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1. Introduction

We consider the complex sine-Gordon equation
Ut — Ugy = —sinhu, €T =R/Z, t €R, (1.1)

where u is assumed to be complex valued. In case u is real valued, (1.1) is referred
to as the sinh-Gordon equation and in case u is purely imaginary, as real sine-
Gordon equation. Equation (1.1) is a nonlinear perturbation of the (complex)
Klein—Gordon equation uy — gz, = mu (with m = —1). It has wide ranging ap-
plications in geometry and quantum mechanics and has been extensively studied,
although most of the work has been done for its version in light cone coordinates
and hence does not apply to the periodic in space setup of (1.1). According to [2]
(cf. also [8]), it admits a Lax pair. To describe it, note that (1.1) can be written
as a system for (uj,uz2) := (u, uy)

(75} . U9
<u2>t B <u1x:g - Sinhul) ’ (12)

In order to work with function spaces consisting of pairs of functions of equal
regularity, we introduce

(¢,p) := (u1, =P~ 'up) € H, (1.3)

where for any s, HS denotes the Sobolev space H*(T, C)x H*(T,C) (= H*(T,C?))
and P the Fourier multiplier operator P := /1 — 02. When expressed in these
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coordinates, equation (1.2) becomes

(ZD - <Pq + P_l_(gih((ﬂ - Q)) '

For any v = (q,p) € H}, define the following differential operators:

Q(v) = Q10 + Qo(v), K(v)= K10+ Ko(v), (1.4)

where the coefficients @)1, Qo, K1, K are the 4 x 4 matrices given by

ar() aon (i ™)

with I, J, R, Z denoting the 2 x 2 matrices

()G me () () e

A(v) = —i(Per 4:)Z, B(v):= i (eXp(—Q/2)

and

exp(q/2>> - (16

Here and in the sequel, we suppress matrix coefficients which vanish, so, e.g.,
4 1) stands for _01 (1) . One verifies that ¢t — v(t) is a solution of (1.1) iff
t— (Q(v(t)), K(v(t))) satisfies

Q: = [K,Q]. (1.7)

The pair of operators ), K is referred to as Lax pair for the sine-Gordon equation
and @ as the corresponding L operator. Note that (1.7) leads to an abundance
of first integrals of (1.1): expressed in a somewhat informal way (i.e., without
addressing issues of regularity) it follows from (1.7) that for any solution ¢ +—
v(t) of (1.1), the periodic spectrum spec,, Q(v(t)) of the operator Q(v(t)) is
independent of . Here for any v € H}, the periodic spectrum of Q(v) is the
spectrum of the operator Q(v), considered with the Sobolev space H!(R/(2Z), C?)
of two periodic functions with values in C? as its domain. Since for any v € H},
spec,e, @(v) is discrete this is saying that the periodic eigenvalues of Q(v) are
first integrals for the sine-Gordon equation.

Besides being of interest in its own right, the periodic spectrum of the operator
Q(v) and its associated spectral curve play a very important role in the construc-
tion of the normal form of the sine-Gordon equation. With this application in
mind, the aim of this paper is to analyze spec, Q(v).
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To state our main results, we first need to introduce some more notation.
Define the domains Dy := {z € C: |z — 1| < .=} and for any n > 1,

1
D, :={ e C:|A\—nr|<n/3}, D_n:—{)\EC:mEDn}.

Furthermore, let By := {\ € C: |A\| < 7/2} and for any n > 1

B,:={\eC: |\ <nr+7/2}, B_,:= {)\E(C:W < M},
and denote by A, the open annulus A, := B, \ B_,. By the Counting Lemma
(cf. Lemma 3.11 in Section 3) for any potential in H}, there exist a neighborhood
U in H! and an integer N > 1, such that for any v € U and any n > N, the
operator (v) has exactly two periodic eigenvalues in each of the domains D,
—D,,, D_,, and —D_,, and exactly 4+ 8N roots in the annulus Ay, counted with
their multiplicities. There are no further eigenvalues. We denote the eigenvalues
in Dy, |k| > N by Af, ), and list them in the following order, [ [A; | < [Af] ]
or [ [A;] = |A{] and Im A, <Im); ]. By symmetry, for any k € Z with [k >
N, the two eigenvalues in —Dj, are given by —)% and —A; . By a slight abuse of
terminology, we refer to the difference )\Z — A, as the k’th gap length.

Theorem 1.1. For any v € H5t! with s > 0 and for N > 1 given as above,
the following asymptotic estimates of the gap lengths of the periodic spectrum
Q(v) hold: there exists C > 0 so that

ST A - <o (1.8)
n>N
S )| (16aT,) 7 - (16A7,) P < C. (1.9)

n>N

Furthermore, N and C can be chosen locally uniformly with respect to v.

To state the second result, we first need to introduce some more notation.
Let v € H! and let N > 1 be as above. Then for any N’ > N, v € H! is said to

be a right [left] sided N'-gap potential if
Vn >N A=\, [vn > N" AT, =X",]

It is said to be a right [left] sided finite gap potential if it is a right [left] sided
N'-gap potential for some N’ > N. For any s > 1, denote by LFG? and RFG?
the following subsets of H::

LFG} :={v € H} : v left sided finite gap potential}
and
RFG: = {v € H; : v right sided finite gap potential} .

Theorem 1.2. For any real number s with s > 1, the sets LFG; and RFG?
are dense in H.
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Comments:

(i) The presented results are part of a larger project of constructing normal coor-
dinates, also referred to as Birkhoff coordinates, for the sine-Gordon equation.
When expressed in these coordinates, the sine-Gordon equation is in normal
form. It allows to solve it by quadrature and to obtain KAM type theo-
rems for (small) perturbations of it. Previously, such a program has been
carried out for the KdV equation (cf. [5] and references therein) and the
defocusing NLS equation (cf. [3] and references therein). To carry this out
for the sine-Gordon equation turns out to be more challenging since in this
case, the spectral analysis of the L-operator (cf. 1.4) is more complicated (cf.
Sections 2 and 3).

(ii) More detailed versions of Theorem 1.1 and Theorem 1.2 are stated in The-
orem 4.10 and Theorem 4.15 in Section 4. Their proofs are based on a
Lyapunov—Schmidt decomposition developed in previous work for the Hill
and Zakharov—Shabat operators—see [1,4,6,9] and references therein. Our
work confirms that this method of proof can be applied in a wide variety of
cases, but that the estimates needed can become quite involved.

(iii) Many questions remain open which we plan to address in future work. We ex-
pect that the developed techniques allow to obtain also asymptotic estimates
for g, — (AF + ;) /2, similar to the ones in (1.8) and (1.9) obtained for the
gap lengths. Here p,, denote the Dirichlet eigenvalues of Q(v) (cf. Section 3).
Furthermore, we expect that At , A\~ admit asymptotic expansions in n=! of
the type Marchenko proved in seminal work for the periodic eigenvalues of
Hill’s operator and of the Zhakarov—Shabat operator (cf. [7]) and that (1.8),
(1.9) characterize the regularity of the potential v in case v is real or purely
complex valued. It means that in such a case, any v € H_} satisfying (1.8)
and (1.9) is actually in H5*!. Although the statement of Theorem 1.2 is suf-
ficient for the applications we have in mind we expect that with the methods
developed, it can be shown that for any s > 1, the intersection LFG.NRFG,
is dense in H;.

Related work: As already mentioned, the sine-Gordon equation has been
extensively studied, although most of the work has been done for its version in
light cone coordinates. We only mention that in the periodic in space setup,
important contributions can be found in [8] where parts of the material discussed
in Sections 2 and 3 are presented and the spectral curve associated with Q(v) is
studied.

Organisation: In Section 2, we record the results needed on the fundamental
solution of the operator Q(v), the main purpose being to introduce notation
and to state the results in the form needed later. In Section 3, we study the
asymptotics of the periodic, the Dirichlet, and the Neumann eigenvalues of the
operator Q(v) for v € H!. They provide the setup for the proofs of Theorem 1.1
and Theorem 1.2 in Section 4. Although the material in these two sections is by
and large known (cf., e.g., [8]), for the convenience of the reader, we included the
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proofs of the stated results. In Section 4 we prove Theorem 1.1 and Theorem 1.2.

2. Fundamental solution

In this section we study the fundamental solution of the differential operator
Q = Q(v) defined in (1.4) where v = (q,p) € H}. The results obtained will be
used in particular in Section 3 in order to analyze the periodic and the Dirichlet
spectrum of ). Note that QF = 0 if and only if F' = 0 and for any given \ €
C* = C\ {0}, a function F in H} (R,C%) is a solution of

QF = \F (2.1)
if and only if F = (f,\"'Bf) and f satisfies the following first order ODE:
— JOuf + (A+ B2/ f = M. (2.2)

Here and in the sequel we often write 0, f for f,. Let M = M(x, \,v) € C**2 be
the fundamental solution for equation (2.2), meaning that

(=J0p + A(z) + B*(z) /N M (z,\,v) = AM (2, \,v), M(0,\v)=Id.

Clearly one has
M =J(A—A—B?/\) M, (2.3)

or, taking the definition (1.6) into account,

0o M (z, M 0) = J (A + S (Ppla) + N L (e M
T TyA, V)= 4( p(fE) Q$(x)) 1 167)\ 6q(x) .
It is convenient to also use the matrix valued function M instead of M where

Mz, 0, v) = TM(z, \, )T, T = (1 1) ol ( L 1). (2.4)

1 —i 2 \—i i
Introduce - -
Q = < T> Q < T_1> = Qlax + QO(U)7 (2'5)
where
o= ("), aw= (51 ). (2.6
A(v) = TA(W)T ™ = —i(Pp +q2)J, (2.7)
s =T8T = (T i ) @
and hence

_ 1 _ 1 [ cosh(q) —sinh(q)
B = TB(u)*T ™ = - (_Smh(q) ] ) _ (2.9)
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An element F in H. _(R,C%) is a solution of QF = \F iff QT'F = ATF. Further-

more F on H} (R,C*) is a solution of

QF = \F (2.10)
iff F = (Fi,\"1BF;) and
OF1=—-R(A—A—B*/)\) Fi. (2.11)
Hence M satisfies
OpM=—-R(A=A-B*/A) M, M(0,\v)=1. (2.12)

First we discuss symmetries of the fundamental solution M needed in the sequel.

Proposition 2.1 (Symmetries). For any (z,\,v) € [0,00) x C* x H}
(i) (Reflection of \)

M(z,—\,v) = —RM(z,\,v)R and M(z,—\v)=—-ZM(z,\,v)Z.
(ii) (Reciprocity of \)

M (CU, 16%7 q7p> = _ReiiRQ(x)/2M<$7 )‘7 _qap)equ(O)/ZR

or

i 1 .
M (.Z', )‘7 _Q7p) = _Requ(x)/ZM <l’, 167>\’ qu) eiqu(O)/ZR.

(iii) (Congjugation)
M(z,\,T) = M(z,\,v) and M(z,\,7) = ZM(z,\,v)Z.
(iv) (Reflection of v)
M(z,\,—v) = JM(z, \,v)J ' and M(z,\,—v) = RM(z,\,v)R™".
Proof. (i) First note that M (z, —\,v) and —RM (x, A\, v) R coincide at z = 0.

Hence it suffices to show that they satisfy both the same first order differential
equation. By (2.3) M(x, —\,v) satisfies the equation

DpM (z, =\, v) = J (—)\ + %(Pp(:c) + qo(2))Z + mlAequ@)) M(z,—\,v)

and thus

Oy (—RM (z, \,v)R)
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a\eiRQ(“)) M(z, A\, v)R.

— _RJ ()\ + i(Pp(x) +q2(7))Z — 16

Since RJ = —JR, RZ = —ZR and Ref® = (F9R one concludes that
—RM (z, A\, v) R satisfies the same equation as M (z, —\,v),

Or (—RM (x,\,v)R)

=J (—A + i(Pp(x) + ¢(2))Z + wlkequ@)) (=RM (2, A\, v)R)

as claimed. Concerning the second identity of item (i), note that
Z = —iTRT™! (2.13)

and hence —ZMZ = —ZTMT~'Z = TRM RT~! which yields the claimed iden-
tity for M(z, —\,v).

(ii) Again note that M(z, — &5, ¢, p) and e RA@2 N (2, N, —q, p)etTta0)/2 co-
incide at x = 0. Hence it suffices to show that they satisfy both the same first
order differential equation. By (2.3), M(x, —ﬁ, q,p) satisfies

1
8:5 (%, _167>\7 va>
1

(1 iRg(x) b
—J( 16)\+4(Pp(x)+qx(x))Z+)\e Mz, 16)\,q,p . (2.14)

On the other hand, 9, (e‘qu(z)ﬂM(x, A, —q,p)) equals

LT (Xt {(Pole) = 4a(0)Z — e ) M\ ~a.)

1 .
- §Q$($)1R671Rq(lﬂ)/2M(l‘a )‘7 _q)p)'

Since e B/2 ] = JeiRa/2  (iRa/27 — 7-1R1/2 and iR = —JZ, one gets

Oz <e_iRQ(I)/2M(:U, A, —q,p))

1

; 1
iRq(xz) |, —
=J <)\e + 4(Pp(a:) + qu(2))Z 6

) e RI@2 N (2 N —q,p).  (2.15)
By the latter identity and (2.14), one sees that M (:U, —16%, q,p) and
e WRAD 2N (1, N, —q, p)eifta(0)/2 gatisfy the same differential equation and hence
must coincide. The first identity of item (ii) then follows from (i). The second
identity of (ii) is obtained using the first one.

(iii) Take the complex conjugate of (2.3), 8,M(z,\,v) = J(X — Av) —
B(v)?/X)M(z,\,v). Since A(v) = A(v), B(v)? = B(v)? and M(0,\,v) = I,
one concludes that M (x, \,v) = M(x, \,v). The second identity of item (iii) then
also follows since by (2.4), T-1 =T"1Z.
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(iv) Note that M(z, A\, —v) satisfies

1 1 .
M (z, N\, —v) = J ()\ — 1(Pp(2) + @2(2))Z — me—quu)) M (z, A, —v) (2.16)
while 9, JM (z, A\, v) = JJ (A + 2(Pp(2) + ¢2(2)) Z — 15€F9@)) M (2, \,v). The
first claimed identity then follows from JZ = —Z.J and Jelf¥ = ¢71R4,J and the
second one from TJT~! = —R. O

To obtain estimates for the fundamental solution of @), we write (2.12) as an
integral equation and represent its solution as a series. Here and in the sequel
we will use the Euclidean norm for vectors in C? and the induced operator norm

for matrices. We write M = <m1 m2> where m; = m;(x,\,v). The norm |M|
ms3 MMy

of M induced by the Hermitian norm on C? can be bounded as follows:
[M| < 2max{|mi| 4 [mal, [ms| + [mal}. (2.17)
Let us first compute M(z, A, 0). By (2.12), it satisfies 9, M = —R (A — 125 ) M.

