doi: https://doi.org/10.15407/mag15.01.122

Invariant Subspaces on KPC-Hypergroups

László Székelyhidi and Seyyed Mohammad Tabatabaie

In this paper, we study translation invariant function spaces and spectral analysis on KPC-hypergroups and describe a correspondence between ideals in the algebra of compactly supported measures and varieties of continuous functions on a KPC-hypergroup.

Key words: DJS-hypergroup, KPC-hypergroup, spectral analysis, spectral synthesis.

Mathematical Subject Classification 2010: 43A62, 43A45, 39A70.

1. Introduction and preliminaries

Hypergroups, as extensions of locally compact groups, were introduced in a series of papers by Dunkl [3], Jewett [4], and Spector [6] in 70's (we refer to this concept as DJS-hypergroup). For more details about DJS-hypergroups refer to [1]. In 2010, Kalyuzhnyi, Podkolzin, and Chapovsky introduced new axioms for hypergroups which are extensions of DJS-hypergroups and also generalized normal hypercomplex systems [5] (see also [13–15]). We refer to this notion as a KPC-hypergroup. They studied harmonic analysis on KPC-hypergroups and showed that there is an example of a compact KPC-hypergroup related to the generalized Tchebycheff polynomials, which is not a DJS-hypergroup [5]. In this paper, we initiate spectral analysis on KPC-hypergroups and give a correspondence between ideals and invariant subspaces of $\mathcal{C}(Q)$, where Q is a KPC-hypergroup. Spectral analysis and spectral synthesis were studied on locally compact groups and DJS-hypergroups by Székelyhidi in [7–9,11]. As the main result, we give a necessary and sufficient condition for the presence of spectral analysis of a given variety. Spectral synthesis problems on KPC-hypergroups will be treated in a subsequent paper.

Let Q be a locally compact Hausdorff space. We denote by $\mathcal{C}(Q)$ the space of all continuous complex-valued functions on Q, and by $\mathcal{M}_c(Q)$ the space of all compactly supported complex Radon measures on Q. For the sake of simplicity, functions in $\mathcal{C}(Q)$ will be called functions, and measures in $\mathcal{M}_c(Q)$ will be called measures.

Let Δ be a function from $\mathcal{C}(Q)$ into $\mathcal{C}(Q \times Q)$, $f, g \in \mathcal{C}(Q)$ and $p, q, r \in Q$. We write

$$[(\Delta \times \mathrm{id}) \circ \Delta](f)(p,q,r) := \Delta(\Delta f(p,\cdot))(q,r),$$

[©] László Székelyhidi and Seyyed Mohammad Tabatabaie, 2019

$$[(\mathrm{id} \times \Delta) \circ \Delta](f)(p,q,r) := \Delta(\Delta f(\cdot,q))(p,r)$$

and

$$(f \otimes g)(p,q) := f(p)g(q).$$

Definition 1.1. Let Q be a locally compact Hausdorff space with an involutive homeomorphism $\star: Q \longrightarrow Q$ satisfying the following conditions:

- (H₁) there exists an element $e \in Q$ such that $e^* = e$;
- (H_2) there exists a \mathbb{C} -linear mapping $\Delta: \mathcal{C}(Q) \to \mathcal{C}(Q \times Q)$ such that
 - (i) Δ is coassociative, that is,

$$(\Delta \times id) \circ \Delta = (id \times \Delta) \circ \Delta; \tag{1.1}$$

- (ii) Δ is positive, that is, for each non-negative function f, the function Δf is non-negative;
- (iii) Δ preserves the identity, that is, $(\Delta 1)(p,q) = 1$ for all $p,q \in Q$;
- (iv) for all compactly supported functions f, g, the functions $(1 \otimes f) \cdot (\Delta g)$ and $(f \otimes 1) \cdot (\Delta g)$ are compactly supported;
- (H₃) we have $(\Delta f)(e, p) = (\Delta f)(p, e) = f(p)$, for all $f \in \mathcal{C}(Q)$ and p in Q;
- (H_4) the function \check{f} defined by $\check{f}(q) = f(q^*)$ for each function f satisfies

