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Let S∞ denote the set of all bijections of natural numbers. Consider
an action of S∞ on a measure space (X,M, µ), where µ is an S∞-quasi-
invariant measure. We prove that there exists an S∞-invariant measure
equivalent to µ.
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1. Introduction

Let N be the set of all natural numbers and let S∞ be the group of all
bijections of N. This group is called the infinite full symmetric group. Given an
element s ∈ S∞, we put supp s = {n ∈ N : s(n) 6= n}. An element s ∈ S∞
is called finite if # supp s < ∞. The set of all finite elements form the infinite
symmetric group denoted by S∞.

Let Aut (X,M, µ) be the set of all nonsingular automorphisms of a measure

space (X,M, µ). Recall that the automorphism (X,µ)
T7→ (X,µ) is nonsingular if

for each measurable Y ∈ X, µ(TY ) = 0 if and only if µ(Y ) = 0. Throughout the
paper we suppose that M is the countably generated σ-algebra of the measurable
subsets of X. A homomorphism α from a group G into Aut (X,M, µ) is called
the action of G on (X,M, µ). It is convenient to assume that α is a right action

of the group G on X: X 3 x αg7→ xg ∈ X, g ∈ G. We suppose that

µ ({x ∈ X : x(gh) 6= (xg)h}) = 0

for each fixed pair g, h ∈ G and Ag−1 ∈M for all A ∈M, g ∈ G. Introduce the
measure µ ◦ g by setting

µ ◦ g(A) = µ(Ag), A ∈M.

Suppose that the measures µ and µ◦g are equivalent (i.e., mutually absolutely
continuous) for every g ∈ G. In this case, the measure µ is called G-quasi-
invariant. To consider the equivalence class of measures ν, equivalent to µ (the
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measure class of µ), is the same as to say that the action preserves the measure
class of µ. Any measure of the class is transferred to another measure of the same
class. Let dµ◦g

dµ denote the Radon–Nikodym derivative of µ ◦ g with respect to µ.

For more convenience, we put ρ(g, x) =
√

dµ◦g
dµ (x). Then,∫

X
(ρ(g, x))2f(xg) dµ =

∫
X
f(x) dµ for all f ∈ L1(X,µ). (1.1)

Theorem 1.1. Let an action of S∞ on (X,M, µ) be measurable. If the
measure µ is S∞-quasi-invariant and the σ-algebra M is countably generated,
then there exists an S∞-invariant measure ν (finite or infinite) equivalent to µ.

2. Outline of the proof of Theorem 1.1

Since the action X 3 x 7→ xg ∈ X, g ∈ S∞, preserves the measure class µ,
we can define the Koopman representation of S∞ associated to this action. It is
given in the space L2(X,µ) by the unitary operators

(K(g)η) (x) = ρ(g, x)η(xg), where η ∈ L2(X,µ).

The separability of σ-algebra M implies the separability of unitary group of
L2(X,µ) in the strong operator topology. Therefore, the homomorphism K in-
duces the separable topology on S∞. But, by [1, Theorem 6.26], S∞ has ex-
actly two separable group topologies, namely, the trivial and the standard Polish
topologies. The last one is defined by a fundamental system of the neighborhoods
S(n,∞) = {s ∈ S∞ : s(k) = k for k = 1, 2, . . . , n} of the identity. Therefore,
the representation K is continuous. It follows that there exists n ∈ N ∪ 0 and a
non-zero ξ ∈ L2(X,µ) with the property

K(g)ξ = ξ for all g ∈ S(n,∞). (2.1)

Set E = {x ∈ X : ξ(x) 6= 0}. Using (2.1), we obtain

µ(E∆(Eg)) = 0 for all g ∈ S(n,∞). (2.2)

For A ⊂ E, we define the measure ν by

ν(A) =

∫
X
χA(x)|ξ(x)|2dµ.

It follows from (2.1) and (2.2) that ν is a S(n,∞)-invariant measure on E. This
measure can be extended to a S∞-invariant measure on X.

3. The properties of continuous representations of S∞

To prove Theorem 1.1, we use the general facts about continuous represen-
tations of the group S∞, which have been well studied by A. Lieberman [2]



48 Nikolay Nessonov

and G. Olshanski [3, 4]. In this section, we give simple constructions of certain
operators and short direct proofs of their properties.