16X
For A € C*, let

Eul) = o Fow = <€_M em> L w=wN)=A— (2.18)

Then 0,&, = —Rwé&,, and hence &,(x) = M(z, \,0). Note that w(\) =0 iff A =
:l:i and

16
For v € H!, M(x) — Eu(z) = E,(0)M(z) — E,(z)M(0) satisfies the integral

equation

w <1> — (=N, w(=A) = —w(}), VAT (2.19)

M(z /5‘ (T —s)M(s))ds
_/ Rw€o(e — s)M(s) — Eulw — )R (A — A — B2JX) M(s) ds
0
:/x&d(x—s)R(w—)\+A+BQ/)\)M(3)ds
0
M(x /5 x — 8)Pa(s)M(s)ds, (2.20)

where by (2.7)—(2.9

D(s) = R(w— A+ A+ B*/))
_ 1 (cosh(q) =1 —sinh(g) i
=R (16)\ ( —sinh(g)  cosh(q) — 1> - E(PP + q.r)J) .
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To investigate the regularity of the fundamental solution we use equation (2.20)
to find a series representation for M. Let My(z) = &,(z) and define My, 41(z)
inductively by

Mior(z /5 (2 — 5)®(5) Mo (s) ds. (2.21)

Using that &, (z—s) = &, (z)&,(—s), one obtains the following identity for M, 1,
My (2 /5 (x — 5)Pr(s)My(s)ds

— £, >/0< o B EE )

X Sw(—:);’l)@,\(xl)é’w(xl) de‘l . -d.’En.

As usual, we denote by ||q||, the H*(T,C)-norm of ¢ =}, _, Gop,e2mike

1/2
lalls = <Z|§2k|2<2k>23> o (2k) = V14 (2km)? (2.22)

kEZ

and write [v], = llgl, + p|, as well as [lolly = vl .2 = llall2 + ol 2 - Note that
for any q € Hé, one has

lall e < 2lgll; - (2.23)

Theorem 2.2 (Regularity of the fundamental solution). The series M(x) =
00 o Mu(z), with My (x) given by (2.21), converges in C**% absolutely, uni-
formly on bounded closed subsets of [0,00) x C* x HL. M is continuous in
x,\,v and analytic in v = (q,p) and X\ as a map with values in the Ba-
nach space C([0,2],C?**?) of continuous functions with values in C**2, en-
dowed with the supremum norm. It is the unique solution of (2.12), 0, M =
—R(A=A—=B?*/X) M, M(0,\,v) = I, implying that M and 8, M are analytic
in v and \ as maps with values in L? ([O, 2],@2X2). Furthermore M satisfies the
following estimate for any 0 < x <2, A € C*, v € H},

%ezllq\ll + ﬁ””h)) ,

Proof. Clearly, one has |[Mg(z)| = |, ( )| = e|1m°’|x To estimate M,,1 for

IM(z, A, v)| < ol Imw|z exp <62Imwm (

n > 0, we first need to estimate F(z,\,v) := [ Eu( A(8)Eu(s)ds. Use the
bound (2.17) of the matrix norm and the identity
B i cosh(q(s)) — — sinh(g(s))e?ws
&u( S)CI))\(S)SW(S) - 167)\ (sinh(q( )6—21ws 1— COSh(q(S))

1 621ws
PPt ao) (e ©) 20
to conclude that

|F(x, \,v)] §|§\| max /Ol (| cosh(q(s)) — 1| + |ei2h"s Sinh(q(s))|) ds
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+ max /Om |(Pp(s) + qx(s))eﬂi‘“s‘ ds.

Since
| cosh(q) — 1] < Z(i|q|2n and |sinh(q Z o +1 Ig|2m L,
n>1 n>0
one has
| cosh(q) — 1| 4 | sinh(q)| < eldl — 1.
Using that

|€:|:21ws| < 62|Imw\s and

62|Imw\s >1,

it then follows that
z 1
Plal < [ et (O P + 0,0 ) as.
0
Combining (2.23) with the estimate

H€2|Imw|s’Pp + QI|

< Ve ™ || Pp + a2 0.

< Vaemels | | (2.25)

L1([0,2])

one gets that for any = > 0,

Pl < et (L4 vz, ). (2.26)

Al
Since the matrix norm is sub-multiplicative, one obtains

n

IMpy1(z)] < ellm"”x/ H |Eo(—2k) P (21)Ew (zk)| dzpdry, 1 - - - day
0<a1<San<e (o
e|Imw|:1:
< |F(x, \,v)|™.

Hence by (2.26), the series converges normally as claimed and one has

|M($, A,U)‘ < e\Imw|z exp <€2|Imw:v (xe2lqll1 + ﬁ‘””l)) , x>0.

R

Since for any given x > 0, £,(z) and ®,(z) are analytic in (\,v) € C* x H}
and continuous in (x, \,v) € [0,00) x C* x H} so is M1 for any n > 0 by the
definition (2.21) and hence M = > . M, in view of the normal convergence
of the series. It then follows that M is analytic as a map of v and A with values
in C([0,2],C?*2). Finally substituting the series into (2.21) and using that by
the normal convergence of the series, sum and integral commute, one gets (2.20).
Since M(x) and &,(x) are continuous, (2.12) holds in the L? sense. It then

follows that M and 9, M are continuous in v and A as maps with values in
L%(]0,2],C?x2). O
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From Theorem 2.2 we derive the following bounds for M = T~ MT.

Corollary 2.3. M is continuous in x,v, A and for each fized x, it is analytic
in v and \. It is the unique solution of (2.3), implying that M and 0, M are
continuous in v and \ as maps with values in L*([0,2],C?*?). PFurthermore M
satisfies the following estimates for any 0 <z <2, A€ C*, v € H},

|M(z,\,v)| < el tmwlz gyr <€2|Imw|x <|5E/\|62Q||1 + \/EHU”1>)

and

M (x, 16%,@» < HalhHmele o <e2“m” <|i|e2'q|'1 +Ve \vlh)) :

Proof. Since M = T~!MT, the regularity statements follow from Theorem
2.2. Furthermore, as ﬁT is unitary one gets

|M(.’£,)\,’U)| < e|Imw|m exp <62|Imw|$ <|'f\|62||‘I1 + \/5||UH1>> =

Since w(a;) = w(—A) = —w()) and by Proposition 2.1 (ii),

M (x,ml/\,q,p> = —Re BI@2 Nz, N, —q,p)eFUO/2R,

the latter estimate yields
M (2= qp)| < 214l M (x, A, —q,p)|
) 16)\7 ) - ) b )

< 62Hq||1+|lmw|:r: exp (QQImwhﬁ (‘f\’eQH‘Jl + \/5””’1)) : O

Next we prove that M is compact in v, uniformly on closed bounded sets of
(z,\) € ]0,00) x C*.

Definition 2.4. We call a map from a subset U of a Hilbert space H into
some Banach space compact if it maps sequences in U which converge weakly in
H, to strongly convergent sequences.

Proposition 2.5. For any sequence (v,)n>1 in H} which converges weakly
to an element v, in HL, one has |M(x,\,v,) — M(x,\,vi)| — 0 as n — oo,
uniformly on closed bounded subsets of [0,00) x C*.

Proof. In view of M = T~' MT, it is enough to prove that M is compact in v
uniformly on closed bounded sets of (z,A) € [0,00) x C*. In view of the uniform
convergence of the series > o~ M, (z), it suffices to prove the statement for
each term M,,. For My = E,, the statement is obviously true, since this term
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does not depend on v. Now by induction assume that the statement is true for
M, and let (vy,)n>0 converge weakly to v, in H!}. By equation (2.21) we have

M1 (z, A v,) = / Ew(x —5)P(s, A, vp) My (s, A, vp,) ds. (2.27)
0

By the induction hypothesis | M., (z, A, v,) — My, (2, A\, v)] — 0 uniformly on
closed bounded subsets of [0, 00) x C*. Furthermore, the weak convergence of v,
in H! implies that Pp, + (¢n)z — Pp« + (¢x)z in L?([0,z]) and g, — Gx, pn —
ps in L°(T). It then follows that cosh(g,) — cosh(gs), sinh(g,) — sinh(¢g*) in
L%(]0, 7)), yielding that &, (z —-)®(-, A, v,) weakly converges to &, (z—-)®(-, A, v)
in L2([0,]), uniformly on bounded subsets of [0,00) x C*. Hence the sequence
fgv Eu(x — 8)P(s, A\, vp) Min (s, A, v,)ds converges uniformly on closed bounded
subsets of [0,00) x C* to

/ Eu(x — 8)P(s, N, ) M (8, A\, v5) ds = Mopp1(x, A vy). O
0

Since J (A — A — B%/)) is traceless,
det M (z, \,v) = 1. (2.28)

myp M2
ms MMy

Hence for any (2, \,v) € [0,00] x C* x HL, M(z,\,v) = ( ) is invertible

and M~ (z,\,v) = ( n:;‘; _nT2> with
— 13 1

M (@, A v)] < 2ma((ma| + [mol, [ms] + [ma]). (2.29)

Proposition 2.6. The \-derivative M of M is given by
M(z) = M(z) / M~ (s)J(1+ B*/\*)M(s)ds.
0

In particular, for any x > 0, M(a:, A\, v) is analytic on C* x H} and on any closed
bounded subset of [0,00) x C* x H}, it is compact and bounded.

Proof. Taking the A-derivative on both sides of equation (2.3) one sees that
the A-derivative M of M fulfills

M =J(N—A—B?/A\)M + J(1+ B*/\*)M

with M (0,\,v)(0) = 0. The solution of this inhomogeneous linear equation for
M 1is then given by

M(z) = M(z) /Ox M~Y(s)J(1 4 B%/\?)M (s)ds.

From this formula and the properties established for M, the remaining statements
for M follow. O
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Next we establish bounds for the difference of the fundamental solution M
with M (z, \,0) = E,(z) for |\| large and small. First we need to establish the
following auxiliary result.

Lemma 2.7. For anyv € H! and any (x,\) € [0,1] x C*,

F(z,)0) = /0 Eul—5)Dx(5)Eu(5) ds
satisfies

1
Eu@)F (A, v)] < el ezl fmax

A
Proof. Multiply (2.24) by &, (z) to get

(" i (e “(cosh(g(s)) — 1) —sinh(g(s))e w(@29)
g“(x)F(ﬁ’A’”)_/o m( sinh(g(s))e™(*~2) ewu—cosh(q(s))))

T
/ (Pp(s) + Qm(S)) 6:|:iw()\)(x—23)d8 )
0

1 e—iw(z—2s)
+t1 (Pp(s) + qu(s)) ( foo(—25) > ds. (2.30)

(&

Hence

€ () F(z, A, v)| < T llmus (lcosh(g(s)) — 1] + |sinh(g(s))]) d
o Al

—+

/z (Pp(s) " qx(S)) 6|Imw|(acfQS)ds )
0

Using that |cosh(g(s)) — 1| 4 |sinh(g(s))| < e2l4l1 yields the claim. O
For (x,\,v) € [0,1] x C* x H}, let

M(z, A\ v) = M(z, \v) — Ey(x).

Lemma 2.8. On [0,1] x H! for all X\ € C with |\| > 1/4,

—

IM(z, A\, v)| < |Ey(x)F(x, A\, v)]

x 1/2
+ Cyelmele </ e~ Amels|e () F(s, A, 0)|? ds> :
0

where Cy, = ce® and ¢ = ||v]|; + e2ldlh.

Proof. By (2.20),
Mz, A\ v) = /Omc‘,’w(:cs)@A(s)M(s) ds

satisfies

o~

M\(m, A\ v) = /Ox Eu(x —5)P)(8)EW(s)ds + /Ox Eu(x — 5)P)(s)M(s)ds,
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yielding

o~ o~

M(z, A v) = Ey(z)F(x, A\, v) + /Ox Ew(x — 8)P)\(s)M(s)ds. (2.31)

Clearly, e -
|Eu(x — 5)PA(s)M(s)] < e‘lmwl(m_s)‘q)A(s)"./\/l(s)’.

It is convenient to introduce the following weighted norm for a z-dependent 2 x 2
matrix

|A(z)], = e~ A(x)].

Multiplying both sides of (2.31) by e~I'™«I* one obtains the following estimate
x
‘M(x)‘w < ‘Ew(ﬂs)F(x,)\,v)‘w —l—/o ‘(I))\(S)HM(S)‘wdS
and hence by Gronwall’s inequality and the estimate

()| < (IPp(s) + gu(s)] + |i|6'q(s)) =:b(s, )

we get
|M(2)|, < |Eu(@)F (2, A\ 0)]
+/0 ‘Sw(s)F(s,)\,v)‘wb(s,)\) exp </8 b(r, A)dr) ds.

Arguing as in (2.25) with = 1, one gets

1
1
/ b(r, \)dr < ||v]l; + —|)\|62Hq”1.
0

An application of the Cauchy—Schwarz inequality then yields the claim. O
We now use Lemma 2.8 to derive estimates for M and M from those of F.