$$(\Delta \check{f})(p,q) = (\Delta f)(q^{\star}, p^{\star}); \tag{1.2}$$

 (H_5) there exists a non-zero positive Radon measure λ with support Q such that

$$\int_{O} (\Delta f)(p,q)g(q)d\lambda(q) = \int_{O} f(q)(\Delta g)(p^{\star},q)d\lambda(q)$$
 (1.3)

for each p in Q, whenever f, g are functions and at least one of them is compactly supported; the measure λ will be called a left Haar measure on Q.

Then (Q, \star, e, Δ, m) , or simply Q, is called a locally compact KPC-hypergroup.

A KPC-hypergroup Q is called cocommutative if for all $f \in \mathcal{C}(Q)$ and all $p, q \in Q$, $\Delta f(p, q) = \Delta f(q, p)$. Throughout this paper Q always denotes a locally compact cocommutative KPC-hypergroup.

Definition 1.2. For measures μ, ν , the convolution $\mu * \nu$ is defined by

$$(\mu * \nu)(f) = \int_{Q} \int_{Q} (\Delta f)(p, q) d\mu(p) d\nu(q), \tag{1.4}$$

whenever f is a function in $\mathcal{C}(Q)$.

2. Varieties and ideals

In the sequel, the space C(Q) is equipped with the topology of compact convergence. This topology is defined by the family of seminorms (p_C) , where C runs through the family of all compact subsets of Q, and for each $f \in C(Q)$, $p_C(f)$ is the uniform norm of the restriction of f to C. This family of seminorms is separating (by Tietze's Extension Theorem [2, p. 87]), and so the generated topology is a Hausdorff topology on C(Q), hence the latter is a locally convex topological vector space. In the topology of compact convergence, the topological dual of C(Q) (equipped with this topology) is the space $\mathcal{M}_c(Q)$, and if $\mathcal{M}_c(Q)$ is equipped with the weak*-topology (the topology induced by C(Q)), then its topological dual identifies with C(Q).

Definition 2.1. For each x, y in Q, the translate of a function f by y is defined by $(\tau_y f)(x) := \Delta f(x, y)$.

By Definition 1.1, we have $\tau_e f(x) = \Delta f(x, e) = f(x)$. So, $\tau_e = I$, the identity operator on $\mathcal{C}(Q)$.

Definition 2.2. Let Q be a KPC-hypergroup. For each measure μ and function f, we define

$$(\mu * f)(x) := \int_{Q} \Delta f(x, y^{\star}) d\mu(y)$$
 (2.1)

where x is in Q. Clearly, $\mu * f$ and $f * \mu$ are functions. In particular, we have $\tau_y f(x) = (\delta_{y^*} * f)(x)$.

It is easy to check that $\mathcal{M}_c(Q)$ is a (topological) unital algebra and $\mathcal{C}(Q)$ is a (topological) vector module over $\mathcal{M}_c(Q)$.

Definition 2.3. A closed linear subspace E of C(Q) is called a variety on Q if for all f in E and g in Q the translate $\tau_g f$ is in E. The smallest variety containing a given function f is denoted by $\tau(f)$, and it is called the variety generated by f or the variety of f. Clearly, the functions which are non-zero scalar multiples, or translates of each other generate the same variety.

For any set V in $\mathcal{C}(Q)$, its orthogonal complement V^{\perp} in $M_c(Q)$ is the set of all measures in $\mathcal{M}_c(Q)$ which vanish on V. Clearly, V^{\perp} is a closed linear subspace of $\mathcal{M}_c(Q)$. We have also the dual correspondence: the orthogonal complement of any subset I of $\mathcal{M}_c(Q)$ is I^{\perp} , the set of all functions in $\mathcal{C}(Q)$, which belong to the kernel of all linear functionals in I. Clearly, it is a closed linear subspace of $\mathcal{C}(Q)$. By the Hahn–Banach theorem, we have the obvious relations $V = V^{\perp \perp}$ and also $I = I^{\perp \perp}$ for any closed linear subspace V of $\mathcal{C}(Q)$ and for any closed linear subspace I of $\mathcal{M}_c(Q)$. In the case of varieties, the annihilators can be characterized.

