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Reachability and Controllability Problems
for the Heat Equation on a Half-Axis

Larissa Fardigola and Kateryna Khalina

In the paper, problems of controllability, approximate controllability,
reachability and approximate reachability are studied for the control system
Wy = Wag, w(0,) =u, x>0, ¢t € (0,T), where u € L°>°(0,T) is a control.
It is proved that each end state of this system is approximately reachable in
a given time T, and each its initial state is approximately controllable in a
given time T'. A necessary and sufficient condition for reachability in a given
time T is obtained in terms of solvability a Markov power moment problem.
It is also shown that there is no initial state that is null-controllable in a
given time T'. The results are illustrated by examples.
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1. Introduction

Consider the heat equation on a half-axis

Wi = Wy, z € (0,+00), t € (0,7), (1.1)
controlled by the boundary condition

w(0, ) = u, te (0,7), (1.2)
under the initial condition

w(-,0) = w?, z € (0,4+00), (1.3)
and the steering condition

w(, T) =w", € (0,+00), (1.4)

where T' > 0, u € L*>(0,T) is a control, (%) [0,T] — H©2m =0,1,
wl, wl € H0 L?(0,+c0). Here, for m = 0,1,2

Hg = {gp € L*(0,4+00) | (Vk =0,m " L2(0,+oo))
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A (Vk —0,m =1 oW (0*) = 0)}

with the norm

i 2
1ol = | 2 () (199 00)

k=0

and Hg" = <H6> with the strong norm [|-[|g™ of the adjoint space. We have

12(0, +00) = (HY) " = Hy.

In the paper, we study reachability and controllability problems for the heat
equation on a half-axis. Note that these problems for the heat equation on do-
mains bounded with respect to spatial variables were investigated rather com-
pletely in a number of papers (see, e.g., [3,10,12] and references therein). How-
ever, controlability problems for the heat equation on domains unbounded with
respect to spatial variables have not been fully studied. The problems for this
equation were studied in [1,2,8,9,11]. In particular, in [9], the null-controllability
problem for control system (1.1)-(1.3) with L2?-control (u € L?(0,T)) was studied
in a weighted Sobolev space of negative order. Using similarity variables and de-
veloping the solutions in the Fourier series with respect to the orthonormal basis
{pm }o°_, the authors reduced the control problem to a moment problem

S
/ e™u(s)ds = oy, m=1,00,
0

where ¢ (y) = CrHom—1(y/2)e ¥4, Hop_1 is the Hermit polynomial, ay, is
determined by the Fourier coefficient of the initial state of reduced control prob-
lem, m = 1,00. The solution to the moment problem determines a solution to
the control problem and vice versa. The authors proved that the moment prob-
lem admits an L?-solution iff a,,, grows exponentially as m — oco. In particular,
they proved that if o, = O(e™®) as m — oo for all § > 0, then the initial state
associated with {ay, }%°_; cannot be steered to the origin by L?-control. In [9],
it was also asserted that each initial state is approximately null-controllable in a
given time T > 0 by L?-controls.

In the present paper, we study control system (1.1)—(1.3) in Hé)@ = L?(0,+00)
with L*°-control (v € L*°(0,7")). Note that L*°-controls allow us to consider
initial states and solutions of the control system in the Sobolev space of order
zero in contrast to [9], where the system was studied in a weighted Sobolev space
of negative order as a result of using L?-controls. In Section 3, considering the odd
extension with respect to z of the initial state and the solution to (1.1)-(1.3), we
reduce this system to control system (3.1), (3.2) in spaces H™ of all odd functions
of H™. Further, control system (3.1), (3.2) is considered instead of control system
(1.1)—(1.3). In Section 4, we obtain the necessary and sufficient condition for an
end state W7 to be reachable from the origin by using controls u € L>(0,T)
bounded by a given constant L > 0. Next, the reachability problem is reduced to
an infinite Markov power moment problem (Theorem 4.4). Moreover, it is proved
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that the solutions to the finite Markov power moment problem give us controls
bounded by L and solving the approximate reachability problem (Theorem 4.5).
The result of this theorem is illustrated by Examples 8.1 and 8.2 in Section 8.
In Section 5, we prove that each end state W’ € H? is approximately reachable
from the origin, using controls v € L>(0,7T), in a given time 7" > 0 (Theorem
5.2). To prove this theorem, we develop W7 in Fourier series with respect to
{wTyo o, 0T (@) = Hongr (z/V/2T)e " /UT) = 0, 00. First, for each n = 0, 00,
we ﬁnd a sequence of controls {u]'};°, that solves the approximate reachability
problem for the end state 1.. We use the Fourier transform with respect to

and find these controls from the relation
(ff@bg) (o) = (_1)n+1i\/ﬁ7{2n+1( 2To)e —To? _ \/720/ u(T — &) d€.