Theorem 2.9. M and M have the following asymptotics:
(i) For |\| — oo, locally uniformly on [0,1] x H},

M(z, A, 0) = E () + ofelmePiey,
M(x, \v) = gw(k) (z) + 0(€|Imw()\)|:p)7
where Sw()\) (7) = —1W(A)RE () (z) and w(A) =1+ ﬁ.
(ii) For |A| — oo, uniformly on [0,1] and on bounded subsets of HZ,

Mz, A, 0) = Egny () + Ol ™ /jw(N)]),
M@, A, v) = (@) + Ol ™Vl /(X))
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Proof. (i) In view of Lemma 2.8 it remains to prove an appropriate asymptotic
estimate for |Ex(z)F(z, A\,v)|. By Lemma 2.7

Eu) (@) F (2, A, v)] < 1 imele 2lal,

R

+ max
+

/I (Pp(s) + qu(s)) et oM @=29) qg) (2.32)
0

For arbitrary € > 0 there is w. > 0, depending locally uniformly on v € H!, such
that for any A € C* with |w(A)] > we and 0 < z < 1 one has (cf. Lemma D.1
in [3])

Imw|z
< cel | ’

/Om (Pp(s) + Qx(s))eiiw(x_%) ds

yielding the stated asymptotics of M. The claimed asymptotics for M is obtained
by applying Cauchy’s estimate to the A-derivative of M.
(i) In case v € H2,

/O:Jc (Pp(s) n qx(s))eiiw(a:f%) ds

can be integrated by parts. Using that for w = w(\) # 0,

. 1 d .
tiw(z—2s) _ 2 Fiw(z—2s)
‘ 2w ds
one gets
P . ilw($725)d - _ P . Fiwz
| o) +asts)e 5= 1 ((PP@) + gale)e

+ (Pp(0) + ¢z(0)e™") — /0 "(Ppa(s) + ()2 s,

Since by (2.23), [|gz[l e < 2]lqll, and

1/2
1 Ppll e < 2| Ppll; =2 <Z<2k>2l<2k‘>ﬁ2kl2> = 2]Ipll;
k

one gets for any 0 < x < 1, [w(A\)] >0 and v € H?

1
o) (@) F (2, A, 0)| < We|lmw(>\)|m62||q\|1
1

NPT

(2 Hv‘|2€\lmw(>\)|x 49 Hv‘|2€\lmw(>\)|x> )
The claimed asymptotics for M is once more obtained by applying Cauchy’s
estimate to the A-derivative of M. O

Theorem 2.10. For bi-infinite sequences of complex numbers ((,)n, C C*
with |G| > 1, the following holds:
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(i) If (o =nm+0O(1), then
M(2,6n,0) = ey (@) + 65 and - M(x,6n,0) = Eyie,) () + 6,

where E,¢,) () = e ()T and 0(¢,) =1+ 1642 , implying that

Eus(n) (@) = =2 (Gu) Re ()" = —aRE (¢ (2) + 11,

These estimates hold uniformly on [0,1], on bounded subsets of H! and on
subsets of sequences (Cp)n where (w(Cn) — n7)y is bounded in €F. In more
detail, e.g., the first estimate means that for any bounded subset V. C H} and
any subset B of sequences ((n)n C C*, with (w((n) — nm)y, bounded in (3,
there exists C > 0 so that

M n7 w §C7 GV d nnEB.
Oigglz} (@, Gnr0) = Euieny (@) for any v € V and (¢n)

(ii) If ¢, = nw + (2, then
M(z,p,v) = Enn(x) + fi and ./\/l(az7 Cnyv) = —2zRE () + Ei.

These estimates hold uniformly on [0,1], on bounded subsets of H}, and on
subsets of sequences ((n)n where (w((p) — )y s bounded in (3.

Proof. (i) By Lemma 2.8, on [0,1] x H} for any |\ > 1/4
’M(]I,)\,U) - gw(x)| <0 (e‘ImUJ'HEUJ()F(a Avv)HLoo([O,l])) .
By Lemma 2.7,

1 m w X
ey (@) F (2, Cayv)| < meII (Cn)lz p2llally

n

+ max
+

/ (Pp(s) + gu(s)) e (6) =29 qq|
0

and by Lemma D.2 in [3],

2

Zmax/ P(s) + qo(s)) e =20 ds) < 2e? o], 0<z <1,
nez
where b = supnez lw(¢n) — nml. Altogether, we thus have proved

> onez M@, s v) = Eye) ()| < 0o. In view of Lemma 2.8, the latter estimate
holds uniformly on bounded subsets of H! and on subsets of sequences ((,), in
C* so that (w((n) — nm)y, is bounded in £°. To obtain the claimed estimate for
M(z, Cnv) —E w(¢y) () we apply Cauchy’s estimate to A-discs Dy, of fixed radius
around each (, to get

!M@@m—&@mﬂso<mwM@mw—ammo.

)\EDCn
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Since the radii of the discs D¢, do not depend on n one then concludes that

sup Z‘M x,Cpyv) — (Cn)( )’ < 00,

0<x<1

where the estimate holds uniformly in the claimed sense. Altogether this estab-
lishes the first claim.
(ii) For sequences ((y)n with the stronger asymptotics w((,) = nm + 2, we
have
gw(cn)(.%') = G_RW(C")I = ¢ finmz + E?L = Sw(nﬂ.) (1‘) + 6721

implying the claimed estimate. O

Theorem 2.11. Uniformly on bounded subsets of H? and on subsets of bi-
infinite sequences of complex numbers with ¢, = nm + O(1), |(u| > i,

sup |M(z, (o, v) — (z)] =0 (1/n),
0<z<1
sup ’M xz, Cna - |— 1/TL
0<z<1

If in addition ¢, = nm + (2, then

sup |./\/l x,Cn,yv) — m(m)’ =72,
0<z<1

sup {M T, Cny V) — mr(x)‘ :&21'

0<z<1
Note that gw(Cn) = _xw(cn)Re—RuJ(Cn)iﬂ — _ngw(Cn) (.’L‘) =+ O (%) .

Proof. The first estimate is a consequence of Theorem 2.9 and the second one
is then obtained by applying Cauchy’s estimate. If the sequence (,, satisfies in
addition ¢, = nw + 07 then &, )(x) = Enr () + L7 O

For later reference we state the asymptotics of M = T~' MT, corresponding
to the ones obtained for M. Introduce

Bun(@) = M 0.0 = T ()T = (el Be) o) eas)

E,o(@) = =T aw(A\)Re N = —2(\) T RTE ) (2)
= 2JE (@) + O (e“mw(*)'f/uﬁ) . (2.34)

Theorems 2.9-2.11 then yield the following results.

Theorem 2.12. M and M have the following asymptotics:
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(i) For |\| — oo locally uniformly on [0,1] x H},
M(I‘, )‘7 ’U) = Ew()\) (SU) +o0 <€|Imw()‘)|1"> ,

M(xg )\)U) = ZL‘JEUJ()\)(];) + o0 (elImw()\)‘x> ]

(ii) For |A| — oo uniformly on bounded subsets of [0,1] x H2,
Mz, 2, 0) = Eyny(@) + O (el ™0l /(a)]),
NI (2,2, 0) = 2 By (2) + O (O ()] )

Furthermore for bi-infinite sequences of complex numbers ((n)n C C* with |(,| >
1 )
7 one has:
(iii) If ¢, = nm + O(1), then
M(CC, Cnv U) = Ew(ﬁn)(x) + EEL and M(l‘, Cnv /U) = :CJEw(Cn)(x) + 67217

uniformly on [0,1], on bounded subsets of H?, and on subsets of sequences
(Cn)n where (w(¢p) — )y, is bounded in €.

(iv) If ¢, = nm + (2, then
M (z,(pyv) = Epg(x) + ﬂi and M(x, Cnyv) = 2 JEpr(x) + 8721,

uniformly on [0,1], on bounded subsets of H}, and on subsets of sequences
(Cn)n where (w(Cn) — )y, is bounded in (2.

(v) If ¢ = nm + O(1) and v € H?, then
M (2,Cn,v) = By, (@) + O (1/n) and M(x, (n,v) = 2By, () + O (1/n)

uniformly on [0, 1], on bounded subsets of H2, and on subsets of sequences (y,
where ((p, — nm)y is bounded in (.

Recall that by (2.29), M~ = < 1 _m2>. Furthermore, E;(l)\) =E_,0) =

—m3 My
E, (- and hence

(Eyy) = =By (@) = =2 By_y) (@) + O(el el /32),

Theorem 2.12 then leads to the following results for M 1.
Corollary 2.13. M~ and (M) satisfy the following estimates:
(i) For |A| — oo locally uniformly on [0,1] x H},
Mﬁl(x, \v) = Ew(i/\) (x)+o0 (e|1mw()\)|:p) ’

(M) (z, A 0) = —zJE, ) (z) 40 (e|1mw()\)|z> .
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(ii) For |A| — oo,
M~ (@, 2,0) = By (@) + 0 (e /w(3))
uniformly on bounded subsets of [0,1] x H2, and

(M7 (@A, 0) = =2 By (@) + 0 (el ™l /lu(a)])

Furthermore for bi-infinite sequences of complex numbers ((p)n in C* with
Ca| > 1 one has:

(iii) If ¢n = nw + O(1), then
M_l(ac, Cny¥) = Ey—¢,)(x) + E?L and (M_l)'(ac, Cnyv) = —TJ B¢y (7) + Ei

uniformly on [0,1], on bounded subsets of H}, and on subsets of sequences
(Cn)n, where (w(¢p) — )y, is bounded in £

(iv) If (n = nm + £2, then
M_1($7 Cnvv) = E—nﬂ'(x) + £721 and (M_l)'(% Cna U) = _x‘]E—TLTF('x) + g?L

uniformly on [0,1], on bounded subsets of H}, and on subsets of sequences
(Cn)ns where (w(Cp) — )y is bounded in €%.

(v) If ¢ = nm + O(1) and v € H?, then

M~ (2,(nv) = Ey—¢,y () + O(1/n)
and

(M_l)'(m, Cnsv) = —wJ Ey_¢,)(z) + O(1/n)

uniformly on [0,1], on bounded subsets of H?, and sequences ((p)n, where
(Cn — nm)y, is bounded in €.

In order to study the periodic spectrum of the operator @), its discriminant
plays an important role. For any v € H}, let

) o ) (Mg
M\ v) == M(x,\,v)|,_; and M(\,v) =: <m3 m4> (2.35)
as well as M(X,v) := M(1,\,v). The discriminant and anti-discriminant are

then defined as follows:
A\ ©) = %mM(A,m _ %uM(A,m, SO0 v) = (r(\, ) — a(A, ) /2. (2.36)

Lemma 2.14. A and § are analytic maps on C* x H! and have the following
symmetries: for any A € C* and v € H},
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(i) (Reflection in \)
A=\ v) =A\v), §(=\v)=0A0).

(ii) (Reciprocity in \)

1

A(mﬂ];p) =A(\ —q,p), 0(—,q,p) =\, —q,p).

(iii) (Conjugation)

(iv) (Reflection of v)
AN, —v) = AN\ v), (A, —v) = —=d(\v).
(v) (Real potentials) If the components q and p of v are real valued then A(\,v)
and 6(\,v) are real for any A € RUIR.

(vi) (Purely imaginary potentials) If ¢ and p take values in iR then A(X,v) is real
and 6(\,v) is purely imaginary for any X € RUIR.

Proof. Items (i)—(iv) follow from Proposition 2.1.
(v) By (i) and (iii) one has for v real that for any A € RUIR

A\ v) = AND) = A\ v) and J(\,v) =5(\0) =5\ 0).

(vi) In case v is purely imaginary it follows from (i), (iii), and (iv) that for
any A € RUiIR

AN\v) =AW\, —0)=A(N\v) and 0(Av) =3\, —0) = —06(\ ). O
The latter lemma leads to the following

Corollary 2.15. Discriminant and anti-discriminant together with their \-
derivatives are real analytic on C* x H}. On any closed, bounded subset of C* x
H!, A and § are compact and bounded. More precisely, for any compact subset
K C C* and any closed, bounded subset V. C H(}, the map V — L¥(K),v
(A= A(\,v)) is compact in the sense of Definition 2.4.

For later reference we record the following formulas for A(\,v) and §(A, v) at
the zero potential v = 0. Recall that w(A) =\ — 16%. Taking into account that
by (2.33), M(X,0) = E, (1), the following holds.

Lemma 2.16. For any A € C*

A(N0) = cos(w(N)), A(N0) =— <1 + 161)\2> sin(w(N)), d(X,0) =d(\,0) =0.

As a consequence A%(\,0) — 1 = —sin?(w(N)).
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To obtain rough asymptotics of the periodic eigenvalues we need to compare
A(A, v) with A(X,0). Recall that the domains D,,, n € Z, were introduced in the
introduction (cf. also (3.1) below).

Lemma 2.17. For any given v € H}, the following asymptotics for |\| — oo
hold on C\ U, Dn U (=D»)

A%(N) — 1 = —sin?(w(N)) (1 +o(1)) = —sin®(N\) (1 + (1)), (2.37)
A(X) = —sin(\) (1 +0(1)). (2.38)

These estimates hold locally uniformly on H}.

Proof. By Theorem 2.12 (i), A(),v) = cos(w(\)) + o (e™m@M) "and thus

A2\ v) —1

() (Ho(em“")cos(w(») o<e2'1mw“">>. (239

S2w()) T sm2(wn)

For A € C*\U,;>1 Dn U (—Dy) there exists m € Z with mr +7/3 < ReA < (m +
1) — m/3. If in addition, \ is sufficiently large, then w(\) = A — 1 satisfies
mm + 7/4 < Rew(\) < (m+ 1) — 7/4. Hence |sin(Rew(\))| > % and
|sin(w(A))] = |sin(Rew(A)) cos(ilmw(N)) + cos(Rew(N) sin(iImw(\))]
> cosh(|Imw(N)|)/V2 > el /y/2,
It follows that for A € C*\ U,>; Dn U (—Dy,) sufficiently large

cos(w(A)) el Tmw(X)|
Sin(w(\) ‘ = Tsin(@(V)

,gﬂ,

and hence the expression inside the large parentheses of (2.39) is 1 4 o(1). The
asymptotics (2.37) then follow since

sin(w())) = sin(\) cos <161A) ~sin (1(13)\> cos(\)
s o3) o) 28)

and N
oo ¢t < v
sin(\) ﬁd Im A|

Concerning (2.38), note that by Theorem 2.12 (i),
M(z,\,v) = rJE, () + o0 (ellm“’()‘”’”)

implying that
AN, v) = —sin(w(N\)) + o (ellmw(/\)|> '

A similar argument as the one above then yields the claimed asymptotics. O
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3. Spectra

The main purpose of this section is to study the asymptotics of the pe-
riodic, the Dirichlet, and the Neumann eigenvalues of the operator Q(v) for
v € H}!. They provide the setup for the proofs of Theorem 1.1 and Theo-
rem 1.2 in Section 4. Recall that in Section 1, we introduced the domains Dy :=
{zeC:|z2— 1| < £} and for any n > 1,

1
D, ={ e C:|\—nr|<n/3}, D_n::{)\E(C:meDn} (3.1)

as well as By :={\ € C: |\| < 7/2} and for any n > 1 and
B,:={AeC: |\ <nm+mx/2},

B, = {)\e(C: A gM} (3.2)

and we denote by A, the open annulus
A, = B, \ B_y. (3.3)

Furthermore, by the definition (2.35)

M(A\v) = M(z,\v)|,_, and M(A,m_(gl ?) (3.4)
3 4

as well as M(A,v) = M(z,\,v)|,_,. Denote by Qgi the operator Q = Q10 +
Qo with domain

Heaie := {F = (F1, Fp, F3, Fy) € H'([0,1],C*) : F1(0) = F1(1) = 0}.

