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A Nonsingular Action of the Full Symmetric
Group Admits an Equivalent Invariant
Measure

Nikolay Nessonov

Let G, denote the set of all bijections of natural numbers. Consider
an action of &, on a measure space (X,90, u), where p is an S oo-quasi-
invariant measure. We prove that there exists an &..-invariant measure
equivalent to p.
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1. Introduction

Let N be the set of all natural numbers and let &, be the group of all
bijections of N. This group is called the infinite full symmetric group. Given an
element s € G, we put supps = {n € N : s(n) # n}. An element s € G
is called finite if #supps < oo. The set of all finite elements form the infinite
symmetric group denoted by G-

Let Aut (X, 90, 1) be the set of all nonsingular automorphisms of a measure

space (X, 9, 1t). Recall that the automorphism (X, ) KN (X, ) is nonsingular if
for each measurable Y € X, u(TY) = 0 if and only if u(Y) = 0. Throughout the
paper we suppose that 9t is the countably generated o-algebra of the measurable
subsets of X. A homomorphism « from a group G into Aut (X,9, ) is called
the action of G on (X,9, u). It is convenient to assume that « is a right action

of the group G on X: X sz ct xg € X, g € G. We suppose that

p({z € X z(gh) # (zg)h}) =0
for each fixed pair g,h € G and Ag~—! € M for all A € M, g € G. Introduce the
measure o g by setting

pog(A) = p(Ag), A € M.

Suppose that the measures p and pog are equivalent (i.e., mutually absolutely
continuous) for every g € G. In this case, the measure u is called G-quasi-
invariant. To consider the equivalence class of measures v, equivalent to p (the

(© Nikolay Nessonov, 2020


https://doi.org/10.15407/mag16.01.046

The Existence of an Invariant Measure for a Nonsingular Action 47

measure class of p), is the same as to say that the action preserves the measure
class of u. Any measure of the class is transferred to another measure of the same
class. Let dé‘—;g denote the Radon—Nikodym derivative of o g with respect to u.

For more convenience, we put p(g,z) = 1/%‘—;‘7(30). Then,

/ (plg.2))* f(g) dp = / f@)du forall fe L'(X.p).  (L1)
X X

Theorem 1.1. Let an action of G on (X,9M, i) be measurable. If the
measure [ 15 Soo-quasi-invariant and the o-algebra M is countably generated,
then there exists an S -invariant measure v (finite or infinite) equivalent to .

2. Outline of the proof of Theorem 1.1

Since the action X 3 2 + 29 € X, g € G, preserves the measure class f,
we can define the Koopman representation of G, associated to this action. It is
given in the space L?(X, i) by the unitary operators

(K(g)n) (z) = p(g, z)n(zg), wheren e L*(X, p).

The separability of o-algebra 91 implies the separability of unitary group of
L?(X,p) in the strong operator topology. Therefore, the homomorphism K in-
duces the separable topology on &,,. But, by [I, Theorem 6.26], G, has ex-
actly two separable group topologies, namely, the trivial and the standard Polish
topologies. The last one is defined by a fundamental system of the neighborhoods
S(n,00) = {s € 6 : s(k) = kfor k =1,2,...,n} of the identity. Therefore,
the representation IC is continuous. It follows that there exists n € NUO and a
non-zero & € L?(X, 1) with the property

K(g)¢ =¢ forall g € &(n,0). (2.1)
Set B ={z € X :{(x) # 0}. Using (2.1), we obtain
wW(EA(Eg)) =0 forall g € &(n,o00). (2.2)

For A C E, we define the measure v by
() = [ xa@)ls(o)Pd

It follows from (2.1) and (2.2) that v is a &(n, co)-invariant measure on E. This
measure can be extended to a ©-invariant measure on X.
3. The properties of continuous representations of &,

To prove Theorem 1.1, we use the general facts about continuous represen-
tations of the group G, which have been well studied by A. Lieberman [2]
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and G. Olshanski [3,4]. In this section, we give simple constructions of certain
operators and short direct proofs of their properties.

Let K be a continuous representation of G, in a Hilbert space H. It follows
that for each n € H,

lim sup [|[K(s)n—n| =0. (3.1)
k—o0 s€6(k,00)

Set "oy = (n4+1 n+m+1)(n+2 n+m+2)--- (n+m n+2m), where (k j) is

the permutation of two numbers k, j while all other numbers remain fixed. We
need a few auxiliary lemmas.

Lemma 3.1. The sequence of operators {K ("om)},,cn converges in the weak
operator topology to a self-adjoint operator P,.