Proposition 2.4. Let Q be a cocommutative KPC-hypergroup, V be a variety in C(Q) and I be a closed ideal in $\mathcal{M}_c(Q)$. Then V^{\perp} is a closed ideal in $\mathcal{M}_c(Q)$ and I^{\perp} is a variety in C(Q).

Proof. Let V be a variety in C(Q), $f \in V$, $\mu \in V^{\perp}$, and $\nu \in \mathcal{M}_c(Q)$. Then

$$(\mu * \nu)(f) = \int_Q \int_Q \Delta f(x, y) d\mu(x) d\nu(y) = \int_Q \left(\int_Q \tau_y f(x) d\mu(x) \right) d\nu(y) = 0.$$

Hence, $\mu * \nu \in V^{\perp}$, and V^{\perp} is a closed ideal in $\mathcal{M}_c(Q)$. Now, let I be a closed ideal in $\mathcal{M}_c(Q)$. Then for any $\mu \in I$, $f \in I^{\perp}$ and $\nu \in \mathcal{M}_c(Q)$, we have

$$0 = \int_{Q} f d(\mu * \nu) = \int_{Q} \int_{Q} \Delta f(x, y) d\mu(x) d\nu(y)$$
$$= \int_{Q} \mu(\tau_{y} f) d\nu(y),$$

that is, the function $y \mapsto \mu(\tau_y f)$ annihilates $\mathcal{M}_c(Q)$. Therefore, by Hahn-Banach theorem, for all $y \in Q$, $\tau_y f$ is in I^{\perp} and so I^{\perp} is a variety in $\mathcal{C}(Q)$.

In particular, we have a one-to-one correspondence between the closed ideals of $\mathcal{M}_c(Q)$ and the closed translation invariant subspaces of $\mathcal{C}(Q)$.

Another important concept is the annihilator.

Definition 2.5. Given a subset V in $\mathcal{C}(Q)$, its annihilator Ann V is the set of all measures in $\mathcal{M}_c(Q)$ satisfying $\mu * f = 0$ for each f in V. The dual concept is the annihilator Ann I of a subset I in $\mathcal{M}_c(Q)$, which is the set of all functions f satisfying $\mu * f = 0$ for each μ in I.

It is obvious that Ann V is a closed linear subspace in $\mathcal{M}_c(Q)$ and Ann I is a closed linear subspace in $\mathcal{C}(Q)$. With the notation

$$\check{V}=\{\check{f}:\,f\in V\},\ \check{I}=\{\check{\mu}:\ \mu\in I\}$$

we have $\operatorname{Ann} V = (\check{V})^{\perp}$ and $\operatorname{Ann} I = (\check{I})^{\perp}$. Here $\check{\mu}$ is the measure defined by $\check{\mu}(f) = \mu(\check{f})$ whenever μ is a measure and f is a function.

Proposition 2.6. For each variety V in C(Q), its annihilator $\operatorname{Ann} V$ is a closed ideal in $\mathcal{M}_c(Q)$, and $\operatorname{Ann} V = (\check{V})^{\perp}$. Similarly, for each ideal I in $\mathcal{M}_c(Q)$, its annihilator $\operatorname{Ann} I$ is a variety in C(Q), and $\operatorname{Ann} I = (\check{I})^{\perp}$.