Its spectrum is discrete and coincides with the Dirichlet spectrum of the spectral
problem (2.2), defined as the set of eigenvalues with eigenfunctions f = (f1, f2) €
H'([0,1],C?) such that f1(0) = 0= fi(1). Clearly, for any v € H}, p € C*is a
Dirichlet eigenvalue of (2.2) if there exists a € C* such that

M (1, v) (?) =a (?) . (3.5)

Theorem 3.1. The Dirichlet spectrum of Q(v) with v € H} is the zero
set of the function xp(A) = ma(A), {u € C*: xp(u) =0}. Furthermore, the
multiplicity Mult(u, xp) of a root p of Mg is equal to the algebraic multiplicity
Mult, (1) of p as a Dirichlet eigenvalue, defined as the dimension of the (finite
dimensional) vector space |~ ker(u—Qair(v))™. The function xp is an analytic
and compact function on C* x HY. For v =0, xp(\,0) = sin(w())).

We thus have the following
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All the assertions of Theorem 3.1 are shown in a straightforward way except
the one on the multiplicity of the roots of yp, which we state separately in
Lemma 3.5 below. To prove it, we first need to discuss some elementary properties
of the Dirichlet eigenvalues and xp.

Lemma 3.2. For any (\,v) € C* x H}
(i) xp(=Av) = —xp(Av) and xp(55,49,p) = ="V xp(A, —¢,p).

(ii) xp(A, ) = xp(\,v) and xp(\, —v) = —mz(),v).

(iii) For [A] — oo with A & U,,>1 DaU(=Dn), xp(X,v) = xp(A, 0)(1+0(1)) locally
uniformly in v € H}.

Proof. (i) Using that

(4= ()~ s )
we obtain by Proposition 2.1
() = 0 5o )
G o
(5 = o 8) g ()
= — (1 0) ReRaO/251 (5, —q, p)e=iFa®/2p (9
;Y i

1
oma(0)/2 o\ . 0
=- ( 0 0) M, —q,p) <_ieq(0)/2>

- _ <€q(0)m2(A7 _qap>>

)
@)

0

(ii) is proved in a similar way as item (i).
(iii) By the same argument as in the proof of Lemma 2.17 one obtains the
claimed asymptotics xp(\,v) = xp(A,0)(1 + o(1)). O

As usual we denote by /X the principal branch of the square root defined for
Ain C\ (—o0,0] and determined by /1 = 1.

Lemma 3.3. The Dirichlet eigenvalues at v =10 are i, —% and

nw [ 4/ 1 nw [ 4/ 1
— 1+ ——=+1 14+ ——=-1 0
2 ( + 4n2x? + ) T2 ( + 4dn2m? ’ n#0,

each eigenvalue having multiplicity one.
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A rough localization of the Dirichlet eigenvalues is provided by the following

Lemma 3.4 (Counting Lemma). For each potential in H}, there exist a
neighborhood U in H! and an integer N > 0 so that for any v € U, the function
A= xp(A,v) has exactly one root in each of the domains Dy, —D,,, D_,,, —D_,
for any n > N and ezxactly 2+ 4N in the annulus Ay, counted with their multi-
plicities. There are no other roots.

Proof. By Lemma 3.2, for [A| = oo with A & {51 Dn U (=Dy), xp(A,v) =
xp(A,0) (1 + o(1)) locally uniformly in v. Hence, for any potential in H} there
is a neighborhood U and an integer N > 1 such that for any v € U

’XD()‘v U) - XD()‘v O)| < ‘XD()H O)‘? (36)
IXD(A, (=¢,p)) — xp(A,0)| < [xD(X,0)] (3.7)

on the boundaries of the discs D,,, —D,,, and B,, for any n > N. It follows by
Rouché’s theorem that xp(-,v) has as many roots inside any of the discs £D,,,

n > N, as xp(-,0). There are no other roots in C*\ (BN Upsn(Dn U —Dn)).
By Lemma 3.2 (i)
e4(0)

(@:p) — Xp(—r.0

16X’ )‘ = xp(A: (=4:p)) = xp (A, 0)]

< Ixp(X, 0)]- (3.8)

L
XDUT6N

Since xp(-,v) has the same roots as e?®yp(-,v) and xp(165:0) = xp(A,0)
it follows that xp(A,v) has as many roots as xp(A,0) inside any of the discs
D_,,—D_, with n > N. It remains to count the roots inside A,, with n > .
In order to apply Rouché’s theorem we need to estimate xp on the boundary of
B_,. Arguing as above one concludes that for any A on the boundary of B,, with
n> N and t,t+ s € [0,1],

1 1
(t+5)q(0) _ (ta(0)
‘ XD <16)\ (t+s) ) ¢ XD (16)\ )’

= ‘XD()‘v _(t + S)U) - XD()‘a —t’U)’

ta(0) XD (12)\7 t’U)

1 1
“lxp(A, —tv)| = =

After division by |e!(9)| one gets

1 1
e Oxp (16>\ (t+ )0 ) XD <16>\ >

Choose € > 0 such that

;'XD <1éA )’
XD(léA >‘

1 1
esq(o)_lHXD (16)\ (t+ s)v >’ 3
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for A on the boundary of B, with n > N, ¢t € [0,1], and 0 < s < e. Then
XD (A, (t+ s)v) = xp(A tv)| < [xD(A, tv)]

on the boundary of A,,. By Rouché’s Theorem it then follows that the number
of roots of xp(+,tv) inside A,, is independent of ¢ € [0,1]. Since xp(-,0) has 2 +
4N roots inside Ay so does xp(-,v). Since (Ap)n>nN is a covering of C*, there
are no roots in C*\ (Ay UU,>n Dn U (=Dy)). O

Since by Lemma 3.2 (i), xp(—A,v) = —xp(A,v), it is enough to consider the
Dirichlet eigenvalues of Q(v) in

Ct:={A € C:Re)X > 0} UiR.y. (3.9)

For any v € H], these eigenvalues, when counted with their multiplicities
Mult,(4), can be listed as a bi-infinite sequence

0= Spo=p 13w S X

Here < is the ordering of complex numbers in Ctdefined as follows: for a,b €
Ct,a =0,
[la| < [b]] or [la| =b] and Ima < Imb]. (3.10)

Note that < is a total ordering of C*. One of its feature is that for any a € CT,
a < ila|. In particular, ordering the Dirichlet eigenvalues in this way one has that
pn, = nm + o(1) and 16“%” =nm+o(1).

Lemma 3.5. For any Dirichlet eigenvalue p of Q(v) with v € H},
Mult, (@) = Mult(p, xp)-

Proof. The algebraic multiplicity Mult,(x) of p equals the dimension of the
range of the Riesz projector

_ . -1
H(N) T % F(u)(/\ - ler(v)) dA,
where I'(u) is a counterclockwise oriented contour around p so that all Dirich-
let eigenvalues of Q(v) except u are outside of I'(1). Since (A — Qqir(v)) ™! is
a compact operator, Mult,(x) is finite and Mult,(n) = trII(x). By Propo-
sition 2.1 and Lemma 3.2, Multy(i,) = Multe(—pyn) and Mult(pn, xp) =
Mult(—pn, xp). Hence it suffices to consider the Dirichlet eigenvalues in C*.
By Lemma 3.3, the Dirichlet eigenvalues for v = 0 contained in CT are given

by pf = 1 (knr + k272 + 1/4), k € Z, and since xp(\,0) = sin(w(A)) one has
Mult(1, xp) = 1. Note that for any k € Z,

1 1
: 0 0 : 0 0
sin(wyz), cos(wpx), sin(wyx), cos(wkm)>
< 4 ug 4,u2

is an eigenfunction of Qgi(0), corresponding to the eigenvalue u?, where w? =
w(ud) = 7|k|. Since Qair(0) is selfadjoint with respect to the canonical inner
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product on L?([0,1],C*), the algebraic multiplicity Multe () is one. Since
Mult(p?, xp) = 1 it then follows that Multe(pu?) = Mult(ul, xp) for any k €
Z. Now let vg € H} and consider the line segment [0, vo] from 0 to vg in H].
Since it is compact it follows by the Counting Lemma that there exist a neigh-
borhood U of [0,v] in H! and N > 1 such that for any potential v in U and
|k| > N, pg(v) € Dg. It implies that Mult(ug, xp) = 1. Choosing I'(uy,) := 0D,
as contour for the Riesz projector introduced above, one sees that Mult, (ug) = 1
for any |k| > N. For the remaining 4N + 2 Dirichlet eigenvalues in Ay consider
the Riesz projector

1 _
Iy (v) = o (A = Qair(v)) " dA.
Tl OAN
Denote by Ry (v) the range of IIy(v) and let Ay(v) = Q(v)|g, - Since trlly is
continuous and hence constant in U, the dimension of Ry (v) is 4N + 2 and Ay
maps Ry onto itself. Thus, {x (A, v) := det (A — Ax(v)) is a polynomial of degree
4N + 2. By construction, its roots are precisely the Dirichlet eigenvalues inside
Ay, counted with their algebraic multiplicities. On the other hand, consider the
polynomial
v v) =TT O = mk(0) O+ pa(v),

[k|<N

formed by the roots g (v), —pur(v), |k| < N, of xp inside Ay counted with their
multiplicities Mult(ux, xp). By the analyticity of xp and the argument principle,
the coefficients of (v are in fact analytic functions in v € U. The same is true
for the coefficients of 5. By the same argument as in Lemma 3.4 there is a
neighborhood U® of 0 in H! so that on U©. € Dy, for any k € Z. Hence £y
and (y coincide on U®) NU (# 0). By the analyticity of the coefficients of (x
and &y we conclude that £x(-,v) = (n(-,v) for all v € U N U, implying that
on U, Mult,(pg(v)) = Mult(ug(v), xp) for any |k| < N. O

Denote by Qpey the operator Q(v) with domain
Hpew = {F = (Fy, F», F3, Fy) € H'([0,1],C*) : F5(0) = 0= F»(1)}.

Its spectrum, referred to as Neumann spectrum, is discrete and coincides with the
Neumann spectrum of the spectral problem (2.2), defined as the set of eigenvalues
with eigenfunctions f = (fi, f2) € H'([0,1],C?) such that f2(0) = 0 = fo(1).
Clearly, for any v € H}, v € C* is an eigenvalue of (2.2) if there exists a € C*

such that
M\ v 0 =a E

Since by Lemma 3.2 (ii), xn(\,v) = —xp(A, —v), Theorem 3.1 and Lemma 3.4
yield the following results.

Theorem 3.6. The Neumann spectrum of Q(v) with v € H]} is the zero
set of the function xn(N\) = ms(\), {v € C*: xy(v) =0}. Furthermore, the
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multiplicity Mult(v, xn) of the root v equals the algebraic multiplicity Mult,(v)
of v as a Neumann eigenvalue, i.e., the dimension of the (finite dimensional)
vector space |J,~q ker(v — Qneu(v))". The function xn is antisymmetric in X
and hence the Neumann spectrum is even in \. The function xn is analytic
and compact on C* x HL. For v =0, xn()\,0) = —sin(w()\)). Finally, results

corresponding to Lemma 3.4 also hold for the Neumann eigenvalues.
Lemma 3.3 and Lemma 3.2 (ii) lead to the following

Lemma 3.7. The Neumann spectrum of Q(v) at v = 0 coincides with the
Dirichlet spectrum of Q(v) at v = 0.

The Neumann eigenvalues of Q(v) for v € H}, contained in C*Tand counted
with their algebraic multiplicities can be listed as a bi-infinite sequence

0= 2vao2vaga2XyInr-- (3.11)

so that for |k| sufficiently large, v is the unique Neumann eigenvalue of Q(v) in
the disc Dy.
We finish this section with the following useful identity.

Lemma 3.8. For any Dirichlet or Neumann eigenvalue \ of Q(v) with v €
H},
A2\ v) — 1 =8%(\ ).
Proof. By the Wronskian identity 1 = mqm4 — merng. Hence

1

A? 1= Z(m+m4)2—1
satisfies
AP 1= (i a)? — g o+ i = %(ml — 114)2 + Tgtng = 8%+ rhathng,
Since the Dirichlet and Neumann eigenvalues are roots of thoms the claimed
identity follows. O

Next we describe the periodic spectrum specper(Q) of the operator Q =
Q10: + Qo with domain given by the subspace of functions F' in

Hpert = {F € Hi,o(R,C") :Vz eR F(z + 1) = £F(2)} .

It coincides with the periodic spectrum of the spectral problem (2.2). Hence a
complex number A € C* is in spec, (Q) iff M(A,v) has an eigenvalue 1. Since

det(M) = 1, the eigenvalues &4 of M(X) = M (), v) satisfy
0= det(€x] — M(N\) = €2 —2A(\)éx + 1 (3.12)
and thus are given by
Ex = AN £/A2(N) — 1. (3.13)

Note that in (3.13), {4 and £_ are determined up to the choice of a branch of
A2(N) — 1.
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Theorem 3.9. The periodic spectrum of Q(v) with v € H} is discrete and
coincides with the zero set {A € C*: xp(\,v) =0} of the function xp(\,v) =
A%(\,v) — 1. Furthermore, the multiplicity of any root of Xp coincides with its
algebraic multiplicity as a periodic eigenvalue. By Lemma 2.14 (i) and (ii) the
periodic spectrum is invariant under the involution X — —\ and for any periodic

eigenvalue of Q(q,p), 16% is a periodic eigenvalue of Q(—q,p).