Note that v’ — 6 as | — oo in D’ for each n = 0,00 (J is the Dirac distribu-
tion). Then we find the controls uy, N € N solving the approximate reachability
problem

where Uév > 0 is a constant, p = 0, N. The results of this section are illustrated
by Example 8.3 in Section 8. In Section 6, using Theorem 3.1 from [9], we prove
that there is no initial state W0 € HO that is null-controllable in a given time 1" >
0 by using controls u € L*(0,T). In Section 7, from Theorem 5.2 of Section 5 it
immediately follows that each initial state W0 € HO s approximately controllable
to any end state W7 € ﬁo’ using controls u € L*°(0,T), in a given time T > 0.

2. Notation

Introduce the spaces used in the paper. For m = 0, 1,2, denote

H" = {p e I2R) | vk =0,m ™) € I2(R)

with the norm

n 2
el =3 () (169 )

k=0
and H~™ = (H™)" with the strong norm ||-||”"™ of the adjoint space. We have
H°=L*R) = (H°)" =HO.
For n = —2, 2, denote

n/2

w={ve B® | (1+0°) "y e ’®)]

with the norm

el = || (L +0%)" |

L2(R)
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Evidently, H_,, = (H,)".

By F: H 2 — H_5, denote the Fourier transform operator with the domain
H~2. This operator is an extension of the classical Fourier transform operator
which is an isometric isomorphism of L?(R). The extension is given by the formula

(Ff.p)=(f£,F'¢), feH? ¢eH.

This operator is an isometric isomorphism of H™ and H,,, m = —2,2 [5, Chap. 1].
A distribution f € H=2 (or H_5) is said to be odd if {f, o(-)) = —(f, o(—())),
¢ € H? (or Hj respectively).

By H™, denote the subspace of all odd distributions in H", n = —2,2. Evi-
dently, H" is a closed subspace of H", n = —2, 2.

Remark 2.1. Note that, for ¢ € Hg, its odd extension ¢(-) — ¢(—()) belongs

to ﬁm, m = 0,1,2. The converse assertion is true only for m = 0, 1, and it is not
true for m = 2. That is why the odd extension of a distribution f € H @m may

not belong to ﬁ_m, m = 1,2. However, the following theorem holds.

Theorem 2.2 ([4]). Let f € Hyg and there exist f(07) € R. Then f" € HZ?
2

» ©
can be extended to the odd distribution F, and F' € H~“. This distribution is
given by the formula

F=(f() = f(=())" = 2£(0"), (2.1)

where 6 is the Dirac distribution.

3. Preliminary

Consider control problem (1.1)-(1.3). Let W and W (-,t) be the odd exten-
sions of w” and w(-,t) with respect to z, t € [0, T]. If w is a solution to problem
(1.1)—(1.3), then W is a solution to the following problem:

Wi = Waw — 2ud, zeR, te(0,T), (3.1)
W(,0)=w?° z €R,
according to Theorem 2.2. Here W° € H?, (%)WW 0,7] - H™ 2™ m=0,1,
¢ is the Dirac distribution with respect to z. The converse assertion is also true:

if W is a solution to (3.1), (3.2), then its restriction w = W/ is a solution

0,4+00)
o (1.1)=(1.3), and

W(0",t) =u(t) a.e. on[0,T] (3.3)
(see below (3.10)). Evidently, (1.4) holds iff

W, T)=wT (3.4)

holds, where W7 is an odd extension of w?’.
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Consider control problem (3.1), (3.2). Denote V? = FW? and V(-,t) =
FomsoW (-, 1), t € [0,T]. We have

2
Vi = -0’V — \/71'0' u, ceR, te(0,7), (3.5)
T

V(-,0)=V", o cR. (3.6)

Therefore,

Vio,t) =e Voo \fw/ ~t=07 (&) de, o eR, te0,T], (3.7)

is the unique solution to (3.5), (3.6). Since u € L*(0,T), we have

2

2 1—et
‘V(Ua t)’ < |V0(U)’ + \/;HU’HLOO(O,T) T? (OIS Ra te [OvT] (38)

Hence V(-,t) € Hy, t € [0,T]. From (3.7), we obtain

Wz, 1) = 6:1 « WOz \/>/ o ) ge. (3.9)

ac
€

Since for any t € (0,7 the function e\_/% x* WO(z) is odd and continuous, we

obtain

22

e 4t

V2t

«WO%z) =0 asz—0".