Let K be a continuous representation of S∞ in a Hilbert space H. It follows
that for each η ∈ H,

lim
k→∞

sup
s∈S(k,∞)

‖K(s)η − η‖ = 0. (3.1)

Set nσm = (n+ 1 n+m+ 1)(n+ 2 n+m+ 2) · · · (n+m n+ 2m), where (k j) is
the permutation of two numbers k, j while all other numbers remain fixed. We
need a few auxiliary lemmas.

Lemma 3.1. The sequence of operators {K (nσm)}m∈N converges in the weak
operator topology to a self-adjoint operator Pn.

Proof. Let us prove that the sequence {K (nσm)}m∈N is fundamental in
the weak operator topology. Assuming M > m, we write nσM in the form
nσM = s nσm t, where s, t ∈ S(n + m,∞). Hence, using (3.1), we have
limm,M→∞ 〈(K (nσM )−K (nσm)) η, ζ〉 = 0 for all η, ζ ∈ H.

Lemma 3.2. The operator Pn is a projection.

Proof. Using lemma 3.1, for any fixed η, ζ ∈ H, we find sequences {mk}k∈N
and {Mk}k∈N such that mk+1 > mk, Mk > 2mk, and

lim
k→∞

∣∣〈P 2
nη, ζ

〉
− 〈K (nσMk

)K (nσmk
) η, ζ〉

∣∣ = 0. (3.2)

It should be noticed that nσMk
nσmk

= nσmk
sk, where sk ∈ S (n+mk,∞).

Hence, using (3.1), (3.2), and Lemma 3.1, we have

0 = lim
k→∞

∣∣〈P 2
nη, ζ

〉
− 〈K (nσmk

)K (sk) η, ζ〉
∣∣

= lim
k→∞

∣∣〈P 2
nη, ζ

〉
− 〈K (nσmk

) η, ζ〉
∣∣ = lim

k→∞

∣∣〈P 2
nη, ζ

〉
− 〈Pnη, ζ〉

∣∣ .
Lemma 3.3. For any s ∈ S(n,∞), one has K(s)Pn = Pn.

Proof. Suppose that m > n and M ≥ 2m. Then (m m+ 1) nσM = nσM (m+
M m+M + 1). Hence, applying lemma 3.1 and (3.1), we have

〈K((m m+ 1))Pnη, ζ〉 = lim
M→∞

〈K((m m+ 1))K( nσM )η, ζ〉

= lim
M→∞

〈K(nσM )K((m+M m+M + 1))η, ζ〉

= lim
M→∞

〈K(nσM )η, ζ〉

for any η, ζ in H. By lemma 3.1, K((m m+1))Pn = Pn. Since the transpositions
(m m+ 1) (m > n) generate the subgroup S(n,∞), the lemma is proved.

It follows from Lemmas 3.1 and 3.3 that

PnH = {η ∈ H : K(s)η = η for all s ∈ S(n,∞)} . (3.3)



The Existence of an Invariant Measure for a Nonsingular Action 49

Lemma 3.4. The sequence {K((k N))}N∈N converges in the weak operator
topology to a self-adjoint projection Ok.

Proof. Using (3.1) and the relation (k N2) = (N1 N2)(k N1)(k N2), we de-
duce that the sequence {K((k N))}N∈N is fundamental. Since (k N1)(k N2) =
(k N2)(N1 N2), the operator Ok is a self-adjoint projection.

Lemma 3.5. The projections Pn and Ok commute: PnOk = OkPn.