Proof. Let v € H! be given. By (2.2), for any A\ € C* and F €
H} (R,C%), the identity QF = AF is equivalent to F' = (f, \"'Bf) where f(z) =
M(z,\,v)f(0). Hence the existence of a solution F' of QF = AF with F(1) =
+F(0) is equivalent to £1 being an eigenvalue of M (1, A\,v). By (3.13), £1 is an
eigenvalue of M (1, \,v) iff A(\,v) = £1. This proves the characterization. The
statement on the algebraic multiplicity of periodic eigenvalues is proved as the
corresponding one for the Dirichlet eigenvalues (cf., Lemma 3.5) and hence we
omit its proof. O

For v = 0 the periodic spectrum of Q(v) can be computed explicitly. By
Lemma 2.16, xp(A,0) = cos?(w(A)) — 1 = —sin?(w(\)), where we recall that
w(A) = A — 1.

Corollary 3.10. The periodic eigenvalues of Q(v) for v =0 are

nw [ 4 1 nmw [ 4 1 1 1
i ——+1), Z( i1+ —=-1]: L
{2 ( Tt ) 2 ( T e ) ”#O}U{zx’ 1

Each eigenvalue has algebraic multiplicity two.

It is convenient to list the two sequences of periodic eigenvalues of Q(0) with
their algebraic multiplicities as follows:

0<---<)\:1:)\f1<)\g:)\0+:i<)\;:)\f<)\2*:)\2+<-~
...<—)\1_:—)\f<—)\g:—)\8“:—i<—/\:1:_)\jl<...<Q.

We note that

A(N,0) = AN, 0) = (1), k€Z, and ﬁ’“:mlx;g’ k>0, (3.14)

The periodic spectrum of Q(v) for arbitrary v € H]} is asymptotically close
to the one of Q(0).

Lemma 3.11 (Counting Lemma). For each potential in H}, there exist a
neighborhood U in H} and an integer N > 0 such that for every v € U, the entire
function xp(A,v) has exactly two roots in each of the domains Dy, —Dy, D_,,
and —D_,, with n > N and exactly 4+ 8N roots in the annulus Ay, counted with
their multiplicities. There are no further roots.



480 Thomas Kappeler and Yannick Widmer

Proof. By Lemma 2.17, x,(A,v) = xp(A,0) (1 4+ 0(1)) for |A\| = oo with A ¢
Uns1 DPn U (D), locally uniformly in v € H!. Hence, for any potential in H}
there is a neighborhood U and an integer N > 1 such that for any v € U

|XP()‘7U) _Xp()‘ﬂo)| < ‘Xp()‘ﬂo)|7 (315)
|Xp()‘7 _(Lp) —Xp()\,0,0)| < ‘Xp()‘ﬂovoﬂ (316)

on the boundaries of the discs D,,, —D,,, and B,, (defined in (3.2)) for any n >
N. The estimate (3.16) implies by Lemma 2.14 that

1 1
Xp <W\7Qap> — Xp <16)\’0’0>‘ = Ixp(\, —¢,p) — xp(A,0,0)]

1
w (i62:0.0)]

It then follows that for any n > N, (3.15) holds on the boundaries of £D,,, £D_,,
and B,,, B_,, and hence on the boundary of 4,, = B,,\ B_,,. By Rouché’s theorem,
Xp(+,v) then has as many roots inside any of the discs +D,,, =D_,, and annuli 4,
as Xp(A,0) for any n > N. Since (Ay)p>n covers C* the same argument shows
that xp (X, v) has no roots in C*\ (AyUU,,» y (DnU(=Dp)UD_,U(—D_y))). O

< [xp(A,0,0)] =

For v € H? one can provide a bound N of Lemma 3.11 in terms of ||v||,. By
Lemma 2.14 (i) it is enough to consider the part of the periodic spectrum of Q(v)
in the half plane C*tand by Lemma 3.11 the periodic eigenvalues in CT, counted
with their algebraic multiplicities, can be listed as a bi-infinite sequence

0= A =2 =<0 A=A =A< (3.17)

Note that the segment {tv € 1 : ¢ € [0,1]} connecting v to 0 in H! is compact
and hence the integer N of Lemma 3.11 can be chosen uniformly in 0 < t <
1. Furthermore, for any |k| > N, A(\f (tv),tv) = A(X; (tv),tv) and its sign is
constant in t. We conclude that for such k , A\, v) = (—1)F.

We finish this section by a discussion on the roots of A\, v) = d\A(N,v).
Since A is even with respect to the variable A, A is odd and hence it is again
enough to look at the roots of A in C*. For v = 0 one has A(\) = A(),0) =
cos(w(A)), where w(\) = X — 16%, and hence

AV = AL 0) = — (1 + 161A2> sin(w(})). (3.18)

The roots of A()) in (C*_are given by the set of complex numbers consisting of
the bi-infinite sequence A\, = A\;(0) = A (0), k € Z, and the additional root

Ap = ﬁ. Each of these roots has multiplicity one. By Lemma 2.14 (ii), one has

—ﬁA (ﬁ,q,p) = A()\, —q,p). Since —ﬁA (ﬁ,q,p) and A (ﬁ,q,p) have

the same roots in C* (counted with their multiplicities), we can use the same
arguments as for the periodic eigenvalues of Q(v), to prove the following:



On Spectral Properties of the L Operator. . . 481

Lemma 3.12 (Counting Lemma). Given any potential in H, there exists a
neighborhood U of it in H' and N > 0 (U and N can be chosen as in Lemma
3.11) so that for any v € U, the function X — A(X v) has exactly one root in
each of the domains D,,, —D,, D_,, and —D_,, withn > N and 4 + 4N roots

in the annulus Ayx. There are no other roots.

By this lemma, the roots of A(-,v) in C* \ Ay, counted with their algebraic
multiplicities, can be listed as a bi-infinite sequence

0= 2 ANy A N A 2 v 2, MEDg, [k[>N (3.19)

such that any remaining root A in CTsatisfies \_y_1 < A =< }\N+1-

We finish this section by establishing estimates for the periodic, Dirichlet,
and Neumann eigenvalues of Q(v). A first result concerns a priori bounds of the
imaginary part of any of these eigenvalues.

Lemma 3.13. For any v € H? and any periodic, Dirichlet, or Neumann
eigenvalue A € CT,
[ Tm A < o]y + el

Proof. Let v € H? and recall that Q = Q19, + Qo with Q1, Qo given by (1.4)
and for any F,G € H'([0,1],C%),

(Q)F,G) = [Q:1F - Glg + (F,Q(v)G),

where (-, -) denotes the L? inner product,

(F,G) = /0 F(z)-G(z)dx.

On the domains (contained in H'([0,1],C*)) of @, corresponding to periodic,
Dirichlet, or Neumann boundary conditions one has [Q1F - G]} = 0. In partic-
ular if A is a periodic, Dirichlet, or Neumann eigenvalue and F' a corresponding
eigenfunction with (F, F) = 1 one has

2lmA = A= = (Q)F.F) — (F,Q)F) = ((Q(v) - Q@)F, F).  (3.20)

Note that Q(v) —Q(v) = 2iIm Qo (v) and hence, by the Cauchy—Schwarz inequal-
ity and the normalization condition (F, F) =1,

{(Qv) = Q@) F, F)| < [|2(Im Qo(v)) Fl| 2
where by (1.4) and (2.23)
1
2(m Qo(v)) Pl 2 < (Im Pp + o] o +max | im e/2|| ) < oy el O
Note that i, Vm, )'\m are close to mm for m — oo. Our next aim is to obtain

more precise asymptotics for these quantities. First we need to establish the
following auxiliary result.
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Lemma 3.14. For any bi-infinite sequence of complex numbers (¢), C C*
satisfying ¢, = nm + O(1) as n — oo one has

Alyg, = 0s(Ca) + 43, A =—sin(G) + 8,
Sy =0 5‘ — 2
‘)\:(n n’ A=Ch ny

XD‘,\:QL = —sin((n) + £7217 >'CD‘,\:QL = —cos((n) + K%'

These estimates hold uniformly on subsets of sequences ((p)n where (w((y) —nm)y,
is bounded. If in fact ¢, = nm + (2, then

sin(¢n) = €2 and cos((n) = (—1)" + £2,
yielding in particular the sharper asymptotics

Aly_, = (=1)" + €2 and A . =2

o forn — *oo.

=(n

Proof. The stated asymptotics follow from Theorem 2.12 (iii) and (iv). O

Lemma 3.15. For any v € H}, the roots of A in Cthave the following
asymptotics as n — oo

. 1
A =nm+ 02, ——— =nu+ 2.
" " 16M_, "

These estimates hold locally uniformly on H}.

Proof. Since by Lemma 3.12, A, = nx 4+ O(1), it follows from Lemma 3.14
that o .
0=A(\,) =—sin(\,) + 2 (3.21)

or sin(\,) = £2. Since by Lemma 3.12, |\, — n7| < 7/3 for |n| large enough, one

has
/1 cos (()\n — n7r> s+ mr) ds
0

= [sin (An) — sin(nm)| = £2,

An — mr’ cos(m/3) <

)\n—mr’

proving the first claimed asymptotics. They in turn yield the second ones by
Lemma 2.14 (ii). O

By the same arguments one can prove that similar results hold for the Dirichlet
eigenvalues.

Lemma 3.16. For any v € H}, the Dirichlet eigenvalues of Q(v) in C*have
the following asymptotics as n — oo

fn =nm+ €% and =nm+£2.

16—y,

These estimates hold locally uniformly in H}.
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We will now use Lemma 3.15 and Lemma 3.16 to prove the following result
for the periodic eigenvalues of Q(v).

Lemma 3.17. For any v € H}, the periodic eigenvalues of Q(v) in CT have
the following asymptotics as n — oo

1
ME=nr+ 2 and mTznﬁ—i-Ei.

—-n
These estimates hold locally uniformly on H}.

Proof. Let v € H! be given. Since by Lemma 3.16, u, = n7 + ¢2, Lemma
3.14 yields 6(j,) = ¢2. Hence by Lemma 3.8 one has A?(u,,) — 1 = 6%(uy,) = £L.
On the other hand, Lemma 3.14 also yields that A(u,) = (—1)" + ¢2. Writing
A%(py) — 1 = (A(pn) — 1)(A(un) + 1) the two latter estimates together imply
that

Aljin) = (—1)" + £, (3.22)
A similar estimate holds for A()\n) Indeed, since A, — fin, = ¢2 by Lemma 3.15
and Lemma 3.16,

AGW) = 80m) = (o =) [ AR+ (1 D)

and A(t)\n + (1 = t)pn) = £2 uniformly in 0 < ¢ < 1 by Lemma 3.14, it follows
that A()\n) — A(uy) = £L. Together with (3.22) this yields A()\n) = (=1)"+£L.
The latter estimates can be applied as follows. Since A()\n) = 0 one has [(1 —
t)A(t)\,jf +(1- t)).\n)}(l) = 0 and therefore integrating by parts,

AGE) — A(h) = (A — &) / CA(NE £ (1 DA) di
0

1
= (\f - )\n)2/ (L= tAENE + (1 -t)A,) dt.
0

Hence .
(A - An)2/ (L=t AN + (1 —t)A,) dt = £L. (3.23)
0

Since A is analytic in A and A(¢,) = —sin(¢,) 4+ 2 by Lemma 3.14, Cauchy’s
estimate yields

uniformly in 0 < ¢t < 1. For n sufficiently large, tA* 4+ (1 — t)A, is in D, and
hence

/1(1 —HAMNE + (1 —t)\,) dt
0

is uniformly bounded away from zero for such n. So (3.23) yields AE— N, =22
Since by Lemma 3.15, A, = nm + ¢2, the first claimed asymptotics follow. Those
then yield the second ones by Lemma 2.14 (ii). O
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4. Proofs of Theorem 1.1 and Theorem 1.2

In this section we prove Theorem 1.1 and Theorem 1.2. Actually, we prove
stronger versions of them as stated in Theorem 4.10 and Theorem 4.15 below.
For any potential v in H} let

Gn=Gpv) = M ={0 =0\, +tA]:0<t <1}, neZ. (41)

n’»’'n

By a slight abuse of terminology we refer to GG, as the nth closed spectral gap,
although if v is not real valued it lacks a spectral interpretation. Furthermore for
any v € H! and n € Z we introduce the gap length

Yu(v) == AF(v) = A, (v), n€Z. (4.2)

Note that in general, v, (v) is a complex number, but in case v is real valued, it
is real and equals the length of the gap G, (v). For d > 1 and s € R>q, denote
by H*(T3,C%) the Sobolev space of order s of two periodic functions with values
in C%,

H*(T,,C%) := {u = Zunen S, € C?and ull, < oo} ,

ne”

1/2
[ulls == <Z<n>25\un!2> )

neL

where Ty = R/27Z, e,(z) = €™, and |a| = ( 114l ) for any a =

(a1,...,aq) € C We recall that the We1ghtb (n)* = (14 n2n?)° /2 are sub-
multiplicative for any s > 0, i.e., (n +m)* < (n)*(m)*. The L?-inner product is
defined for f,g € H(T,,C?%) = LQ(TQ, C?) by

=5 [ =y [ Zf<ﬂ‘><x>g<j><:c>dx, (4.3

where £ 1 < j < d, denote the components of f. For a scalar valued function
u € H*(T,,C) and a vector valued function v € H*(Ts, C%) with v =3, ., vne,

and v,, € C% one has
luvlly < ully D> n)*[oal. (4.4)
nez

Hence by the Cauchy—Schwarz inequality, ) ﬁ <1+ % >y #, and since

1 2
n=1

one has
Juv]ly < 2 Jull4 llv]lgy - (4.6)
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Recall that by (2.5), (2.6), Q(q,p) = Q10 + Qo(g, p) with

o= ("), aan = (e BV

—~

and

Ao = god o= e 860 =5 (bl iy )

It turns out to be useful to introduce the linear isomorphism H(‘EH X H(‘EH —
H(‘EH x HE, (q,p) — (¢, ) and use (g, ) instead of (¢, p) as phase space variables.