Proof. Let $\nu \in \mathcal{M}_c(Q)$ and $\mu \in \operatorname{Ann} V$. Then for each $f \in V$, $(\mu * \nu) * f = \nu * (\mu * f) = 0$. Hence, Ann V is a closed ideal of $\mathcal{M}_c(Q)$. Let $\mu \in \operatorname{Ann} V$. For each $f \in V$, we have

$$\mu(\check{f}) = \int_{Q} \check{f}(x) d\mu(x) = \int_{Q} \Delta f(x^{\star}, e) d\mu(x) = \int_{Q} \Delta f(e, x^{\star}) d\mu(x) = (\mu * f)(e) = 0,$$

and so $\mu \in (\check{V})^{\perp}$. Conversely, let $\mu \in (\check{V})^{\perp}$, $f \in V$ and $x \in Q$. Then

$$(\mu * f)(x) = \int_{Q} \Delta f(x, y^{\star}) d\mu(y) = \int_{Q} (\tau_{x} f)(y) d\mu(y) = \mu((\tau_{x} f)) = 0$$

since $\tau_x f \in V$. The second part is proved in a similar way.

Proposition 2.7. For each variety $V \subseteq W$ in C(Q) we have $\operatorname{Ann} V \supseteq \operatorname{Ann} W$, and for each ideal $I \subseteq J$ in $\mathcal{M}_c(Q)$ we have $\operatorname{Ann} I \supseteq \operatorname{Ann} J$. In addition, we have $\operatorname{Ann}(\operatorname{Ann} V) = V$ and $\operatorname{Ann}(\operatorname{Ann} I) \supseteq I$. In particular, $V \neq W$ implies $\operatorname{Ann} V \neq \operatorname{Ann} W$.

Proof. The proof is straightforward.

Corollary 2.8. The varieties in C(Q) are exactly the closed vector submodules of the vector module C(Q).

Proof. Clearly, every closed vector submodule is a variety. Conversely, we have to show that if f is in V, then $\mu * f$ is in $V = \operatorname{Ann} \operatorname{Ann} V$ for each μ in $\mathcal{M}_c(Q)$, that is, $\mu * f$ is annihilated by any element of $\operatorname{Ann} V$. Let ν be in $\operatorname{Ann} V$. As $\operatorname{Ann} V$ is an ideal, we have $\nu * \mu$ is in $\operatorname{Ann} V$, hence

$$\nu * (\mu * f) = (\nu * \mu) * f = 0,$$

that is, $\mu * f$ is in Ann Ann V.

Proposition 2.9. Let $(V_i)_{i\in I}$ be a family of varieties in C(Q), and $(I_i)_{i\in I}$ be a family of closed ideals in $\mathcal{M}_c(Q)$. Then

$$\left(\sum_{i\in I} V_i\right)^{\perp} = \bigcap_{i\in I} V_i^{\perp}, \qquad \left(\sum_{i\in I} I_i\right)^{\perp} = \bigcap_{i\in I} I_i^{\perp}.$$

Proof. Let $\mu \in \left(\sum_{i \in I} V_i\right)^{\perp}$. Then for each $i \in I$ we have $\mu \in V_i^{\perp}$ since $V_i \subseteq \sum_{i \in I} V_i$, and so $\mu \in \bigcap_{i \in I} V_i^{\perp}$. Conversely, let $\mu \in \bigcap_{i \in I} V_i^{\perp}$. Then μ annihilates any finite sum of the elements in $\bigcup_{i \in I} V_i$. So, by continuity, we have $\mu \in \left(\sum_{i \in I} V_i\right)^{\perp}$.

Now let f be in $(\sum_{i\in I} I_i)^{\perp}$. Then f is annihilated by finite sums of measures taken from the I_i 's. Hence, in particular, f is annihilated by each I_i , hence f is in I_i^{\perp} for each i and thus f is in $\bigcap_{i\in I} I_i^{\perp}$. The reverse inclusion is equally obvious.