Proof. Since, by Lemma 3.3, OkPn = Pn for k > n, we suppose that k ≤ n.
By Lemmas 3.1 and 3.4, for any η, ζ ∈ H, there exists a sequence {Ml}l∈N ⊂ N
such that Mk+1 > Mk, and

lim
l→∞
|〈PnOkη, ζ〉 − 〈K (nσMl

)Okη, ζ〉| = 0,

lim
l→∞
|〈OkPnη, ζ〉 − 〈OkK (nσMl

) η, ζ〉| = 0. (3.4)

In the same way, we can find a sequence {Nl}l∈N ⊂ N such that Nk+1 > Nk >
n+ 2Mk, and

lim
l→∞
|〈K (nσMl

)K (k Nl) η, ζ〉 − 〈K (nσMl
)Okη, ζ〉| = 0, (3.5)

lim
l→∞
|〈K (k Nl)K (nσMl

) η, ζ〉 − 〈OkK (nσMl
) η, ζ〉| = 0. (3.6)

Now, using (3.4), (3.5) and the relation (k Nl)
nσMl

= nσMl
(k Nl), we obtain

PnOk = OkPn.

Lemma 3.6. Let S(k, n,∞) denote the group generated by the transposition
(k n+1) and the subgroup S(n,∞). Then OkPn is a self-adjoint projection onto
the subspace {η ∈ H : K(s)η = η for all s ∈ S(k, n,∞)}. In particular, OnPn =
Pn−1 (see(3.3)).

Proof. Due to Lemmas 3.3 and 3.4, the proof follows from the next chain of
equalities:

〈K((k n+ 1))OkPnη, ζ〉 = lim
N→∞

〈K((k n+ 1)(k N))Pnη, ζ〉

= lim
N→∞

〈K((k N))K((n+ 1 N))Pnη, ζ〉

= lim
N→∞

〈K((k N))Pnη, ζ〉 = 〈OkPnη, ζ〉 .

Since the representation K is continuous, then there exists n ∈ N such that
Pn 6= 0. Set depth(K) = min {n : Pn 6= 0}.

Lemma 3.7. If n = depth(K) and g /∈ S(n,∞), then PnK(g)Pn = 0.

Proof. Let k ≤ n and g(k) = m > n. Then g = (k m)s, where s(m) = m.
Let S =

{
M ∈ N : min

{
M, s−1(M)

}
> n

}
. It is clear that #S = ∞. Applying

Lemmas 3.3 and 3.5, under this condition for M ∈ S, we have

PnK(g)Pn = PnK((m M))K((k m))K(s)K((m) s−1(M)))Pn
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= PnK((m M))K((k m))K((m M))K(s)Pn

= PnK((k M))K(s)Pn = PnOkK(s)Pn.

But, by (3.3) and Lemma 3.6, taking into account depth(K) = n, we get

K((k n))PnOkK((k n)) = PnOn = Pn−1 = 0.

Therefore, PnK(g)Pn = 0.

4. The proof of Theorem 1.1

Proof of Theorem 1.1. We follow the notations used in Section 2. Without
loss of generality, we may assume that µ is a probability measure. Set n =
depth(K) (see page 49). Recall that we denote by Pn the projection of L2(X,µ)
onto the subspace L2

n =
{
η ∈ L2(X,µ) : K(s)η = η for all s ∈ S(n,∞)

}
. Let the

operator M(f), where f ∈ L∞(X,µ), act on η ∈ L2(X,µ) as follows:

(M(f)η) (x) = f(x)η(x).

Denote by N the von Neumann algebra generated by K(S∞) and M(L∞(X,µ)).
Let S be a subset of L2(X,µ), and let [NS] be the closure of NS.

Since K is continuous (see subsection 2), we have

lim
k→∞

Pk = I. (4.1)

If I −Pl = 0 for some l ∈ N∪ 0, then the representation K is trivial; i. e., K(s) =
I for all s ∈ S∞. Thus we can suppose that Pl 6= I for all l ∈ N ∪ 0.

In the sequel, we will identify the measurable subsets A and B if their sym-
metric difference A∆B is of measure zero.

Denote by P̃k the orthogonal projection onto the subspace
[
NL2

k

]
. Since P̃k

belongs to the commutant of N , there exists a measurable S∞-invariant subset
Xk ⊂ X such that

P̃k = M(χXk
),

where χXk
is the characteristic function of Xk.

