(z,t) are complex valued functions satisfying the conditions

¢

¢ € W3 (D), 5

=0, fewd(Q). (3.6)
r
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Definition 3.1. The function ¥ = ¢ (z,t) from the space
= C° ([0,T), W5 (D)) [\ C" ([0,T], L2 (D))

is called a generalized solution of (3.1), (3.2) if it satisfies equation (3.1) for almost
all z € D and any t € [0, 7], and initial and boundary conditions (3.2) for almost
all x € D and for almost all (§,t) € S, respectively.

x,t) satisfy con-

Theorem 3.2. Let the functions a (x), v (z),a1 (x), ¢ (x), f(
(3.2) has the only

ditions (3.3)~(3.6). Then the initial-boundary problem (3 1),
solution from the space B1, and for this solution the estimate

19 Oz + | 2

L2(D)
< e (19l wgey + 1 lwor iy + 1603y ) > 1€ 10,T], (37)

where the constant cas > 0 does not depend on ¢, f, and t, is valid.

This theorem can be proved by using Galerkin’s approximations in the same
way as Theorem 1. In this case, as a fundamental in W (D) system of functions
we take an orthonormal in Ly (D) and orthogonal in W2 (D) system uy, = uy, (),
k=1,2,..., of eigenfunction of the spectral problem

LX (z) =XX(z2), zeD, — |1" =0 (3.8)

at A= M\, k=1,2,..., where the operator L is deﬁned as

L =—apA+a(x) (3.9)
with the Neumann boundary conditions.

Remark 3.3. A similar result is valid when the set D lies in R>.
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Po3B’s130K mmo4aTKOBO-KpaiioBOl 3aaadvi s
HeJliHiitHOrO piBHAHHS IIIpeninrepa i3 coeniajgabHUM
IPAJIEHTHUM YJIEHOM
G. Yagub, N.S. Ibrahimov, and M. Zengin

Y craTTi po3TIAIAloThCS MMOYATKOBO-KPAaoBl 3aadi JJIsT JTBOBUMIipPHO-
ro HesiniitHOro piBHAHHA [lIpeninrepa i3 cueniaabHUM I'PAIEHTHUM YIEHOM
3 YHUCTO ysSIBHUMHU KoedillieHTaMy B HeJIHIMHIA JacTwHi, KOau KoedilieHTHn
piBHSIHHS € BUMipHUMEU oOMexkeHnME (byHKIisMu. JloBemeHo icHyBaHHS 1 €1~
HICTH PO3B’A3KiB MEPIIO] i APYTOl MOYATKOBO-KpaitoBol 3a1a4i MaiizKe CKpi3b.

Kurouosi ciropa: pisastaH: [Ilpeninrepa, cueriaabHuil rpaJi€HTHU YeH,
iCHyBaHHSI Ta €IHICTH, IEPINA i Jpyra MOYaTKOBO-KpaiioBi 3a1adi.
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