Proposition 2.10. Let $(V_i)_{i\in I}$ be a family of varieties in C(Q), and $(I_i)_{i\in I}$ be a family of closed ideals in $\mathcal{M}_c(Q)$. Then

$$\left(\bigcap_{i\in I} V_i\right)^{\perp} = \sum_{i\in I} V_i^{\perp}, \qquad \left(\bigcap_{i\in I} I_i\right)^{\perp} = \sum_{i\in I} I_i^{\perp}.$$

Proof. The statements are immediate consequences of the previous result and of the relations $V^{\perp\perp} = V$ and $I^{\perp\perp} = I$ for each variety V and closed ideal I. \square

We note that, by the relations $\operatorname{Ann} V = (\check{V})^{\perp}$ and $\operatorname{Ann} I = (\check{I})^{\perp}$, we have similar statements about the annihilators of sums and intersections.

Definition 2.11. A variety $V \subseteq \mathcal{C}(Q)$ is called *decomposable* if there are two proper subvarieties whose algebraic sum is dense in V. Otherwise it is called *indecomposable*.

We recall that an ideal in a commutative ring is called *irreducible* if it is not the intersection of two ideals different from it.

Corollary 2.12. A variety V is indecomposable if and only if V^{\perp} is irreducible.

Proof. This is a consequence of Proposition 2.9.

3. Exponentials and spectral analysis

Definition 3.1. A non-zero function f is called an exponential (on Q) if for all $p, q \in Q$ we have

$$\Delta f(p,q) = f(p)f(q).$$

Proposition 3.2. A variety on a KPC-hypergroup is one-dimensional if and only if it is generated by an exponential.

Proof. If u is an exponential function, then, by definition, every $\tau_y u$ is a constant multiple of u, Hence, all $\tau_y u$'s form a one-dimensional vector space in $\mathcal{C}(Q)$ and thus $\tau(u)$ is one-dimensional. Conversely, by assumption, every $\tau_y u$ is a constant multiple of u, that is, for each y in Q there is a complex number $\alpha(y)$ such that

$$\Delta u(x,y) = \alpha(y)u(x)$$

for each x in Q. It follows that $u(y) = \Delta u(e, y) = u(e)\alpha(y)$. Hence,

$$\Delta \alpha(x, y) = \alpha(y)\alpha(x),$$

and thus $\alpha \neq 0$ is an exponential. On the other hand, α and u generate the same variety, hence $\tau(u)$ is generated by the exponential α .

Definition 3.3. Let f be a function, and let y be in Q. Then the modified difference $D_{f;y}$ is defined by

$$D_{f;y} := \delta_{y^*} - f(y)\delta_e.$$

For any positive integer n and $y_1, y_2, \ldots, y_n \in Q$, we write

$$D_{f;y_1,y_2,...,y_n} = \prod_{i=1}^n [\delta_{y_i^*} - f(y_i)\delta_e].$$

Theorem 3.4. Let f be a function on Q, and M_f denote the closed ideal generated by all modified differences $D_{f;y}$ where $y \in Q$. Then the followings are equivalent:

(1) f is an exponential,

- (2) the ideal M_f is proper and f(e) = 1,
- (3) the ideal M_f is maximal and f(e) = 1,
- (4) $M_f = \operatorname{Ann} \tau(f)$ and f(e) = 1.

Proof. (1) \Rightarrow (2): Let f be an exponential. Then $f(e)f(e) = \Delta f(e,e) = f(e)$. Since $f \neq 0$, we have f(e) = 1. For each $y \in Q$,

$$(D_{f;y} * f)(x) = \Delta f(x,y) - f(y)f(x) = 0.$$

It follows that f is in Ann M_f , hence Ann $M_f \neq 0$, and, by $M_f = \text{Ann Ann } M_f$, M_f is proper.

(2) \Rightarrow (3): Let M_f be a proper ideal and f(e) = 1. Then there is $g \neq 0$ in Ann M_f , and we have

$$\Delta g(x,y) - f(y)g(x) = D_{f:y} * g(x) = 0,$$

where $x, y \in Q$. By Definition 1.1, g = g(e)f. It follows that Ann M_f is one-dimensional, hence $M_f = \operatorname{Ann} \operatorname{Ann} M_f$ is a maximal ideal.