Setting u = %, we get

m/t 67% u(t — ) \/isgnx/ e My (t — 3:2) dpu.
NCI e a1/ 2v) e

According to Lebesgue’s dominated convergence theorem, we get

W(0t,t) = ;%u(t) /000 et = u(t) a.e. on [0,T], (3.10)

i.e., (3.3) holds.

Thus control systems (1.1)—(1.3) and (3.1), (3.2) are equivalent. Therefore,
basing on this reason, we will further consider control system (3.1), (3.2) instead
of original system (1.1)—(1.3).

4. Reachability

Definition 4.1. For control system (3.1), (3.2), a state W7 € HY is said to
be reachable from a state W € HY in a given time T > 0 if there exists a control
u € L>(0,T) such that there exists a unique solution to (3.1), (3.2), (3.4).
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By Rp(W9), denote the set of all states W7 € H? reachable from W9 in the
time T
According to (3.9), we have

Ry (W) = {WT e H° | Jv e L®(0,T)

*WO \/> / e 4 3/2 5 ) (41)

Hm

e 4

WT

f

ﬁ

in particular,

Rr(0) = {WTEHO]EIUGLOO 0,7) \/> / 3/2 5}. (4.2)

First, we study R7(0). Denote also

NN
\/;x/o ¢ §<2£>3/2d€>}' -

Evidently, the following theorem holds

RE(0) ={wT € 1°| 30 € 2(0,T) (Jlollyw oz < L

Theorem 4.2. We have
(i) Rr(0) = Ur>oRp(0);
(ii) RE(0) € RE(0), L < L';
(iil) f € RL(0) & Lf € RL(0).
We can obtain the following necessary condition for f to belong to Rk (0).

Theorem 4.3. If WT € RE(0), then for any T* > T,

/0 e W7 (z \dx<L\/> W*‘F (4.4)

Proof. Using (4.3), we have

o g2 2 o 52 T 22 d€
ar= |{WT dr < \/7[// 1TF 42
/0 ear (x)| x < ear x e CREE

\/7 / 3/2 e_x2(é_”%>$dl‘d€

= 1 _ WV VT
_\/ﬂ/o (25)3/2ﬁ_ﬁd5—L =



Reachability and Controllability Problems for the Heat Equation ... 63

Theorem 4.4. Let WT € H® and (4.4) hold. Let

| oo
Wy, = (2nn+1)'/0 22 W (z)dx, n =0, co. (4.5)

Then WT € RE(0) iff there exists v € L>(0,T) such that [0l oo o,y < L and

T
/ §"v(§)dE = wp, n =0, co. (4.6)
0

Proof. According to (4.3), WT € RL(0) iff there exists v € L>(0,T) such

that HU”LOO(O,T) S L and
\[ / ¢ 45 3/2 .
2 T
_\/>Z'U/ e ¢ 2
T 0

We see that V7T (o) is an odd entire function. Therefore,

SO
o (2n + 1)!

o [ e
Since
(VT (2n+1) \/7/ —in)? W (1) de = — \/7( 1)" (2712!_1)!50”, (4.7)

we conclude the assertion of the theorem. O

Denoting VT = FWT, we have

Theorem 4.5. Let WT € H° and (4.4) hold. Let {w,}°°, be defined by
(4.5). If for each N € N there exists vy € L>(0,T) such that |[un|| o) < L
and

T
/ "on(§)dE = wy, n=0,N, (4.8)

then WT € RL( ) (the closure is considered in H°).

Proof. By Wy, denote the solution to problem (3.1), (3.2) with W% = 0 and
u(t) = vn(T —t). Denote also VT = FWT, Vy(-,t) = Forse Wn (-, 1), t € [0,T].
Then Vy is the unique solution to (3.5), (3.6) with V? = 0 and the same wu.
Evidently,

/ ‘VT(O')‘2dO'—)0 as a — 0. (4.9)
a

o0 IQ
WT*:/ eit |W
0

Let T > T*. Put

)| da.
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For n = 0, 0o, we have

(VT)(%) (0) =0, (VT)(2n+1) (0) = (Uni\/z/ooo W (2)da.