Proof. Let us prove that the sequence {K ("oj)},,cn is fundamental in
the weak operator topology. Assuming M > m, we write "ops in the form
"oy = s"omt, where s,t € &(n + m,00). Hence, using (3.1), we have
limyy, Ao (KK ("opr) — K (o)) m, ¢) = 0 for all n,{ € H. O

Lemma 3.2. The operator P, is a projection.

Proof. Using lemma 3.1, for any fixed 7,( € H, we find sequences {1}y
and { M}, oy such that myq > my, My > 2my, and

Jim (P2, ¢) — (K ("on,) K ("om, ) n,C)| = 0. (3.2)
— 00
It should be noticed that "ops "oy, = "Om, sk, where s € & (n+ my,00).

Hence, using (3.1), (3.2), and Lemma 3.1, we have
0= lim [(Fn,C) = (K ("om,) K (s1) 1, €)]
= lim |[(P3n,C) = (K (ome) n, Q)| = Jim [(Pin,¢) = (Pam, ). O

Lemma 3.3. For any s € &(n,00), one has K(s)P, = P,.

Proof. Suppose that m > n and M > 2m. Then (m m+1) "oy = "op(m+
M m+ M +1). Hence, applying lemma 3.1 and (3.1), we have
(K((m m+1))Pn,¢) = lim (K((m m+1))K("on)n, )

M—o0

= lim (K(oa)K((m+ M m+ M +1))n,)

= lim_(K(o)n.0)

for any 7, ¢ in H. By lemma 3.1, K((m m+1))P, = P,. Since the transpositions
(m m+ 1) (m > n) generate the subgroup &(n, c0), the lemma is proved. [

It follows from Lemmas 3.1 and 3.3 that

PH={neHH:K(s)n=mnforall se&S(n,o0)}. (3.3)
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Lemma 3.4. The sequence {K((k N))}yen converges in the weak operator
topology to a self-adjoint projection Oy.

Proof. Using (3.1) and the relation (k' N2) = (N1 Na)(k Ni)(k Na2), we de-
duce that the sequence {K((k N))} yey is fundamental. Since (kK N1)(k Na) =
(k N2)(Ni N3), the operator Oy is a self-adjoint projection. O

Lemma 3.5. The projections P,, and Oy commute: P,Op = O P,.

Proof. Since, by Lemma 3.3, Oy P, = P, for k > n, we suppose that k < n.
By Lemmas 3.1 and 3.4, for any 7, { € H, there exists a sequence {M;};.y C N
such that Myq > My, and

Jim [(POrn, ¢) — (K ("onr,) O, €)| = 0,
Jm [{O Pan, ¢) = (OpkC ("oag) 1, G = 0. (3.4)

In the same way, we can find a sequence {N;};cy C N such that Ny > N >
n + 2My, and

Jlim [{K ("oan) K (k- Ni)n, ¢) = (K ("oar,) Ok, ) = 0, (3.5)
Jim (I (k- No) K ("oan) 1, 6) = (OkK ("oag) 1, G} = 0. (3.6)
Now, using (3.4), (3.5) and the relation (k N;) "oa, = "on, (k Ni), we obtain
P,Oy = OLP,. 0

Lemma 3.6. Let G(k,n,o0) denote the group generated by the transposition
(k n+1) and the subgroup S(n,c0). Then OiP, is a self-adjoint projection onto
the subspace {n € H : K(s)n=mn for all s € &(k,n,00)}. In particular, OpP, =
P,—1 (see(3.3)).

Proof. Due to Lemmas 3.3 and 3.4, the proof follows from the next chain of
equalities:

(k7 + 1)Ox P, ) = lim (K((k -+ 1)k N))Pun,€)

= lim (K((k N)K((n+1 N))P.n,¢)

N—oo

— lim (K((k N)Pan,C) = (OxPan(). O

N—oo

Since the representation K is continuous, then there exists n € N such that
P, # 0. Set depth(K) = min{n : P, # 0}.

Lemma 3.7. If n = depth(K) and g ¢ &(n,o0), then P,K(g)P, = 0.

Proof. Let k < n and g(k) = m > n. Then g = (k m)s, where s(m) = m.
Let S = {M € N:min {M, s*I(M)} > n} It is clear that #S = oco. Applying

Lemmas 3.3 and 3.5, under this condition for M € S, we have

PuK(g) P = PuK((m M))K((k m))K(s)K((m) s~ (M)))Pn
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= P,K((m M))K((k m))K((m M))K(s)P,
= PC((k M))K(s) Py = PyORK(s) Py

But, by (3.3) and Lemma 3.6, taking into account depth(K) = n, we get
K((k n))P,OxK((k n)) = PO, = P,_1 =0.