(3) \Rightarrow (4): Let M_f be a maximal ideal and f(e) = 1. If $g \neq 0$ is in Ann M_f , then, in the same way as above, we have g = g(e)f. In particular, $g(e) \neq 0$, hence $f \in \text{Ann } M_f$. Therefore $\tau(f) \subseteq \text{Ann } M_f$, and $M_f = \text{Ann Ann } M_f \subseteq \text{Ann } \tau(f)$. But Ann $\tau(f)$ is a proper ideal and, by the maximality of M_f , we have $M_f = \text{Ann } \tau(f)$.

(4) \Rightarrow (1): Let $M_f = \operatorname{Ann} \tau(f)$ and f(e) = 1. We have $f \in \tau(f) = \operatorname{Ann} M_f$. Then for each $x, y \in Q$,

$$0 = D_{f;y} * f(x) = \Delta f(x,y) - f(y)f(x),$$

that is, f is an exponential.

Definition 3.5. The maximal ideal M in $\mathcal{M}_c(Q)$ is called an exponential maximal ideal if $M = M_m$ for some exponential $m: Q \to \mathbb{C}$.

Theorem 3.6. The maximal ideal M in $\mathcal{M}_c(Q)$ is exponential if and only if the residue ring $\mathcal{M}_c(Q)/M$ is topologically isomorphic to the complex field.

Proof. Suppose that M is a maximal ideal in $\mathcal{M}_c(Q)$, and $\Phi: \mathcal{M}_c(Q)/M \to \mathbb{C}$ is a topological isomorphism. Then the mapping $\Psi: \mathcal{M}_c(Q) \to \mathbb{C}$, defined by $\Psi(\mu) := \Phi(\mu + M)$ for $\mu \in \mathcal{M}_c(Q)$, is a multiplicative linear functional on $\mathcal{M}_c(Q)$. Since $\mathcal{M}_c(Q)^* = C(Q)$, there exists a function $f \in \mathcal{C}(Q)$ such that for all $\mu \in \mathcal{M}_c(Q)$, $\Psi(\mu) = \mu(f)$. In particular, for each $x \in Q$, we have $\Psi(\delta_{x^*}) = f(x)$. Hence $f(e) = \Psi(\delta_e) = 1$ and for each $x, y \in Q$,

$$\Delta f(x,y) = \Psi((\delta_x * \delta_y)) = \Psi(\delta_y * \delta_x *) = \Psi(\delta_y *) \Psi(\delta_x *) = f(y)f(x).$$

This implies that f is an exponential. For each $y \in Q$, we have

$$\Psi(\delta_{y^*} - f(y)\delta_e) = \Psi(\delta_{y^*}) + f(y)\Psi(\delta_e) = f(y) - f(y) = 0.$$

Thus, for each $y \in Q$, $D_{f;y}$ is in $\ker \Psi = M$. Therefore, $M_f \subseteq M$, and since M is a maximal ideal, we have $M_f = M$, i.e., M is an exponential maximal ideal. Conversely, let $M = M_f$ for some exponential function f. Then the mapping $\Psi : \mathcal{M}_c(Q) \to \mathbb{C}$ defined by $\Psi(\mu) := \mu(\check{f})$ is a multiplicative linear functional with $\ker \Psi = M$. Therefore $\mathcal{M}_c(Q)/M$ is topologically isomorphic to \mathbb{C} .

Definition 3.7. Let Q be a cocommutative KPC-hypergroup. We say that spectral analysis holds for a variety E on Q if every non-zero subvariety of E contains an exponential.

Theorem 3.8. Spectral analysis holds for the variety E if and only if every maximal ideal containing Ann E is exponential, or equivalently, every maximal ideal of the residue ring $\mathcal{M}_c(Q)/\operatorname{Ann} E$ is exponential.