Furthermore introduce
H: = HET X HE (4.7)

and by a slight abuse of notation we write Q@ = Q(q, ¢) and Qy = Qo(q, ) for
the operators Q(q, p) and Qo(q, p) respectively. We rewrite equation (2.11) in the
form

QNF = QoF, Q(\) := —Q18, + Al (4.8)
and introduce the L2-orthogonal basis of L%(Ts, C*),

e (z) = en(z)a?, en(r) =", V1<j<4, neZ,

n

where a), a® a(® ) denote the standard basis in C*, a(!) = (1,0,0,0), a® =
(0,1,0,0), a® = (0,0,1,0), ¥ = (0,0,0,1). Note that

QN)ell) = (A +nm)efl, QN)el) = (A —nm)e?, (4.9)
QN el = Ael?, O(N)e® = e, (4.10)

suggesting to decompose H®(T2,C*) with s > 0 for any given n € Z as
H?*(T,C*) = P, @ K,,, where

Pn._{f(n W) 1 @@ f) f<>e<c}

Kai=3 > flef e B (TaoC): g e ) =0, P =0

keZ,1<j5<4

Denote the L2-orthogonal projections onto P, and K,, by P, and K,,, respectively.
The subspaces P,, and K,, are invariant under Q(\). Furthermore, introduce for
any n € Z the complex strip

II, ={A € C:|R\—nn| <7/2}. (4.11)

Note that these strips cover C and that for any n # 0, the restriction of Q(\) to
K., again denoted by Q(\), is invertible for any A € II,,. Writing F' = u+ v with
u:= P,F and v := K, F, equation (4.8) decomposes into the following system of
equations

Q(Nu = P,Qo(u +v), (4.12)
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QN)v =K, Qo(u+v), (4.13)

called P- and, respectively, K-equation. (Note that in this section, v and v have
a different meaning than elsewhere in the paper.) Given any n # 0 we first solve
the K-equation for any given u € P, and then substitute the solution into the
P-equation, leading to a 2 x 2 system of linear equations with a 2 x 2 coefficient
matrix .S,,, which is singular precisely when X is a periodic eigenvalue of Q.

Actually, to solve (4.12), it suffices to determine Qyv. Hence in a first step,
we derive from (4.13) an equation for Qpv instead of v. Once u and Qyv are
found, v can be easily determined from (4.13), v = Q(A) 1K, (Qou + Qov). We
begin by deriving from (4.13) an equation for Qpv. Given any n # 0 and A € Il,,,
apply the operator QoQ()\)~! to (4.13) to obtain

Qov = QoQ(N) 1K, Qo(u + v), (4.14)
which leads to the following equation for & = Qv € L?(To, C*),
(Id —Tp)o = T,,Qou, Tp = QoQ(\) 1K, : L*(Ts,C) — L%(Ty,CY).

We then prove that for |n| sufficiently large, T is a contraction implying that
for such n, Id — T} is invertible. The invertibility of the operator Id — T, then
follows from the identity

(Id —T,)™ ' = (Id + T,,)(Id + T2?)(Id — T}~

First we need to introduce some more notation. For d = 1,2,4 and s > 0 we
consider on H*(Ty,C?) the shifted norms

s 1/2
lully e = luenll, = (37 +n)2fun?) /2.
keZ

Note that the estimate (4.6) continues to be valid for these norms. More precisely,
the following holds:

Lemma 4.1. Let s € R>g and n € Z. Then the following holds:
(i) For any u € H*(T,C), v € H*+1(Ty, C?):

[wvlls < 2 lully, o] lwolly, < 2 Julls 0]

s+1» s+1mn
(ii) For any v € H*TY(Ty,C), v € H*(To,C%):
HUUHS;n <2 ||u||s+1;n ||’U||S, HuvHs;n <2 ||u||s+1 HUHS;TL :

Proof. One computes
HuvHs;n = ||U1)6n||s < 2 ||U€an HvHs+1 =2 HuHs,n HvHs+1 '

The other inequalities are obtained in a similar fashion. O
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Lemma 4.2. For any (q,¢) € H**' with s >0, 1 € Z, and X € II,, with n #
0, the following holds:

(i) Decomposing

Tn = QOQ()‘)_lKn : (HS(T2>(C4)7 ||'||s;l) — (HS(T27(C4)1 ||'”s;l)

()0 ) (%)

the resulting operators satisfy

(“4 ) QN K,

according to

<llells (4.15)

sl

(5 ) o0 < Isiuita/2)1, + eosita/2l. (416)
sl
([ ®) ooyt < 0D thesblaens g
sl
(ii) Ty, is bounded. More precisely, || Ty || , < Rs, where
Rs = Rs(q,) = @l + lIsinh(g/2) |11 + llcosh(q/2)] 54 - (4.18)

Proof. Let n # 0. Clearly (4.18) follows from (4.15)—(4.17). The latter
estimates are proved separately. To prove (4.15) note that for m # n

min A —mm| > |n —m| > 1, (4.19)
A€ll

n

implying that for any A\ € II,,, the restriction of Q(\) to the invariant subspace
K, is invertible and that its inverse is uniformly bounded for A € IL,. For any
F =Y eni105afWed) with £ € C, and A € I,

ON K F = 3 s (F0 e+ FPeR) + 5 0 (el 4 £ied)
m#n

me

is well defined. Taking into account Lemma 4.1 and definition (2.7) of A one has

H(““ )Q(/\)_liCnF = <A )Z e ()
mEn s;l

Ly, 5 o | m
<7lle > - :

s;l

For 1 <j <4, let f0) .= Y omeZ f,g{)e%). By the Cauchy—-Schwarz inequality and
(4.5) one then concludes
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‘fﬁlgm‘ (—m +1)° + ‘fff}rl) (m + 1)°

In —ml|

1/2
<[+ 52 (Z mln2) < % T2
i\

D

m#n

where we used that

2
2
< IFI

sl
S5

H FIOBIC)

o=l

e

This shows (4.15). A similar estimate holds for

(o Joorns

where 1 |||/, in the estimate above is replaced by 1 ||sinh(g/2)||,+ 3 [|[cosh(q/2) |-
This yields estimate (4.16). On the other hand,

() omrtnr = F)5 5 (m0esd+ s0eld).

meZ

)
s;l

Since by (4.19), ﬁ < ﬁ for any A € II,, estimate (4.17) then follows from

Lemma 4.1. OJ

Lemma 4.3. Let (¢,¢) € H:Y with s > 0 and A € 11, with n € 7\ {0}.
Then the following holds:

(i) For any F = Z?Zl fU) € H3(Ty,C*),

7 (1) o T L CETEN B RCED
and
o () et < gm el |50 a2
while for j = 3,4
T, (A ) QN 'K, fU) =0
(i) Purthermore
H () Q(A)_lKnr = el (422
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(iii) For any F = Z?:l fU) e H5(T,,CY),
(Yo

where for any g = .y grer € H?(T2,C),

< Ry(g, ) (jm el + Rs;n«o)) . (423)

s;Etn

1/2
Rs;|n|(g) = ( Z <k>2sgk2) : (424)

k|||

Proof. (i) Writing ¢ = Y .7 ©meém, it is easy to see that for F' = Z?Zl fU) e
H*(T,C%)

¢ =0\ K, (A ) 0N K,

2 SOk m (1)
- E > e (4.25)
k;é nm#n (A —mm)(A+ k)

and similarly

) Q) K, f

_1 Z Z f(l)SOkfm 2 (4.26)
N - A +mm)(\ —kr) k '

while for j = 3,4
(A ) QN 'K, fU) =o. (4.27)

Note that the coefficients of g Zk# ng,i )e,(C) and ¢(?) = Zk;ﬁn gl(f)el(f) are

given by

O 1 Z 1) O RO 1 3 £ b
k 4 fownd A —mm)(A+kr) Tk 4 e A+ mm)(\—km)

By Lemma 4.1, one has for j = 1,2 and ¢ = 1,2 such that {1,2} = {4, j}

where

T, (A >Q(A>_1an‘” = (1209l
s;l

= (lell, + lsinh(q/2)], + flcosh(a/2)])

)

ey

W~ \

g1, (4.28)

Jo¢

[
wer = mze:;’m)
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The bounds (4.20) and (4.21) then follow from corresponding bounds of
Hg(l)enst,l and Hg@)e_nHWS,l. Indeed,

(1) _ D0k m (1)
Hgl "llwsr k;m%;n A —mm) )x—!-kﬂ')ek o .
< kZ > In—mln+ k| m||n+k:| ‘ . "“0’“"”" (4.29)
#—nmn

Since for k # —n, ﬁ:::z‘ <4(k+n)tand (k+n)*"t < (m+n)Hk—m)s!

one obtains by Young’s inequality

n fg) (m +n)st
- Z Z kw;:!n+k| ’f ‘!cpk ml <Y ‘ ’,n_m| D k) enl

k# nm;é m#n keZ
and by the Cauchy—-Schwarz inequality,
’fm m+ TL> _ 1 (2) s
Z |n —m)| _Z (m—i—n)\n—m["fm [(m +n)
1/2
1

< || £ 4.30
- Hf %(m—i—n)ﬂn—mp (4.:30)

For n > 0, Zm;én W is bounded by

1 1 1 3 1
7T2n2 71'2112 Z Z |n —m|?72n? s (7r2 T Z m2> '

m>0,m#n
Since a similar statement holds for n < 0 and
) 1/2 1/2 12
Skl < (Z <k>) (Z<k>25|sok|2> <l (1+3)
keZ kez kez

2
as well as >0° | 5 = I one has

2
e H < 7H 4.32
o yor Sl |7 (4.32)
A similar computation yields
) )
O I = a7, (4.33)

This proves (4.21) and (4.20).
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(ii) To prove (4.22), note that by (4.30) the definition (4.25) of g() and the

estlmate
A
=)

g(l)e:l:n

2
H 1 Kn] e

, Wl
s;En s;En

and hence by (4.32)

2
H lKn] f(2)

<2>H . 4.34
- 2’ ‘ s;En ( )

It then follows by (4.15) that

(ol

(Yo

s;tn s;En

Hs;in . (4.35)

_2||

By the definition of A = %@J, all components of (A > QN 'K, fM) vanish

except the second one. Therefore (4.34) implies

(M) et

3
) K, (1)
H | o) =gy

siEn s;En

By (4.15) it then follows that

Hs;:ﬁ:n

3
U%]fm <
H s;tn 2| |

In view of (4.27) the claimed estimate (4.22) then follows.
(iii) In view of item (i) and the definitions (4.25) and (4.26) of g and ¢(%,
it remains to bound Hg(Q)enHW&l and Hg(l)e,nHWS,l. One computes

— 10 m (2)
Z 2 A+ mm)(—km)*

k#” m;’é* Ws,l

(1) s
1 Ty fi | |-k +n)

Pt In 4+ m||n — k|

H e,

Since (k +n)® < (k —m)*(m + n)®, one has

A2t + )2 ol — )
In +m||n — k|

’fm "(Pk m| k+

[n +m]|n —

>

k#n m#—n

<> 2.

k#n m#—n
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We split the latter sum into three parts defined by the three sets of summation
indices

{(kym) : |n =k > [nl/2}, {(k,m) : In— k| < |nl/2, [n+m| > |n]/2},
and
{(kym) : [n — K| < [nl/2, |n+m]| < |n|/2}.
Let
fe Yy Ul ot = m)

[n +m||n — k|

n—k|> 12l m#—n

Then by the Cauchy—Schwarz inequality I is bounded by

1/2
cl D D PP oe Pk —m)* |,
‘n_k‘>\%lm7§—n
where
1/2
C:=
DD
[n— k|>|"‘ m#—n
and hence
1/2 1/2
| X ] (2 e ...
- |n—k|2 |n—|—m|2 s
\nfk\>‘f;| m#—n
By a similar computation
1)
2] (0 okl (= m)?
me Y Y
In 4+ m||n — k|
1<|n—k| <2 jnpm|> 121
1/2 1/2
1 1 )
< - L |
- Z \n—k:|2 Z |n+m!2 sn
1<n—k|< gl [n+m|> 151

Since

1 4
Z l2_22l2_ %n 1;2d _W’

|l|>|n‘ |n\

it then follows that

)2 11l

11 1, 7% 12,4
=) T

.. s

Hs;n

ﬁ
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Now let us turn to the sum

#5040 ol (= m)*

H:= Z Z [n 4+ m|ln — k|

1<n—k|< 2 1<ntm|< 2

Since [k —m| > 2|n| — |k — n| — [m+n| > |n| for k,m with [n— k| < 2L and [m +
n| < ‘%‘, the sum I11 is bounded by

1/2 1/2
1 1
Z o In — k|2 Z o In 4+ m|?
1<|n—k|<H 1<|n+m|<H

1/2 )

s T
| X delw ) |0 < 2T Raate) |19
|| >|n| " sin

and hence 1
1T < Rel) [ £

ERO)

Altogether, we thus have proved that

2
(2) < ) 1)
oy < liet £+ Bam [0 az0
Combining (4.32) and (4.36) one obtains the estimate
2
Tn <./4 > Q()‘)_lKn < Rs(‘]a 90) ( ”SOHS + Rs;n|(90)> : (4'37)
sin \/m

Similarly, one shows that

2
< 2

wer =l el

-

1] ot ]

s;—n

and deduces
2
< Rs(Qv (P) o HSDHS + Rs;|n\(90) : (4'38)

() ew . /i

This proves (4.23). O

s5—n

Decomposing T;, as in Lemma 4.2, the following identities can be verified in
a straightforward way.

Lemma 4.4. Let (¢,¢) € H:Y with s > 0 and A € 11,, with n € 7\ {0}.
Then

(A ) O\ 'K, <B ) O\ 'K, =0,
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( B) QN IK, (’4 ) QN K, =0,

( B) oK, ( B) QN 1K, = 0.

Lemma 4.5. Let (q, ) € H™' with s > 0 and X € II,, with n € Z \ {0}.

(i) There exists an absolute constant Cy > 1 so that

7)., < SR

i L B = Rl )= el oosh(a/2) o +Isn(a/2)]
(ii) With R, (¢) given as in (4.24) one has

Isinh(q/2)|,,, + llcosh(q/2)]],44
n

72, < Bula ) (

2
= R., .
+MII¢HS+ | |(<P)>

(iii) For any F = Z?Zl fU) e H3(To,CY) with fV) = 0, the following sharper
estimate holds ]
I72F),, < 1 R0 ) 1P

(iv) For any F = Z?:l fU) € H3(Ty,C*) with f& =0, one has

1
HTﬁFHs,fn S ng(q, (10) HFHS;—TL °

Remark 4.6. It follows from Lemma 4.5 (i) that 7! is a 3-contraction for
In| > 2CoR%. In contrast, the estimate of Lemma 4.5 (ii) implies that, T is
a 3-contraction for |n| > N where N can be chosen locally uniformly on HZ™.