Therefore, using the Stirling formula:

V2rntie ™ <nl < en’”%e*", n €N,
we get
‘(VT (2n+1) \/>/ ( 2n+1e 4T*> <€4T* WT( )|) dx
2 1 n
\/7WT* < nt > (415
2n+1)! [ 2T \ 7
< Wi n+1)!
a2n+1 \2n+1
Since
1
2n+1 nt1
‘(VT)( n+1) (0)’ 2n+41 WT* - 57
lim < lim | ————— — =
n—oo (2n +1)! n—oo \ mv/2n + 1 2n+1

we can continue V7T to an odd entire function. Hence,

00 7y (2n+1)
Ty =5 O
14 (J)—Z @n 1 1) o , oeR

n=

21— e To?
'V (o, T )\<\fL
m !0!

Due to (3.8), we get

Hence,

(4.10)

(4.11)

(4.12)

)

(4.13)

(4.14)

(4.15)

(4.16)
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Due to (4.8), we obtain

R U0 R U B Y Ve L
nz%:ﬂ (2n+1)! - /05 N(&)dE| . (4.17)

With regard to (4.12) and using (4.11), we get

(VT)(an) (0) < W ( 2T*e )27?1 < Wi e3/? ( 2T*n >2n2+1
2n+1)! | T av/2n+1\2n+1 “mnlV2n4+1 \2n+1
W e3/2 2n+1
< et <\/T*) .
“ml2n +1
Therefore, for |o| < a,
oo (VT) (2n+1) (O) 63/2WT* 19 < T*a)2n+1
Zﬁ02n+lg Z | —>O&SN—>OO
ot (2n + 1)! T e nlv2n +1
and

m n:
n=N+1

9 fe’e) (_1)n+1 . T . 2 0 a2n+1Tn+1
2| S [ ciond < T3 I

n=N-+1

as N — oo. Taking into account (4.17), we get

Sny(a) = sup |VT(J)—VN(0',T)‘—>0 as N — oc.

o€[—a,al

Therefore,
/ ‘VT(O') — Vn (o, T)}zda <2a(Sy(a))> -0 as N — oc. (4.18)

With regard to (4.9), (4.15) and (4.18), we obtain
W7 (o) = Wi(o,T)||” = |[VT(0) = Vw(o, T)||, = 0 as N = oo,

ie., WT' e RL(0). O

The last theorem is illustrated by the examples in Section 8 (see Examples
8.1 and 8.2).
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5. Approximate reachability
Definition 5.1. For control system (3.1), (3.2), a state W7 € H? is said to

be approximately reachable from a state W" € HY in a given time T' > 0 if wT e
Ry (W), where the closure is considered in the space H°.

In other words, a state wT e HY is approximately reachable from a state
W% € HY in a given time T > 0 iff for each € > 0 there exists u. € L>(0,T)
such that there exists a unique solution W to (3.1), (3.2) with v = wu. and

W, T) - wT|° <e.

Theorem 5.2. Each state WT € HO is approximately reachable from the
origin n a given time T > 0.

22

First we consider an orthogonal basis in L?(R). Let ¢, (z) = Hn(z)e” 2, x €
R, n = 0, 00, where

n (5]
2 d 2 (_1)m —2
Hn(@) = (=1)% <dm> ‘ " mzom!(n—2m)!( @)
is the Hermite polynomial, [-] is the integer part of a real number. It is well
known [7] that
/ U ()Y (2)dx = /72" N!0, 0<m<n<+oo, (5.1)

where d;, is the Kronecker delta, and {t¢,,}72 is an orthogonal basis in L2(R).
It is easy to see that

Fipp, = (—i)" ¢, n =0, co. (5.2)
Define
%Tl(w) = Yon+1 (\/%) ) z€eR, n=0,00,

oL (o) = (FUL) (0) = (1) ivV2T W0, 11(V2T0), o €R, n=0,00.
According to (5.1),we get
WL Ty = (L 9Ty = V2rT22" (20 + Dlomm, 0<m <n < -+oo. (5.3)

Obviously, {¥1}%°, and {{D}f o o are orthogonal bases in HY. Therefore, for f €
HO,

o (o0} /\7—1
F=2 Jutns TE= D futh where fo = g = T

and

SN DD = V2rT Y | fa?22 20 + 1)1, (5.4)
n=0

n=0
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Consider also the operator ®7 : L2(R) — H° with the domain D(®7) = {g €
L>*(R) : suppg C [0,T1]}, acting by the rule

Brg = \/391 (z’a /OO 6“2(T5)g(5)d§> ;g€ D(@r).

