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The paper is concerned with the correlation functions of the character-
istic polynomials of real random matrices with independent entries. The
asymptotic behavior of the correlation functions is established in the form
of a certain integral over unitary self-dual matrices with respect to the in-
variant measure. The integral is computed in the case of the second order
correlation function. From the obtained asymptotics it is clear that the
correlation functions behave like that for the Real Ginibre Ensemble up
to a factor depending only on the fourth absolute moment of the common
probability law of the matrix entries.
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1. Introduction

The ensemble of random matrices with independent entries was introduced
by Ginibre in 1965 [19]. To be exact, he introduced a partial case when entries
of the matrices have a Gaussian distribution. Anyway, the ensemble appeared to
be significant and has been attracting scientists’ attention since that time.

Random matrices with independent entries are usually considered over com-
plex numbers, real numbers or quaternions. An asymptotic behavior of the cor-
relation functions of the characteristic polynomials was recently computed in the
complex case [2]. The goal of the current paper is to establish a similar result in
the real case.

Let us proceed to precise definitions. We consider the matrices of the form

1

1
M, = %X = %(%k);ﬁkz:h

(1.1)

where z; are i.i.d. real random variables such that

E{z; } =0 and E{x?k} =1. (1.2)
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Here and everywhere below E denotes the expectation with respect to all ran-
dom variables. This ensemble has various applications in physics, neuroscience,
economics, etc. For detailed information, see [3] and references therein.

Define the Normalized Counting Measure (NCM) of eigenvalues as

Na(A)=#{0\ e A, j=1,...,n}/n,

n
where A is an arbitrary Borel set in the complex plane, {)\§.n)} ~are the eigen-

values of M,,. The NCM is known to converge to the uniform distribution on the
unit disc. The distribution is called the circular law. This result has a long and
rich history. Mehta was the first who obtained it for x;; being complex Gaussian
in 1967 [28]. The proof strongly relied on the explicit formula for the common
probability density of eigenvalues due to Ginibre [19]. Unfortunately, there is no
such a formula in the general case. That is why other methods have to be used.
The Hermitization approach introduced by Girko [20] appeared to be an effective
method. The main idea is to reduce the study of matrices (1.1) to the study of
Hermitian matrices using the logarithmic potential of a measure

Pu(z) = / log |z — ¢| du(c).

©

This approach was successfully developed by Girko in the next series of works
[21-24]. The final result in the most general case was established by Tao and
Vu [39]. Notice that there are a lot of partial results besides those listed above.
The interested reader is directed to [5].

The Central Limit Theorem (CLT) for linear statistics of real non-Hermitian
random matrices was proven in some partial cases in [26, 30,31, 40]. The best
result for today was obtained by Cipolloni, Erdds and Schréder in [12]. They
proved CLT for a bit more than twice differentiable test functions assuming that
the common distribution of matrix entries has finite moments. A local regime for
matrices (1.1) was studied in [6,10,40]. In [6], the k-point correlation function
and its asymptotic behavior were computed for the Real Ginibre Ensemble (i.e., if
matrix entries are Gaussian, this ensemble is often referred as GinOE similarly to
the Gaussian Orthogonal Ensemble (GOE) in the real symmetric case). In [40], it
was established that the k-point correlation function converges in vague topology
to that for GinOE if z;, has the first four moments as in the Gaussian case.
The condition of matching moments was recently overcome at the edge of the
spectrum (i.e., |z| = 1) in [10].

One can observe that non-Hermitian random matrices are more complicated
than their Hermitian counterparts. Indeed, the Hermitian case was successfully
dealt with using the Stieltjes transform or the moments method. However, a
measure in the plane can not be recovered from its Stieltjes transform or its
moments. Thus these approaches to the analysis fail in the non-Hermitian case.

The present paper suggests using the supersymmetry technique (SUSY). It is
a rather powerful method which is widely applied at the physical level of rigor (for
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instance [17,29]). There are also a lot of rigorous results, which were obtained
using SUSY in the recent years, e.g., [11,13,14,33-35] etc. The supersymmetry
technique is usually used in order to obtain an integral representation for ratios
of determinants. Since the main spectral characteristics such as density of states,
spectral correlation functions, etc. often can be expressed via ratios of determi-
nants, SUSY allows one to get the integral representation for these characteristics
too. For a detailed discussion on connection between the spectral characteristics
and the ratios of determinants, see [7,25,38]. See also [18,32].

Let us consider the second spectral correlation function Ry defined by the
equality

E {2 S o (Agj”,Aﬁg)) } - /n()\l,AQ)RQ()\l,)\g)d)\ld)\ld)\gd)\g,

1<j1<j2<n C2

where the function n: C> — C is bounded, continuous and symmetric in its
arguments. Using the logarithmic potential, Ry can be represented via ratios of
the determinants of M,, with the most singular term of the form

€0 €0 2

// 52 { det (M, — z)(My, — z;)* + 6,
< E
9

0 0

~—

d€1d€2. (1.3)
o=e

01002 e det (M, — 2;)(My — 2;)* + &) }

The integral representation for (1.3) obtained by SUSY will contain both com-
muting and anti-commuting variables. Such type integrals are rather difficult to
analyze. Based on this reason, one should study a similar but simpler integral
to shed light on the situation. This integral arises from the study of the cor-
relation functions of the characteristic polynomials. Moreover, the correlation
functions of the characteristic polynomials are of independent interest. They
were studied for many ensembles of Hermitian and real symmetric matrices, for
instance, [1,8,9,34,36,37] etc.