Applying (4.1), we obtain

Xk ⊂ Xk+1 and
⋃
k

Xk = X. (4.2)

Consider the family of the pairwise orthogonal subspaces H0 = L2
n, H1 =(

P̃n+1 − P̃n
)
L2
n+1, . . ., Hj =

(
P̃n+j − P̃n+j−1

)
L2
n+j , . . .. Using the definitions

of P̃k and L2
k, we conclude from (4.1) that the subspaces [NHk] are pairwise

orthogonal, and⊕
k

[NHk] = L2(X,µ) and PkHj = 0 for all k < n+ j. (4.3)
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Now we fix the orthonormal basis
{
iηk
}dimHk

i=1
in Hk. Denote by iP̃k the ortho-

gonal projection onto the subspace
[
N iηk

]
⊂ [NHk]. Then iP̃k = M(χiXk

), where
iXk is a measurable S∞-invariant subset of Xk. Since

{
iηk
}dimHk

i=1
is a basis in

Hk, we have

dimHk⋃
i=1

iXk = Xn+k \Xn+k−1. (4.4)

Define the family
{
iQk
}dimHk

i=1
of the pairwise orthogonal projections as follows:

1Qk = 1P̃k,
2Qk = 2P̃k − 2P̃k

1Qk, . . . , lQk = lP̃k − lP̃k

l−1∑
i=1

iQk, . . .

It follows from the above discussion that

iηk ∈
i⊕

j=1

[
N jQk

jηk
]

for all i = 1, 2, . . . ,dimHk. (4.5)

Therefore,

[NHk] =

dimHk⊕
j=1

[
N jQk

jηk
]
. (4.6)

As above, iQk = M
(
χ,iAk

)
, where

{
iAk
}dimHk

i=1
is the measurable S∞-invariant

subset in Xn+k \Xn+k−1 such that iAk ∩ jAk = ∅ for different i, j. By (4.4),

dimHk∑
i=1

iQk = P̃n+k − P̃n+k−1 and

dimHk⋃
i=1

iAk = Xn+k \Xn+k−1. (4.7)

Denote by iKk the restriction of the representation K to the subspace

iQkL
2(X,µ) =

[
N iξk

]
, (4.8)

where iξk = iQk
iηk (see (4.6)). Therefore, if iQk

iηk 6= 0, then, using the defini-
tions of Hk, we obtain

depth
(
iKk
)

= n+ k. (4.9)

Let us now build an S∞-invariant measure iνk on iAk.

Since iξk = iQk
iηk ∈ Hk, we have(
iKk(s) iξk

)
(x) = ρ(s, x) iξk(xs) = iξk(x)

for each s ∈ S(n+ k,∞). Therefore, for each s ∈ S(n+ k,∞),

ρ(s, x)
∣∣iξk(xs)∣∣ =

∣∣iξk(x)
∣∣ . (4.10)
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Set iEk =
{
x ∈ X : iξk(x) 6= 0

}
. It is clear that iEk ⊂ iAk. Since µ({x ∈ X :

ρ(g, x) = 0}), from (4.10), we conclude that for all s ∈ S(n+ k,∞):

µ
(
iEk∆

(
iEk s

))
= 0. (4.11)

Let us prove that for each g /∈ S(n+ k,∞),

µ
(
(iEk g) ∩ iEk

)
= 0. (4.12)

Applying (4.9) and Lemma 3.7, we obtain

0 =
〈
iKk(g)

∣∣iξk∣∣ , ∣∣iξk∣∣〉 =

∫
X
ρ(g, x)

∣∣iξk(xg)
∣∣ ∣∣iξk(x)

∣∣ dµ.
Hence, using the equality µ ({x ∈ X : ρ(g, x) = 0}) = 0, we get that∫

X

∣∣iξk(xg)
∣∣ ∣∣iξk(x)

∣∣ dµ = 0.