1
257\ 4
15790y < llgl 1o, ( ) |

s

Evidently,

Taking into account (3.7), we obtain that W7 € Ry (0) iff

Hun iy C L2(0,T) HWT + <I>TunHO —0 asn — oo. (5.5)
Denote
on(o) = O_2n+16—T02’ s ER,
o/l _ 1 n+l1

Spgl(o') — 0.2n+1e_T02 (eOQ/l) , g c R,

Ly, g e (4,#1) =0
U?(é)z{( "6 ¢ (l ll) T=5T leN, neNU{0}. (5.6)

0, ¢ ¢ 0,57

Then, FOru) = \/gupln Figure 5.1 illustrates the functions v;'. If [ > %, we
Yy Yy Yy

2 13— —
1 —_—

~ j- - - -
7
~|=

i ¢ i T

]2 e : :

_2[3* ;;

(a) y = u}(§) (b) y = u} (€) (c) y = uj(€)

Fig. 5.1: The functions u;'.
have

_o2 (o2 _g2(T—ntl —o?T
l(o)‘ < gHle=To? (U7 jantl =0 (T=230) o ontl =5

Pn
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and ¢!, = ¢, as [ — 0o a.e. on R. According to Lebesgue’s dominated conver-
gence theorem, we get

ngn—gpé 0—>0 asl —o00, n=0,00.

Proof of Theorem 5.2. Let WT € HO. Denote VI = FWT. Then,
o o
W= "wal, VT =3 wair.
n=0 n=0

Due to (5.4), for each € > 0, there exists N € N such that

o0
VorT Y fwa?2 (20 4+ 1)! < €2, (5.7)
n=N-+1

We have

N N n N N

D wntly =i wn ) hyep=i) 0p) wahp,

n=0 n=0 =0 p=0 n=p
where

B (_1)p+122p+1(2T)p+1
P (n—p)!'(2p+1)!
For each p = 0, N, determine lZ],V € N such that

(2n + 1)L. (5.8)

‘ N 73\ 4 £
Yp — Pp < < >
o \Te?) |yT|, VN + 2cosh (2 5T(N + 2))

and denote

N N N

V=Y e Y

p=0 n=p

Then,

4N\ 1/4
Ex (72)

IVTlo VN + 2 cosh (2 9T(N + 2))

V= Vil <e |1+ . (5.9)

where Ey = Zévzo Zivzp ‘wnh;}}. Let us estimate Ey. For p =0, N, we have

N N 3 /N ‘hn|2 2
n 2 2n+1 P
> Jwnhp] < (Z jwn | V21 T2 (2n+1)!> (; TwT22n+1(2n+1)!>

n=p n=p

(s i :
<Vl <n§:; \/27TT22"+1(2n+1)!> ' (5.10)
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Taking into account (5.8), we get

|2

|h 1 <22p+1(2T)p+1)2 (2n + 1)! (5.11)

VorT22 (20 + 1)) V2rT \ @p+ DI ) 22051 ((n — p))2

By using (4.11), we obtain

(2n + 1)! <e\/2n+1<2n+1>2n+1 1 ( e )2“””)

2204 ((n—p)))® — 220w\ e n—p\n-—p
V2nF 1 [ 2041 \2PEL L\
- 27 2(n —p) e '
. on+1 2(n—p)+1 .. . .
Since (m) is increasing with respect to n, we conclude that

. ( 2+ 1 >2("‘p)+1 . < 2n + 1 )2(""’)“ i
n>p 2(n_p) n—o0 2(n—p) '

Therefore,

2p
(2n+1)! < \/2n+1€2p+1 <n+1> e (n+1)2+.

<
22nt1 ((n —p)l)2 — 27 e V27
According to (5.11), we get
’2
(n+1)%F2.

|2 _ ! <22p+1(2T)p+1>2 e
V2rT220 1 (2n + 1)1 — V27T \ (2p+ 1)! V2r
Taking into account (5.10), we have

1

al 1\ Jeawrirptt (& 2
S fwnh] < V7, (M) \E(Qp(ﬂ))l (Z(n+1)2p+2> . (5.12)

n=p =

Since
N 1 N+1 1
vt [ @1,
n=p p

we obtain

N 1
" 1 \* [e2?rtlor)pt!
D e O B e

eyt (2 2T(N+2)>2p+1
vl (55 ) gV T2
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Hence,

( 9T(N + 2))
(2p+1)!

o< v, (12) v 93

1
Te*\*
=1V, (2) VN +2cosh (2y/2T(N +2)).
T
Taking into account (5.9), we conclude that

VT = V]|, < 2e (5.13)

Put uy = —\/gzgzo u%v Ziv:p wnhy. With regard to (5.13) and (5.5), we get

W7 + &y’ < 2. 0

Remark 5.3. The controls

N N
T
_\/gz ue D wnh, NEN, (5.14)
p=0 n=p

found in the proof of Theorem 5.2 solve the approximate reachability problem for
system (3.1), (3.2). Here upy is defined by (5.6), hyy is defined by (5.8) and wp,
P

n = 0, 00, are the coefficients of decomposition of W7 with respect to the basis

{¥n}io

Corollary 5.4. Each state wT e HO is approxzimately reachable from any
state W° € H? in a given time T > 0.