Proof. (i) Decompose ), into three terms,
A _ _ B _
r= () ewtmat (5 ) o ig () o
By Lemma 4.4, T consists of a sum of terms, each containing

(F)ewrm o [(* )]

as a factor. Using (4.15), (4.17), and (4.22) one obtains the claimed estimate
1Tl < CoBS/Inl



On Spectral Properties of the L Operator. . . 495

(ii) Note that by Lemma 4.3

Vinl

[l

T, (B B) QN 'K,

+ Rs(q, s0)< el +Rsm(<ﬁ)>

s;En < ‘
s;En

and by Lemma 4.2 and Lemma 4.4,

T, (B B) ONK,

s;Etn
inh(q/2 h(q/2
(iii) For any F = Z?:l fU) € H3(Ty,C*)
2 B -1 A -1
IT2F|,,, < | Tn | 4 QN KW F|| 4| T Q)KL F
If (U =0 then by Lemma 4.3 (i)
A _ 1
7 (* ) owrtmar| < gm0
Hence (4.39) yields (iii).
(iv) Arguing as in the proof of item (iii) one obtains (iv). O

We now go back to the K- and P-equation. Let (¢,¢) € H**! be given.
Instead of the K-equation (4.13) we consider (4.14) which by the definition of T,
takes the form Qv = T,,Qp(u + v). Solving for Qv yields

([d — Tn)QO'U = TnQ()u. (4.40)

By Lemma 4.5 (iv), T/ is a 1/2-contraction for any n with |n| > 2CoR%. It follows
that for such n, (Id — T%) and hence (Id — T;,) are invertible where the inverse
of (Id —T,) is given by

Thi=Id=T,) ' =Id—TH ' Id+ T, + T> +T3).
By Lemma 4.2 for any s > 0 and |n| > 2CoR?

|-

By (4.40), Qov is given by Qov = fnTnQou and the P-equation (4.12) becomes

Since Id + fnTn = T\n one is led to 0 = (Q()\) — Pnano)u. Hence given any
In| > 2CoR2(q, ¢), X € I1,, is a periodic eigenvalue of Q iff det(S,,(\)) = 0, where
Sn(A) = Sn(A, q, @) is the map

Su(N) = (Q\) = PuT1Q0) Py - Pr — P (4.42)

L S2014 R+ R2+ R%) <2(1+ R,)3. (4.41)
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We now compute the matrix representation of S, with respect to the basis
e (,1,)1, ,(7,)] of P,. By (4.9), the matrix representation [Q(\)] of Q()\) is given

by
eon= (""" )

and for any |n| > 2CoR?(q, ¢), the one of P,T,Q,P, is given by

ar(\) br(N) <er(1) (17)L> <anoe£12),e(_1,)L>
(n " >’: (Tacoe, ) (Foue, @)

For any p > 1, denote by B;H the closed ball of radius p in H st1 centered at 0,
ps+1 . s+1 .
B ._{( 0) € B 1+ Ry(q, )<p}, (4.44)

where we recall that Rs(q, ) = |¢ll, + |lcosh(q/2) ||, + |lsinh(g/2) ||, ;-

Lemma 4.7. Let s >0, p > 1, and |n| > 2Cop*. Then the following holds:
(i) A complex number X\ € 11, is a periodic eigenvalue of Q10 + Qo iff

det Sp(A) = (A — 70 — an(X))® = bt (\)by, (A)

vanishes.
(ii) The functions a;X, bF are analytic in (X, (q,¢)) on I, x Bj*l. Furthermore
an = a,} coincides with a,; and

an(Xq,0) = an(N T, —9), by, (N q,¢) =bi(\q,—P).

Proof. (i) The statement follows from the definition of S,, as mentioned in
the discussion above.

(ii) By Lemma 4.5 (i), T; with [n| > 2Cop? is a 1-contraction for any element

in IT,, x BSJrl Hence (Id— T4) can be expanded in its Neumann series, implying

that an()\) and b (\) can be written as series which converge normally and are
analytic on II, x B5*t!. Note that det Qo(x) = (det B(x))? = ;. Hence Qo(x) is

invertible for any x and ang is invertible as an operator. By the definition of
T, = QoQ(AN) 'K, it then follows that

(Q0'(Id—Ty))" = (Id — (Q(N) " Kn)*Qp) (Q5)
= (Q0)~" (Id - Q5(QN) ' Kn)) -
Using that the adjoints of Qy, Q(\)~!K,, with respect to (-, ). are given by
Qu(¢,9)" = Q@ —») and (QN)'K,)* = K,Q\) ! = Q) K,

one has

(20 (g, 0)Td — Th(N q,9)))" = ('@ —»)(Id — T,(\, 7, —9))) -
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Taking the inverse of both sides of the latter identity one gets

(Tah0.9)Q0(0:9)) " =T (3,7, —%) Q@ 7). (4.45)

Hence b (A, q,¢) = bn (A, G, —@) and a(\,q,¢) = ar (XN, 7, —»). It remains to
prove that a; = a,,. For a given linear operator B acting on a C-vector space,
denote by B its complex conjugate defined by Bu := Bu. Furthermore, note that

Z Z
(1) — (2) (2) — (1)
( Z) e, e’ and ( Z) € ey’

Using that e? = @ and {a,b). = (b,@). one then gets

-~ ~ Z Z
CLI = <TnQO€(_12L, 6(_1,)1>c = <TnQD < Z> e(—2’r)w ( Z) 6(—22L>C

_ <e<_ag, (Z Z) (T Q0)" (Z Z) <>>

A straightforward computation yields

ey = (7 awa(? )

ey =(7Jeww (7).

Hence the adjoint of T\nQo = (Id — QOQ()\)_lKn)_lQO is given by

far- (7 )dai(” ).

This implies that a; () = a, (). O

For a function f : U — C, defined on a domain U C X of a C-Banach space
(X, []]]), denote by |f|v its sup norm,

[fl := sup [[f(M]]-
AeU
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Lemma 4.8. Let (¢,¢) € H} and |n| > 2CoR3(q,¢). Then

‘an‘l_[nf‘ ‘( + Ro(g,9)) R3(q, ) + (1 + Ro(a, )" Il 2 Rogjni (). (4.46)

Furthermore, if in addition ¢ € HE for some s > 0, one has Ry, () < <nl>5 el
and hence

lanlm, < 2(1 + Ro(g,¢))* <R3|(zi °) ||90H<L;>\8|90Hs> ‘ (4.47)

Proof. Since T, = Id + T, T, = Id + T,, + T, T2 and

Qoe(j,)L = 3(0, —pe_np, cosh(q/2)e_,, —sinh(q/2)e_,), (4.48)

one has <Qoe(,1,)1, eg)> = 0. Using that 7, = Id + T,, + T,T2 we split a, into a
sum, a, = %1 + X9, where

5 = <TnQ0e<_13” e(_171>c, %, <T 7200 <1)>c .
Substitute

1
p = Z Ymem where @, = @(m) = / o(z)e ™ dy
meZ 0

into T, Qoe = QQ(\) 1K, Qge( ) to obtain

0
1 —Pe_n
Knyg cosh(q/2)e_n
—sinh(q/2)e_y,
0

| =2 Pmane
— 1= m#n m+ntm

Q(Y) 4 cosh(q/2)e_y,
—sinh(q/2)e_,

T,,Q0e™) = Qp0(N) ™

and by (4.9)
0 0
QO\)fl1 - Zmin PmAnbm | } o Zm?fn PmtnXnr /\ v
4 cosh(q/2)e_p, 4 X cosh(q/Q)e n
—sinh(q/2)e_y, —1 sinh(g/2)e_p

Using trigonometric identities, one then concludes

cosh(q)e_p, 2
1) 1 —sinh(q)e_p, 1 Pm4n 0
T, V= — - — m ) . (4.4
Qo¢n = TG 0 16 2= % —ma"™ | —sinn(g/2) | 449

m#n

0 cosh(q/2)
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Hence by (4.19), for any A € II,,,
[ = \<TnQoe‘_1%, e<_121>

/\ Pm+n
|\cosh Z || a || (mtm)- (4.50)

<
=16\

Since cosh(q) = cosh?(q/2) + sinh?(¢q/2) one has by Lemma 4.1
Jcosh(@)l 2 <2 leosh(q/2)| + 2 lsinh(q/2)| (451)
and hence
|cosh(g)(0)] < [lcosh(q)]| > < 2 lcosh(g/2)|? +2 |lsinh(q/2)[?

For the second term in (4.50), we split the sum into two parts, |m —n| > |n| and
1< |m—mn| < |n| to get

|90m+n| 1 2 1
Z | m+n)| Sm H(p”L2 + E Z ’90m+n||(pf(m+n)| :
1<|m—n|<|n]

Using that for |m — n| < |n| one has |m + n| = |2n + m — n| > 2|n| — |n| = |n|
and hence

Z |90m+n||<p—(m+n)| < ||90HL2 R0,|n|(90)
1<pm—n/<In]

Altogether we thus have shown that

R2 1

Towards Y9 note that for any vector valued L2-function f and |(f, _21 V| <
| fll 2, 1 <i < 4. Hence for f = T TQQOe

—n>

|Xa] = ‘<fnT3Qoe(_12L, e(_1n>

HT 720,V

Hence by (4.41)

15| < ) T 205el) (4.52)

20, <20+ |

Furthermore, by (4.49),

cosh(q)e_p, — sinh(q)
—sinh(g)e—n, | 1 Prtn_ cosh(q)

1
—T,
" 64X A—mm " 0

m#n

2 1 _
TuQoen = 752

1 Pmin_ (1)
n— . 4.
16 A—mm c (4.53)

m#n
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We will now estimate the three terms in the latter expression separately. One
easily checks, using Lemma 4.2, that for any A\ € 11,

cosh(q)e_p,
1 —sinh(q)e_, .
e < S o (leosh(a) 2 + [sini(a)] ).
0

L2

For the second term in (4.53) one has for any A € II,,

— sinh(q)
1 Pmtn cosh(q) 1 .
GAN ~ mem 0 < m(”smh(qmm + |lcosh(q) | 2) [l 12
m#*=n 0

L2
Finally, for the last term in (4.53) one has by Lemma 4.2

1/2

1 Pm+n 1 ’Spm—&-n‘
7Ly e ol < gL lemin]
n16 )\_mﬂ_@em 0 ||<)0||L2 Z m,g )
m#n 12 m;én

where by arguing as above,
1/2

|+ \ 1
Z S T 12 < ||(10”L2 +RO,|n\(()0)
2 fn—ml 7]

Altogether we have proved

&mﬂﬁsﬁ|@mp+amwﬂm+wmwmﬁ

Ry
+ E H()DHLQ R0,|n|(<p)
By Lemma 4.1 ||sinh(q)||;2 < 4||cosh(g/2)|, ||sinh(¢/2)|; and with (4.51) one

obtains

1 :
lellZz + 5 5 ([lcosh(g)ll 2 + [[sinh(q)]l2)
< lelzz + (llcosh(g/2)]; + lIsinh(a/2)]l,)* < R3.

Hence by (4.52),

82| < 5 (1+ Ro)’ Ro + (1+ Ro)* Ro ||| 12 Roypn) (10)-

2ln|

Combining the estimates for 3; and 3 yields (4.46). The estimate (4.47) imme-
diately follows from (4.46). O

Next we estimate b, (\), b, (\), introduced in (4.43).

rn



On Spectral Properties of the L Operator. . . 501

Lemma 4.9. Let s > 0, (q,¢) € H*' and \ € 11, with |n| > 2CoR:. Then
the following holds:

1. 1
() b (V) F 78(F20)| < 5 (1+ Ra(g:9)° (4.54)
I, n|
_ 5(—2n) % +|2(2n)|? 1
i, < PEZOERREOE LG my@en )
n
_ 1 1 12
2s|1+ 2
()2 15 b, < 16 Iol2 + 55 (1+ Rala. ) . (456)
Furthermore
1/2
> (n)**6|b,; by, |, < Jlell, +2(1 + Ra(g, )" (4.57)
n>2Co(1+Rs)%+1

Proof. We begin by proving the estimate (4.54) for b, (\) for n with |n| >
2CoR:. By the definition (4.43), b, (\) = (anOe(_l%,eg))c. Arguing as in the
proof of Lemma 4.8, one gets for any A € I,

be () = (Qoe), @) + (1,0, @) + (1,200, ef?)) .
By (4.48), one has

1
W @\ __1 _ 1
<Qoe,n, e > 4/0 pe_pe_pdr 4<p(2n).

[

By (4.49) and (4.6), for any A € II,,

W @y | 1 e en < — s
‘<Tn906—n7 €n >C 16|/\| ’Slnh(Q)(Qn)| = 16’)\|<27’L>s ||Slnh(Q)||s
1
<———||si :
< gt @/ feoshla/,,
By (4.41),
) (T2 Qoel), e@) | <||TuT2oe®)]| <201+ R)* | 12Q0et)|

Since by (4.48), the first entry of Qoe(_lr)L vanishes one can apply Lemma 4.5 (iii)

to obtain HTg Qge(_lgl < ‘%‘RE Qoe(_lzl . Similarly, by the formula (4.48) for

sn sm

Qoe(_lzl < IR, and the claimed estimate of b, (\) of (4.5
sn

follows. The estimate for b, (\) is proved in a similar fashion. To prove (4.5

and (4.56) use that |ab] < Z(|a® + |b]?) to obtain for A € II,,

)(

n
5)

—n

Qoe(l) one has ‘

1 1 1
ol < (bt - Sp(—2 ~3(-2 =32
el < ([0 - gec2m| +|foe-2m] ) (Jon + Joeo] + |3

+!

1
; \mn)
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2 2 2 2

1 1 1 1
< bt — Z@(—Qn) + Z@(—Zn) + b, + 1@(271) + ‘4@(271)
Hence by (4.54), for any A € II,,,
b | < i(|¢(_2n)|2 +13(2n) %) + ! (1+ Ry)™. (4.58)
nnl T 16 2n?(n)?s

For s = 0, this yields (4.55) and for s > 0 arbitrary (4.56). Finally since
> (> 1@(=2n) + (m)*15(2n)* < |ll;
n>2Co(14+Rs)*+1
and since Cy > 1 and therefore
1 /Oo 1 1
— < —dr=——————
n2200(12+:Rs)4+1 nt T Jacoeras 7 2Co(1 + Ro)t
(4.57) follows from (4.58). O
We now prove the following stronger version of Theorem 1.1.