Therefore, P,,K(g)P, = 0. O

4. The proof of Theorem 1.1

Proof of Theorem 1.1. We follow the notations used in Section 2. Without
loss of generality, we may assume that g is a probability measure. Set n =
depth(K) (see page 49). Recall that we denote by P, the projection of L?(X, 1)
onto the subspace L2 = {n € L*(X,p) : K(s)n=n for all s € &(n,00)}. Let the
operator M(f), where f € L>(X, p), act on n € L?(X, i) as follows:

Denote by N the von Neumann algebra generated by K(G) and M(L>® (X, u)).
Let S be a subset of L?(X, 1), and let [N'S] be the closure of N'S.
Since K is continuous (see subsection 2), we have

lim P, = 1. (4.1)
k—o00
If I — P, =0 for some [ € NUO, then the representation K is trivial; i. e., K(s) =
I for all s € G4. Thus we can suppose that P, # I for all I € NUO.
In the sequel, we will identify the measurable subsets A and B if their sym-
metric difference AAB is of measure zero.
Denote by ]5k the orthogonal projection onto the subspace [N Li] Since ]5k
belongs to the commutant of N, there exists a measurable &.-invariant subset
X C X such that

ﬁk = m(Xxk)v

where y x, 18 the characteristic function of Xj.
Applying (4.1), we obtain

Xy C Xpy1 and | JXp = X. (4.2)

k
Consider the family of the pairwise orthogonal subspaces Hy = L2, H; =
(Poss = Pa) L2,y Hy = (Payy = Payjo1) L2, Using the definitions

of P, and L2, we conclude from (4.1) that the subspaces [N H}] are pairwise
orthogonal, and

P IWH,] = L*(X, 1) and P H; =0 for all k < n + j. (4.3)
k
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Now we fix the orthonormal basis { %k}?;rrll e in g k. Denote by Zﬁk the ortho-
gonal projection onto the subspace [N 'n] C [N'Hy]. Then ‘P, = M(xix, ), where
X}, is a measurable G, -invariant subset of Xj. Since {%k}?;?H'“ is a basis in

H;,, we have

dim Hy,
U Xk = Xniw \ Xngro1. (4.4)

i=1
Define the family {ZQ;C}?:T e of the pairwise orthogonal projections as follows:
_ _ » _ _ -1
'Qk="P, Qx="P—"P'Qr, ..., 'Q="P— "B Q
i=1

It follows from the above discussion that

g, € @ [Nijjnk] forall i =1,2,...,dim Hy. (4.5)
j=1
Therefore,
dim Hj,
W H] = @ (N7 Qw "] - (4.6)
j=1

As above, ‘Q, = M (X’iAk), where {ZAk}?:f Mk s the measurable S o-invariant
subset in X, \ X,1x_1 such that ‘A, N A, = @ for different i, j. By (4.4),

dim Hy, N N dim Hy,
Z ‘Qk = Potk — Ppyg—1  and U ‘A = Xnr \ Xngr—1- (4.7)
i—1 i=1

Denote by K}, the restriction of the representation K to the subspace

where €, = Qi (see (4.6)). Therefore, if ‘{Qy . # 0, then, using the defini-
tions of Hj, we obtain

depth ('Ky,) = n + k. (4.9)

Let us now build an &-invariant measure %, on 4.
Since € = "Qr ', € Hy, we have

(Ki(s) ) (x) = p(s, z) ‘E(ws) = ()

for each s € &(n + k, 00). Therefore, for each s € &(n + k, 00),

p(s,x) [€(xs)| = € ()] (4.10)
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Set ‘B, = {z € X : (x) #0}. It is clear that B}, C "Aj. Since u({z € X :
p(g,z) = 0}), from (4.10), we conclude that for all s € S(n + k, c0):

1 (‘ExA (‘B s)) = 0. (4.11)
Let us prove that for each g ¢ &S(n + k, 00),
1 ((Ex g) N 'Ey) = 0. (4.12)

Applying (4.9) and Lemma 3.7, we obtain

0 = (iKi(g) ], ]} = /X o9, ) | (x9)]| €0 (2)] dpe.

Hence, using the equality u ({z € X : p(g,z) = 0}) =0, we get that

/ [k (29)| |k (2)] dp = 0.
X

Therefore ‘ ‘
| (z9)| ['€k(x)] =0

holds p-almost everywhere. Hence (4.12) follows.
Now we define the measure %y, on X as follows:

(V) =Y\ B+ [ (o)) d (4.13)

f) ke

Assuming that Y C ‘Ey, s € &(n + k,00) and using (1.1), (4.10), (4.11), we
obtain

(¥ :ﬂE X (@) [66(@)]” du = /E Xy (2571 ()| dps
= [E (p(s,2))* Xy () ‘ifk(ars)|2 dp
= /E Xy (2) ‘i‘fk(ﬂ«")f dp = "u(Y). (4.14)

For the construction of an &.-invariant measure vy, on 4;,, we consider the right
coset H \ G, where H = &(n + k,00) and G = G. Since every bijection s €
G can be written as s = hf, where h € H and f € &, is a finite permutation,
then there exists a countable full set of the representatives g1, g2, ... in G of the
cosets H \ G. Define the map v: H \ G — G as follows: t(z) = g;, if = = Hg;.
We will assume that v(H) is the identity e of G.