6. Controllability

Definition 6.1. For control system (3.1), (3.2), a state W° € H? is said to
be null-controllable in a given time T > 0 if 0 € Rp(W?).

In other words, the state W0 € HO is null-controllable in a given time T > 0
iff there exists u € L°°(0,T") such that there exists a unique solution W to (3.1),
(3.2) and W(-,T) = 0.

Theorem 6.2. If a state WO ¢ HO is null-controllable in a time T > 0, then
Wb =o.

Proof. Find u € L*(0,T) such that there exists a unique solution W to
(3.1), (3.2) and W(-,T) = 0. Denote V? = FWY V(-,t) = Foy o W(-, 1), t €
[0, 7. Taking into account (3.7), we obtain

\[w/ ¢)d¢, o eR. (6.1)
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Let T* > T be fixed. Then,

zm

*

Z/ o (€u(€) d—m

HW* (5 1)
where
U = 2 / T V)T () do, (6.2)
0
= 2i\/§/00 Geg"zwn* (o) do. (6.3)
T Jo
Therefore,
T
/0 pm (§)u(§) d§ = v, m=0,00. (6.4)

Let m = 0,00 be fixed. We have (see (5.8))

2 m (o) .
¢) = _2\/72]1?/ 2P +2,—(T*=€)a® 4
™ 0
p=0

V2T I~ (—1)P (2T*§>1’

(T~ €372 2 (m — p)lp! \T"

(2m + 1) 22T [(T*+&\™
g ()

=(2m+1)!

= (-1

T*+&
T*—¢

Y A T 4 ¢ T*(e* — 1) e
/o(T*—£)3/2<T*—£> DE=y5 / ( 1 ) 11

where T = In <TI+$> Denoting U*(s) = u (T*e(fiil)) \/::H, s € (0,T), vi, =
(=1)™m!

— U,
2T (2m+1)1 " m

Replacing

by e®, we get

=0, 00 and taking into account (6.4), (6.5), we obtain

T
/ U*(s)e™ =v;, m=0,o00. (6.6)
0

Since
vl < [Vl [l

0’ m:07007

then, taking into account (5.3) and the Stirling formula (4.11), we obtain

as m — oQ.

. . 1/4 9m— 1/4m' 72\ HVOHO

Therefore, for all § > 0 there exists Cs > 0 such that

Vi < Cse™, m =0, 00. (6.7)
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We have

T . 9 B T 9 T*_|_£ o T T*+£
[ e as= [T uor gt de < (lalieon) [ e e de
T

— (lullwom) (omg -~ (14 TMJJ)‘ (65)

Thus U* € L?(0,T,) and (6.6), (6. 7) hold. Due to [9, Theorem 3.1, b)], we obtain
* =0, m=0,00,ie., VO =W = O

7. Approximate controllability

Definition 7.1. For control system (3.1), (3.2), a state W € HO is said to
be approximately controllable to a target state W’ € H in a given time 7" > 0
if WT € Rp(W09), where the closure is considered in the space H°.

In other words, the state WO e HO is approximately controllable to a target
state WT € HC in a given time T > 0 iff for each ¢ > 0 there exists u. €
L*°(0,T) such that there exists a unique solution W to (3.1), (3.2) with u = u.

and HW(,T) — WTHO <e.
Taking into account Theorem 5.2, we get the following theorem.

Theorem 7.2. FEach state WO e HO is approximately controllable to any
target state WT € HY in a given time T > 0.

8. Examples

The following two examples illustrate the results of Theorem 4.5.

Example 8.1. Let T = 1, W (z) = \[:c fo ﬁ Let us find the

controls un (&) = vy (T —€), € € [0, T] where vy is the solution to (4.8) for N =
2P —1, P € N. We use the algorithm given in [6] to find vy in the form

e

(8.1)

Il
o
Y

o (€) = 1 if € € [vap_1,v2p), p=1,
0 if & € [vop, vapti1], P

Y

where 0 = 140} S %1 S %] S 123 S S Vop_1 S Vop S Vop+1 = T. By WN, we
denote the value at ¢ = T of the solution to (3.1), (3.2) with the control u = ux.
The influence of the controls uy, N = 3,5,7,15, on the end states of solutions
Wy is given in Figure 8.1.