Proof. Let spectral analysis hold for the variety E, and M be a maximal ideal containing $\operatorname{Ann} E$. Then, by Proposition 2.6, $\operatorname{Ann} M$ is a subvariety of E. Thus there is an exponential f in $\operatorname{Ann} M$, and the mapping $\Psi: \mathcal{M}_c(Q) \to \mathbb{C}$, defined by $\Psi(\mu) := \mu(\check{f})$, is a multiplicative linear functional with $M \subseteq \ker \Psi = M_f$. This implies that $M = M_f$ since M_f is a proper ideal (Theorem 3.4). Conversely, let every maximal ideal containing $\operatorname{Ann} E$ be exponential, and V be a non-zero subvariety of E. For a maximal ideal M containing $\operatorname{Ann} V$, $\operatorname{Ann} E \subseteq \operatorname{Ann} V \subseteq M$. Thus, there exists an exponential f such that $M = M_f = \operatorname{Ann} \tau(f)$. Then $f \in \tau(f) = \operatorname{Ann} \operatorname{Ann} \tau(f) \subseteq \operatorname{Ann} \operatorname{Ann} V = V$.

Acknowledgments. We would like to thank the referee for careful reading of the manuscript and for the helpful comments.

References

- [1] W.R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, De Gruyter, Berlin, 1995.
- [2] J.B. Conway, A Course in Point Set Topology, Springer, Cham, 2014.
- [3] C.F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331–348.
- [4] R.I. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), 1–101.
- [5] A.A. Kalyuzhnyi, G.B. Podkolzin, and Yu.A. Chapovski, Harmonic analysis on a locally compact hypergroup, Methods Funct. Anal. Topology 16 (2010), 304–332.
- [6] R. Spector, Measures invariantes sur les hypergroups, Trans. Amer. Math. Soc. 239 (1978), 147–165.
- [7] L. Székelyhidi, Spectral analysis and spectral synthesis on polynomial hypergroups, Monats. Math. 141 (2004), 33–43.
- [8] L. Székelyhidi, Spectral synthesis on multivariate polynomial, Monats. Math. 153 (2008), 145–152.
- [9] L. Székelyhidi, Spectral synthesis problems on locally compact groups, Monats. Math. 161 (2010), 223–232.

- [10] L. Székelyhidi, Exponential polynomials on commutative hypergroups, Arch. Math. 101 (2013), No. 4, 341–347.
- [11] L. Székelyhidi, Spectral synthesis problems on hypergroups, Annales Univ. Sci. Budapest., Sect. Comp. 39 (2013), 439–447.
- [12] L. Székelyhidi, Characterization of exponential polynomials on hypergroups, Ann. Funct. Anal. 5 (2014), No. 2, 53–60.
- [13] S.M. Tabatabaie and F. Haghighifar, *The weighted KPC-hypergroups*, Gen. Math. Notes **34** (2016), 29–38.
- [14] S.M. Tabatabaie and F. Haghighifar, The associated measure on locally compact cocommutative KPC-hypergroups, Bull. Iran. Math. Soc. 43 (2017), 1–15.
- [15] S.M. Tabatabaie and F. Haghighifar, Translation invariant mappings on KPChypergroups, Int. J. Nonlinear Anal. Appl. 8 (2017), No. 2, 99–107.

Received November 12, 2016, revised February 16, 2018.

László Székelyhidi,

Botswana International University of Science and Technology, Palapye, Botswana,

E-mail: lszekelyhidi@gmail.com

Seyyed Mohammad Tabatabaie,

University of Qom, Qom, 3716146611, Iran,

E-mail: sm.tabatabaie@qom.ac.ir

Інваріантні підпростори на КРС-гіпергрупах

László Székelyhidi and Seyyed Mohammad Tabatabaie

У даній роботі ми вивчаємо простори функцій, інваріантних відносно зсувів, і спектральний аналіз на КРС-гіпергрупах та описуємо відповідність між ідеалами в алгебрі мір з компактними носіями і многовидами неперервних функцій на КРС-гіпергрупі.

Ключові слова: DJS-гіпергрупа, KPC-гіпергрупа, спектральний аналіз, спектральний синтез.