In the sequel, we will need the next useful equality, which follows from (4.8),
(4.11) and the definition of ‘E},

A= |J Eet(2). (4.15)
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For completeness, we give below a standard algorithm allowing one to extend
a finite &(n + k, co)-invariant measure ‘i, on ‘B, to a o-finite Sy-invariant
measure on Ay

Take a measurable subset Y C A, and define its measure (Y as follows:

)= S (V0 (Bee(2) ()7 - (4.16)

2€H\G
Let us prove that for all g € G and Y C A,
W(Y) = (Vo). (4.17)

First, we should notice that

i

v (Yg) = > e ((Yg)n (Ere(2)) (x(2)7")
z€H\G

= > m (YN (Err(2)g™")) g(x(2) ") -

ze H\G
Then, by using (4.11), we get

7

v(Yg) = Y e (YN (Err(zg))) 9(x(2))7)

2€H\G

= 3 e (V0 (Brezg™)) (x(zg7)  e(zg Ngle(z) )
z€H\G

= 3 e (V0 (Ere(2)) (62)) " (=) (x(z0)) )
z€H\G

where t(2)g(t(z9)) ! € H = &(n + k,00). Hence, using (4.14), and (4.16), we

obtain ‘
(A

il/k(Yg) = Z Mk ((Y N (ZEkt(Z))) (t(Z))71> = sz(Y)
z€H\G
Thus (4.17) is proved.
Now we fix Y C Ay, such that %4 (Y) = 0 and prove that u(Y) = 0.
Indeed, applying (4.16), we have

we (Y N (‘Brr(2))) (x(2))7') =0 forallz € H\G.

It follows from (4.13) that p ((Y N ("Ext(2))) (v(z))™') = 0 for all z € H \ G.
Therefore, 1 ((Y N ("Ext(z)))) = 0 for all z. Hence, using (4.15), we deduce
w(Y)=0. ‘ ‘

Thus, the restrictions of the measures p and v, onto ‘Ag are equivalent.
Finally, applying (4.7) and (4.2), we conclude that p is equivalent to the .-
invariant measure v = Z;,ka- Theorem 1.1 is proved. O



54 Nikolay Nessonov

Acknowledgment. I would like to thank the referee for valuable comments
that significantly improved the paper.

References

[1] A.S. Kechris and C. Rosendal, Turbulence, amalgamation, and generic automor-
phisms of homogeneous structures, Proc. London Math. Soc. 94 (2007), No. 2,
302-350.

[2] A. Lieberman, The structure of certain unitary representations of infinite symmetric
groups, Trans. Amer. Math. Soc. 164 (1972), 189-198

[3] G. Olshanski, Unitary representations of (G, K)-pairs connected with the infinite
symmetric group S(co), Algebra i Analiz 1 (1989), No. 4, 178-209 (Russian); Engl.
transl.: Leningrad Math. J. 1 (1990), No. 4, 983-1014.

[4] G. Olshanski, On semigroups related to infinite-dimensional groups, Topics in Rep-
resentation Theory. Advances in Soviet Mathematics., 2 , Amer. Math. Soc., Prov-
idence, R.I., 1991, 67-101.

Received November 11, 2018, revised October 9, 2019.

Nikolay Nessonov,

B.Verkin Institute for Low Temperature Physics and Engineering of the National
Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine,
E-mail: nessonov@ilt.kharkov.ua

IcuyBanHst iHBapiaHTHOT Mipu AJii HECUHTYJISPHOL il
MOBHOI CUMETPUYHOI I'pynu

Nikolay Nessonov

[Tozmaunmo depes S, MHOKHHY BCiX Ol€KIiii HATYpaJIbHUX YHCE.
Posruisremo gito 6., #a BuMipHoMmy upocropi (X, 9, u), ne p € So —
KBasuinBapianTHa Mipa. Mu moBoauMo icuyBanusa O ,.-iHBapiaHTHOI MipH,

sIKa €KBiBaJIEHTHA Mipi p.

KirowoBi csroBa: TOBHA CHUMETPUYHA T'DYIa, HECHHTYJISPHUN aBTOMOD-
dizM, KynmMaHoBe 300parkKeHHsI, iIHBapianTHa Mipa.
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