Example 8.2. Let T = 1, W (z \/> fo e 4€ (25)3/2d§ Let us find the
controls un(§) = vy (T = &), £ € [0, T] where vy is the solution to (4.8) for N =
2P —1, P € N. We use the algorithm given in [6] to find vy in the form (8.1). By
W, we denote the value at t = T of the solution to (3.1), (3.2) with the control
u = uy. The influence of the controls uy, N = 3,5,7,15, on the end states of
solutions Wy is given in Figure 8.2.
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rONV=O
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0.2
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01 0.005
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-0.005

(a) The influence of the control uy on (b) The difference W —Wy in the cases:
the end state Wy in the cases: ON=3 @®@N=5 @ N =r1,
@Qu=0 ON=3 @N =5, @ N = 15.

@N=7 @ N =15.

Fig. 8.1: The influence of the control uy on the end state of the solution to (3.1),
(3.2) with u = uy and W1 (z) \/> fo e 45 251/2'

0.8 4 —

0.6
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0.2

0
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0 02 04 06 08 1 12 14 18 0 02 04 06 08 1 12 14 16

(a) The influence of the control uy on  (b) The difference W7 —Wy in the cases:
the end state Wy in the cases: ODN=3 @®N=5 @ N=r1,
@Qu=0 ON=3 @N =5, @ N = 15.

@N=17 @ N =15.

Fig. 8.2: The influence of the control uy on the end state of the solution to (3.1),
z2
(3.2) with u = uy and W7 (z f fo a€ 253/2 dg.

The following example illustrates the result of Theorem 5.2.

Example 8.3. Let W7 (z) = 2\[
problem for system (3.1), (3.2) with W0 = 0. Denote VT = JFWT. Then VT (o) =
—417 \/gefie_T‘72 sinh v/2To. Since VT = > wnig, then it is easy to see that
VI(o) = ie~ T >olo o2rtl > mepwnhy, where hy is defined by (5.8) and wy, =

\ﬁ "
w2217 (2n+1)!"

. Consider the reachability
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For each NV € N, denote gIJ,V = zg:p wphy, . Denote also

—1297)9% ~To? Z N o2+
N o2/l p+1
= Zng pyo Z ot (632/11) -

=0

Then,
v v, < v =il + v = v 52)

HVTVNHOZ\/§< 21(227122%> \/2 22n+1(2n+1)>
2

< V3 T 1 cosh% (8.3)
. 92NT3(2N + 3)1 '
We have
N
v = v, = Xl o - ] 34
p=0
Substituting h, and w;, in gIJ,V , we obtain
o] = \/f 2?5 (—1)m+P+1920+1 (2P (27 + 1))
1= 22n(2n + 1)!(n — p)!(2p + 1)
2 TP+ | L (—1)np 2 (27)P+
:2\/>( ) 3 (=1) 32\[( -t (8.5)
T (2p+1)! = 22(n=p) (n — p)! T (2p+1)!

Evidently, the following three estimates hold:

(y+ 1P =1 < (p+1)(y+ 1Py,  y>0,
P 1 P 1 1

€ < e, c — 1< —z€®, z> 0.
z z 2

Therefore,

02/l71 P+l 02/l71 p az/lil

e e e p+1 5, @ty o
— -1/ < 1 —1] < .
( o2/l ) =+ | —77 ey EETE A

From here, it follows that

oo a2/l p+l
! _ opt1 —To? | [ €7 — 1
Hgop—gopHO— 2/0 oPTr e < =y ) —1|| do
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1
< (p+1)* [ o 2+3 =0 (T—(p+1)/1) 2da 2
- 202
0
p+1 2 [e'e) a2 2
< (( 212) /0 (02p+3e iT ) da> , (8.6)

2
2p+36—T02/2 _ (2p+3>p+3/ e—(2p+3)
- T

(NI

. Since max,sg o /2. then we get

1
2p+3 0o 2
1 (p + 1)2 2p+3 _(2 +3) / _To?
_ < P d
pr ‘p”Ho—< 22 T , &Y
< (% Tp41o0t1/2 (4 o\ P2
-\ T [ Tp+3/2 e ’