Therefore ∣∣iξk(xg)
∣∣ ∣∣iξk(x)

∣∣ = 0

holds µ-almost everywhere. Hence (4.12) follows.
Now we define the measure iµk on X as follows:

iµk(Y ) = µ(Y \ iEk) +

∫
iEk

χY (x)
∣∣iξk(x)

∣∣2 dµ. (4.13)

Assuming that Y ⊂ iEk, s ∈ S(n + k,∞) and using (1.1), (4.10), (4.11), we
obtain

iµk(Y s) =

∫
iEk

χY s(x)
∣∣iξk(x)

∣∣2 dµ =

∫
iEk

χY (xs−1)
∣∣iξk(x)

∣∣2 dµ

=

∫
iEk

(ρ(s, x))2 χY (x)
∣∣iξk(xs)∣∣2 dµ

=

∫
iEk

χY (x)
∣∣iξk(x)

∣∣2 dµ = iµk(Y ). (4.14)

For the construction of an S∞-invariant measure iνk on iAk, we consider the right
coset H \ G, where H = S(n + k,∞) and G = S∞. Since every bijection s ∈
G can be written as s = hf , where h ∈ H and f ∈ S∞ is a finite permutation,
then there exists a countable full set of the representatives g1, g2, . . . in G of the
cosets H \ G. Define the map r : H \ G 7→ G as follows: r(z) = gj , if z = Hgj .
We will assume that r(H) is the identity e of G.

In the sequel, we will need the next useful equality, which follows from (4.8),
(4.11) and the definition of iEk,

iAk =
i⋃

z∈H�G

Ek r(z). (4.15)
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For completeness, we give below a standard algorithm allowing one to extend
a finite S(n + k,∞)-invariant measure iµk on iEk to a σ-finite S∞-invariant
measure on iAk.

Take a measurable subset Y ⊂ iAk and define its measure iνk(Y ) as follows:

iνk(Y ) =
∑

z∈H\G

iµk
((
Y ∩

(
iEk r(z)

))
(r(z))−1

)
. (4.16)

Let us prove that for all g ∈ G and Y ⊂ iAk,

iνk(Y ) = iνk(Y g). (4.17)

First, we should notice that

iνk(Y g) =

i∑
z∈H\G

µk
((

(Y g) ∩
(
iEkr(z)

))
(r(z))−1

)
=

i∑
z∈H\G

µk
((
Y ∩

(
iEkr(z)g

−1)) g(r(z))−1
)
.

Then, by using (4.11), we get

iνk(Y g) =

i∑
z∈H\G

µk
((
Y ∩

(
iEkr(zg

−1)
))
g(r(z))−1

)
=

i∑
z∈H\G

µk

((
Y ∩

(
iEkr(zg

−1)
)) (

r(zg−1)
)−1

r(zg−1)g(r(z))−1
)

=
i∑

z∈H\G

µk

((
Y ∩

(
iEkr(z)

))
(r(z))−1 r(z)g(r(zg))−1

)
,

where r(z)g(r(zg))−1 ∈ H = S(n + k,∞). Hence, using (4.14), and (4.16), we
obtain

iνk(Y g) =
i∑

z∈H\G

µk

((
Y ∩

(
iEkr(z)

))
(r(z))−1

)
= iνk(Y ).

Thus (4.17) is proved.
Now we fix Y ⊂ iAk such that iνk(Y ) = 0 and prove that µ(Y ) = 0.
Indeed, applying (4.16), we have

iµk
((
Y ∩

(
iEk r(z)

))
(r(z))−1

)
= 0 for all z ∈ H \G.

It follows from (4.13) that µ
((
Y ∩

(
iEk r(z)

))
(r(z))−1

)
= 0 for all z ∈ H \ G.

Therefore, µ
((
Y ∩

(
iEk r(z)

)))
= 0 for all z. Hence, using (4.15), we deduce

µ(Y ) = 0.
Thus, the restrictions of the measures µ and iνk onto iAk are equivalent.

Finally, applying (4.7) and (4.2), we conclude that µ is equivalent to the S∞-
invariant measure ν =

∑i
i,kνk. Theorem 1.1 is proved.
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Iснування iнварiантної мiри для несингулярної дiї
повної симетричної групи

Nikolay Nessonov

Позначимо через S∞ множину всiх бiєкцiй натуральних чисел.
Розглянемо дiю S∞ на вимiрному просторi (X,M, µ), де µ є S∞ —
квазиiнварiантна мiра. Ми доводимо iснування S∞-iнварiантної мiри,
яка еквiвалентна мiрi µ.

Ключовi слова: повна симетрична група, несингулярний автомор-
фiзм, купманове зображення, iнварiантна мiра.
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