Theorem 4.10. Let s > 0 and (q,p) € HSTL. Then there exists Ny > 2Co(1+
Ry)* +1 so that for any |n| > Ny, det S,, = (A —7n — a,(N))% — b (A\)b;, (A) has,
when counted with multiplicities, exactly two roots Nt in II,,. They are contained
in Dy, CII,. Furthermore, v, = A\t — X\, satisfy

nl? < 6160, I, n> Ny (4.59)

and
1/2

ST e | <lelap)ll, +2(1+ Ri(g.p)" (4.60)

n>Ny

where by a slight abuse of terminology,

Rs(q,p) = Rs(q, ¢(a:p)) = ll¢ll; + [Isinh(q/2) ([, + l[cosh(q/2)] o4+ -
Remark 4.11. Recall that by the reciprocity law, for any n > 0,

1 1

- - =\ (=¢.p) — A\, (—4,p) = W(—q,p).
16A~,(¢,p)  16A%, (g, p)

Hence (4.59) applied to (—¢,p) leads to the estimate

2

1 1 _
< 6lb5 by, Im—gps 1> N1

16A",(¢.p)  16AT,(q.p)
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Proof. By assumption (g, ¢) € H*T'. According to Lemma 4.8 and 4.9, there
exists N1 > 2Co(1 + Ro)* + 1 so that for any |n| > Ni, |an|m,, [b}b;, [, < 5%-
Hence, for any |n| > Ny and A € 11,

|det S, (A) — (A — n — an (V)] < |6 (Wb (V) < (1)2

" 48
inf |\ —nr—a,(\)|>> T_ sup |a,(N)|| > (1>2
A€dDy, 13 xeoD, 48
As det S,,()\) and (A\—nm—a,(\))? are both analytic on II,,, by Rouché’s Theorem,
they have the same number of roots in D,, when counted with multiplicities. By
the same argument, one shows that (A—nm—a,(\))? and (A—nn)? have the same
number of roots in D,, when counted with multiplicities. Hence det S,,(A) has two
roots in D,,. By choosing Ny larger than the integer N in Lemma 3.11 (Counting
Lemma), it follows that these two roots are precisely the periodic eigenvalues A"
and A, .
To prove the claimed estimate for the gaps v, = A\ — A/, we write

and
2

det S, = (A —mn —an)* = bib, =g.9_, (4.61)
where
gr =A—nT—a, £o,, op=\Vbiby, (4.62)

and the choice of the branch of the root does not matter. Each root &, € D,, of
det S, is either a root of g+ or g_ and hence is of the form &, = nm + a,(&,) £
o(&,). Tt then follows that

A =0 | < lan () —an (M) [ +lon D) +lon(A)] < [0xan |, A=Ay [+2lon .-

Since dist(D,,dIl,,) > 7/6, we obtain from Cauchy’s estimate |[Oran|p, <
ol < 1, which implies that §I\F — ;| < 2|v/bibn
A |2 < 6[b) by, |11, By Lemma 4.9 one then gets that

. and therefore |\ —

n

1/2

> ()l <llelly+2(1+Ry)".
n>Ny

Together with Lemma 2.14 (reciprocity in A), this yields (4.59) and (4.60). O

Remark 4.12. Assume that (q,p) € H} is real valued. Then —p = ¢ and hence
by Lemma 4.7

by a,0) =bi (A q,0), an(X g ) ER, VAeR"

Furthermore, by Lemma 4.9 (s = 0),

b () — 18(~2m)] = O <1>
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and hence . .
on(NE) = i) = La(—2m) +0 () |
4 n
On the other hand, by definition
an(N) = ((1d = Ty(3) ' Qo) ) .

Expanding (Id — T,,(\))"! in the form

3
(Id—T(\) ' =I1d+ Y Tu(N)F + T (N (Id - T,(N) ™!
k=1
(4.5) and (4.48) yield
3
an(NE) = ST Qe e MY 1o (1),
;< 0 >c (TL)

By (4.61), (4.62), there exists p© € {1, —1} so that A¥ = nr+a,(A5)+pLo,(AD).
It implies that

3
A=A = S OO T 00 Q0 et (ot - 10210 (7).
k=1

For |n| sufficiently large the 2 x 2 matrix S, contains all the information about
the nth periodic eigenvalues of a potential. In order to study their asymptotics
for |n| — oo in terms of the regularity of the potential, we analyze S, (), A € I,
further. We will prove that the diagonal of S,,(\) vanishes at a unique point A =
on(q,¢). These values will be used to locally define a real analytic perturbation
of the Fourier transform which allows to characterize the regularity of potentials
mentioned above. First we need to establish some auxiliary results.

Lemma 4.13. Let s > 0 and p > 0. Then for any (q,¢) € Bj“ and |n| >

max(2Cop*, /96p5,960%), there is a unique analytic function o, : BZH — C
such that

(i) on(q,¢) =nm +an(on(q,9), (a,9)), (¢, ¢) € B,

.. ™
(11) Sll}? ’(Tn(q, SO) - n7r| < @7
(a.p)eB;

(i) o (g, ) € R for any real valued (q, @) € BZ“.

Proof. For any given |n| > max(2Cyp?, 3/48p5,96p°), consider the map T
with domain of definition E := {0 : B;H — D!, : o real analytic} and D), =
{Ne C: |\ —nn| < 7/48} C D, defined by

To:=nm+ap(o(-),").
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The set E is obviously not empty since the constant function ¢ = nx is in E.
Note that by the definition of Bf,“, the assumed lower bound for |n|, and Lemma
4.8,

R} lellzz gl P m
n o1 <21+ R (20 L ANE2TFNls ) w9 (24 P )« O
la ‘anBP+1 < 2(1+ Ro) (!n! T (n)s =P 969 * 96p5 ) — 48

implying that 7" maps E into E. Endow E with the metric d(o1,02) = |01 —
o2 Byt Then FE is complete. We claim that 7" is a contraction. Indeed

1
d(T(01),T(02)) = |T(01) — T(02)|B;“ < |a>\a"’D;L><B;“d(01’02) < 2—3d(01,02)

as by Cauchy’s estimate

’an|nnxéf,+1 /48 1

8 ’ RS < . = '
| )\an|Dn><Bp+1 = dist(D!,0M,) ~ 7/2 —n/48 23

Hence T" admits a unique fixed point in E, denoted by o,,. By construction, o,
satisfies (i), (ii) and item (iii) holds since, by the uniqueness of ¢, and Lemma
4.7 (ii), one has 0,(q, —9) = on(q, ). O

Let s > 0 and p > 0. Then for any |n| > max(2Cyp*, 3/96p°%) and (q,¢) €
Bstl1
P Y

0 _bjz_(o-n(Qa 90)7617(:0)) .

Sn(Un(Q7 @)’q’ 90) = <—bn(0'n(Q7 (P)aq,@) 0

By Lemma 4.9, we know that b ()\) is close to $3(—2n) and b, ()) is close to
—i@(Qn). For any given s > 0, define the perturbed Fourier series F; ,(q, ) €
H for (q,¢) € B5*! as follows:

]:s,p(Qa 90) = Z Pn€n
‘”|SM5,/J+1
+ Y A (onla, ) 4 P)e—an — by, (0n(,©), ¢, P)ean, (4.63)
’I’L>Ms,p+l
where
Mj,, := max(2Cop*, 3/966,96%, 220725 p10), (4.64)

The choice of M, , ensures that F; , is a local diffeomorphism (see proof of Lemma
4.14 below). Furthermore we introduce

O, By = HI L (q,0) = (4, Fep(a,9))-

Lemma 4.14. Let p > 1 and s > 0. Then ®,,: B5t! — &5(Bs™) c H3M!
is a real analytic diffeomorphism such that

lells
2

<N Fep(a, 0, <21l (a,9) € BT,
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implying that BS;FQI C D, P(BZH)‘ Moreover,

sup~ “8<pfs,p(Qa 90) - IdHS
(g.9)€B;

<

1
4

Proof. For any |n| > M, > 2Cop*, o, maps Bg:l into I, (cf. Lemma 4.13
(ii)) and b (0,(q, ), q, ) is well defined for (g, ) € Bg:l. By (4.54),

n)* |46} (on (g, ¢), 4, ) — B(=2n)| 5, < (n)° [4b — B(—2n

)}anégp

, ‘( p)°, (4.65)

n)® |4b,, (on(q ), 4, ¢) + 2(2n)| 5 n)* [4by, + @(2n) | <53,
2

<
i

(2p)5. (4.66)

Hence the map F; , is defined on Bg:l and takes values in H*(T,C). Moreover,
by the definition of Fs , and (4.65), (4.66),

S A~ 2
sup (| Fap(a0) —ll2 < > (2n)* |45 (0(g,9), 4, 9) — B(—2n) [ oa

(a)€B3, " n>M;, p+1 2
_ . 2

+(2n)* |4b,, (0(q, #), 4 @) + §(2n) Byt

8 pl2 2

< Y. 5297 < A S 16

n>Ms p+1
By Cauchy’s estimate applied to Fs (g, ) on BZH

1 1
sup Haw}"s,p(q, ) — Idgs||, < —  sup | Fsplq, @) — |, < T

(a0)eB5T P (q.p)eBs)?

Hence d,Fs ,(q, @) : H¥(T,C) — H*(T,C) is invertible for any (¢, ¢) € B;“ and

so is
Id 0
s = (aq}—s,p 8@.7-"57,)) '

We thus have proved that for any s > 0, the map ® , : B;‘H — ﬁg“‘l is a local
diffeomorphism. Furthermore,

1Fs.0(a: 0l = ol | < 1Fsp(a: 0) — ¢l

1
< sup Hagofsm(%(p)_IdHS(T,(C)HSHQOH<Z”S0||'
(g.0)€B5™

Hence
el
2

<N Fep(g, 0, <21l . V(g 9) € BT
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To see that @, : Bffl — H*! is one-to-one, note that for (¢, 1), (¢,¢2) €
Bs—l—l
P

1 Fs.0(q, 1) — Fsp(q, 02) — (1 — 02)l,

1
< sup ||0pFsp — Idgsro || o1 — @2ll, < = ller — @2l -
(g.0)eBT!

Thus if Fs 5(q, ¢1) = Fs,p(q, ¢2), one has |[o1 — 2|, < % |1 — p2|| which implies
v1 = p2. ]

Finally, we come to the proof of Theorem 1.2. As already mentioned, we
actually prove a slightly stronger version of this theorem, stated below. Recall
that a potential (q,p) € H] is said to be a right [left] sided N-gap potential with
N € ZZO if

Vn>N n(g,p)=0 [Yn>N ~-n(g,p)=0] (4.67)
It is said to be a right [left] sided finite gap potential if it is a right [left] sided

N-gap potential for some N € Z. Denote by LFG? and RFG? the following
subsets of H}:

LFG, :={(q,p) € H: : (q,p) left sided finite gap potential}

and
RFG; :={(q,p) € H. : (q,p) right sided finite gap potential} .

Theorem 4.15.
(i) For any s € R>1, LFG? and RFG? are dense in HY.

(ii) For any s € R>1, the sets LFGS N HS and RFGS N H are dense in the real
Hilbert space H? := {v € H? : v real valued}.

Proof. (i) Since Hi™ and H*! are isomorphic (cf. (4.7)) and H5 T is dense
in HZ, it suffices to prove that, for any s € R>1 and p > 1, the sets

1. B+ . ‘ : -
Lo = {(q, ©) € ByT 1 (g, ¢) left sided finite gap potentlal}

and
RZH = {(q, p) € B;‘H : (g, p) right sided finite gap potential}

are dense in BZ“. By a slight abuse of terminology, we say that (¢, ¢) = (¢, Pp+
¢z) is a right or left sided finite gap potential if (g,p) is such a potential. Let
us first prove that R5™ is dense in BEH. For any M € Z>1, denote by Gs p
the closed subspace of H*(T,C) spanned by ey, = €28 |k| < M. Then G,y
is an increasing sequence of subspaces of H*(T,C) and Jyssyy, Gs,m is dense
in H%(T,C). Hence Uysp, H (T, C) x G, s is dense in H**'. Here My =
max(Ms ,, N1), where M, , is given by (4.63) and N; by Theorem 4.10. Since,
by Lemma 4.14, &, : B5™! — &, ,(B5*!) is a (real analytic) diffeomorphism, it
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follows that the preimage of <I>S7P(BEZ+1) N (Unrsag H(T,C) x Gg i) is dense
in B;H. We claim that any element in this set is a right sided finite gap po-
tential. Indeed, if for any given (q,¢) € Bj“, D 0(q,0) = (q,Fsp(q,9)) is
in H51(T,C) x Gs a for some M > My, then by the definition (4.63) of Fs,,
b, (0n(q,¢),q,¢) = 0 and b} (0,(q,¢),q,p) = 0 for any n > M. Since (q,¢) €

Bstland M > M;,. Sn(X,q,¢) is well defined for A € II,, (cf. (4.42)). Since
M > Ny, it follows from Theorem 4.10 that

=0.

det Sy(0(4,9)) = (o, 9) = ™0 = an(on(49)))” = bib, o (a:9)

Note that 0, (g, ¢) is a double root of (o,(g, ) — Tn — an(on(g, go)))2 as well as
a double root of b, b, hence it is a double root of det.S,, in II,, implying that
(g, ) = 0. It means that (g, ¢) is a right sided M-gap potential. We thus have
shown that Rffl is dense in BZ“. Using Lemma 2.14 (reciprocity in ), one
sees that the arguments above applied to (—¢, ¢) yield that Effl is also dense in

Bj*l. This proves (i). Item (ii) is proved in the same way. O

Supports. Both authors were supported by the Swiss National Science
Foundation.
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IIpo cnekTpaJjibHi Bj1acTUBOCTI oreparopa L
y napi Jlakca piBHsinHs sine-T'opsioHa

Thomas Kappeler and Yannick Widmer
Mu ananizyemo nepiomuanwmii criektp orreparopa L y napi Jlakca piBustH-
Hs sine-I'opona B TepMiHax perysispHOCTI MOTEHITIATY.

Kirrouosi ciioBa: piBasinas sine-l'opgona, piBasiaas sinh-T'opgona, mapa
Jlakca, BJIACTHBOCTI CIIafaHHS JTOBXKWH JIAKYH.
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