From here, using the Stirling formula (4.11), we obtain

eptl T
1fl<4

1
1 \%p+22rt/2
b= e, < (5r7) (b+2) (5.7)

l Tp+3/2

According to (8.5), (8.7) and continuing (8.4), we have

N 1
2 (2Pt 1 /1 \1\p+220Ft1/2
Vi - < 2\/> 2)!
H e O_Z_: rep+ ¢\ 2T [ P2
A }liQQp\/p—l—2(p+2)! -
1 \T373e (2p+1)! ' '
From (8.2), taking into account (8.3) and (8.8), we get
HVT el H <R o\ ¥ cosh%
Nlo = T 22N+3(2N + 3)!
11 1 N 9
4_74 1 4Z2p\/p+2(p+2)! (8.9)
[ \T3nm3e (2p+1)! ‘ ’
For the last sum, we have
2P T 2(p+2)! _ o (0 + 1) p+2)3/2
> Z < 26 + 8e.
p=0 (2p+ 1)t p=

Therefore, (8.9) takes the form

cosh 1 11 1 i 1
2 =S
2 —— ] —(26 + Ke).
\/22N+3(2N—i—3)! te (T37T36> l( +8¢)

=

Jvr =il < v ()
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Due to Theorem (5.2), we obtain W}, = —®puy. With regard to (5.14), we
get

l 2

l — g T UN(g) e*ﬁ
Wil = /0(2(T£)>3/2 e

where ulN = Z;])V:O gf,v uf . Some estimates for HWT — W}VHO are given in Table

8.1 and the influence of the control u}; on the end state W¥ of solution to (3.1),
(3.2) with the control u = ub, and the target state W7 is shown in Figure 8.3.

&1 £9 e
N=1,1=10 0.0433 | 2.1662 | 2.2095
N =1,1=100 | 0.0433 | 0.2167 | 0.2600
N =2,1=100 | 0.0034 | 0.3588 | 0.3622
N =2,1=1000 | 0.0034 | 0.0359 | 0.0393

1 1
Table 8.1: The estimates for HWT — W}VHO, g1 =8 (%)4 #&3%)!, €9 =

s i N 220\ /pF2(p+2)!
24 (T31r3e)4 %Zp:O %, € =¢€1+¢e2 (see (8.9)).

0.06

1 2

0.04 3

0.02
0.8

o —

06 -0.02
-0.04
04 -0.06
-0.08
02
0.1

0 -0.12

-0.14
0 1 2 3 4 5 6 0 1 2 3 4 5 6

a) The given W7 (). b) The difference W7 — W}, in the cases:
N

ON=1,1=10; @ N =1, 1 = 100;

@ N=2,1=100; @ N =2, =1000.

Fig. 8.3: The influence of the control uf; on the end state W}, of the solution to

(I)2
(3.1), (3.2) with u = ul; and W7 (z) = \/%eie_ﬁ sin \/%
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IIpobGyieMu HOCS>KHOCTI Ta KEPpOBAHOCTI AJisi PiBHAHHS
TeIJIONPOBiJHOCTI Ha miBoCi

Larissa Fardigola and Kateryna Khalina

Y pobori mocitiizKeHo TpobiieMy KepOBaHOCT, HAOIMKEHOI KEPOBAHOCT1,
JIOCSIPKHOCTI Ta, HADJIMKEHOT JOCSIKHOCTI JIJIsT KEPOBAHOI CUCTEMU Wi = Wgy,
w(0,-) =u,x>0,t € (0,T), ne u e L>*(0,T) e xkepypanusim. J{oBeieHO, 1110
KOXKHHUI KIiHIEBHUI CTaH Ii€l CUCTeMU € HAOJMXKEHO JOCSKHUM 3a 3 aHMi
yac 1. OuepkaHo HeOOXiIHY 1 JOCTATHIO YMOBY JOCSKHOCTI 3a 3aJaHuit
vac T' B TepMmiHax pO3B’sI3HOCTI cTereHneBol mpobyiemu MOMeHTIB MapkoBsa.
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Ilokazano TakoK, IO He iCHY€ MOYATKOBUX JaHUX, dKi € 0-KepoBaHUMU 3a
zaganunit gac T'. PesyapraTu mpoigocTpoBaHO MPUKIIAIAMI.

KirrowoBi ciioBa: piBHSIHHSI TEIJIONPOBIIHOCTI, KEPOBaHICTh, HaOJ/IMKEHA
KEPOBaHICTh, JOCIKHICTb, HAOJIMKEHA JJOCIKHICTD, CTEIIeHEBa, IIPO0JIeMa, MO-
MeHTiB Mapkosa.
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