Let us introduce the m*™ correlation function of the characteristic polynomials

fin(Z) :E{Hdet (My, — ) (M, — 2;)* } (1.4)
j=1

where
Z = diag{z1,...,2m} (1.5)
and 21, ..., z;, are complex parameters which may depend on n. We are interested
in the asymptotic behavior of (1.4), as n — oo, for
_ G
zZj =20+ —F= j=12...,m, (1.6)

\/ﬁ?

where zj is either in the bulk (|z9| < 1) or at the edge (|z0| = 1) of the spectrum
and (q,...,(n are n-independent complex numbers. In the present paper, we
confine ourself to the case of real zp in the bulk.
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In order to formulate the main result of the paper let us introduce some

notations. Put
_ 0 I

where [j, is a unit k X k matrix. We omit the dimension index when it is clear
from the context. For any even size matrix A its dual matrix A is defined as
follows:

Al = —gAT ], (1.8)
where AT stands for the transposed matrix. The main result of the paper is

Theorem 1.1. Let an ensemble of real random matrices M, be defined
by (1.1) and (1.2). Let also the first 2m moments of the common distribution of
entries of My, be finite and zj, j =1,...,m, have the form (1.6). Then

(i) the m' correlation function of the characteristic polynomials (1.4) satisfies
the asymptotic relation

lim n~ "t fn(2) =Chp, zoemz_m(1_23)2“4
n—o0 fi(z1) - fi(zm) ’
1, s s 1. ..
X / exp {QtrZVZRV* - QtrZZR} dus(V), (1.9)
V=yF
Veu(2m)

where Cy, -, is some constant, which does not depend on the common distri-
bution of entries and on Ci,...,Cn; k4 = E{z};} — 3, U(2m) is a unitary
group, the probabilistic measure dus(V') corresponds to the differential form

det~m 12y /\ dvjy, /\ Avj jvm N AV j (1.10)
7,k<m i<k<m
and

Z:diag{@,.--,Em,ﬁ,.--,{m}. (111)

(ii) in the particular case m = 2, the integral over self-dual unitary matrices can
be computed, and we have

(1-I20[2) ks PE(E (s Cr))5 pms
A(C15 62,15 C2)
where A(C1, (o, (1, (o) is a Vandermonde determinant of (1, C2, (1, C2, and

_ P ial (G = GRS (G — Gr)esi
KI((; = 2 2 > _ > Sk )
(C]a Ck‘) € ((C] _ Ck)eCJCk ((J _ Ck)eC]Ck

lim n~2 7& (2)

=05 e
n—00 fl(Zl)fl(Zg) 2,20

)

Theorem 1.1 shows that the asymptotics of fa (here and below we omit Z
only if Z = diag{z1,...,2mn}) is similar to the asymptotics of the 2-point spectral
correlation function (see [6]). Besides, it is naturally to put a conjecture about
the form of the asymptotic behavior of f,, for any m.
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Set of matrices | Matrix | Column | Entry
Q Qps g
= e é‘(pzs)

P ?; P
(C] 0; Or;
2
Yip,s yéép’S)
U Uk
\%4 Vg4

Table 1.1: Notation correspondence

Conjecture 1.2. In the setting of Theorem 1.1 we expect that for any m
m24+m fm(Z) m2—m (1—2’(2))2I€4 Pf(K(C_ﬂ Ck))Tk:l

= 2
nlLH;On fi(z1) - fi(zm) Cm zoe AL oGy Cm)

The paper is organized as follows. Section 2 is devoted to the derivation of the
suitable integral representation for f,, by using the SUSY approach. In Section 3,
we apply the steepest descent method to the obtained integral representation and
find out the asymptotic behavior of f,,. For the reader’s convenience, the latter
section is divided into two parts treating the Gaussian and the general cases
respectively.

1.1. Notations. Throughout the paper, lower-case letters denote the
scalars, bold lower-case letters denote the vectors, upper-case letters denote the
matrices and bold upper-case letters denote the sets of matrices. We use the same
letter for a matrix, for its columns and for its entries. Table 1.1 shows an exact
correspondence. Besides, for any matrix A we denote by (A); its j-th column
and by (A)j, its entry in the k-th row and in the j-th column.

The term “Grassmann variable” is a synonym for “anti-commuting variable”.
The variables of integration ¢, ¢, 6, ¥, p, &, 7 and v are Grassmann variables, all
the other variables of integration unspecified by an integration domain are either
complex or real. We split all the generators of the Grassmann algebra into two
equal sets and consider the generators from the second set as “conjugates” of
those from the first set. lL.e., for the Grassmann variable v we use v* to denote its
“conjugate”. Furthermore, if T = (v;;) means a matrix of Grassmann variables,
then YT is a matrix (vk;). The d-dimensional vectors are identified with d x
1 matrices.

The integrals without limits denote either an integration over Grassmann
variables or an integration over the whole space C? or R?. Let also dt*dt (t =

d
(t1,...,ta)T € C?) denote the measure [] d¢;dt; on the space C¢. Similarly,
j=1
d
for the vectors with anti-commuting entries dr*dr = [] drjdrj. Note that the

7j=1
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space of matrices is a linear space over C. Thus the same notations are used for
matrices as well.

(-,-) denotes a standard scalar product on C%. For matrices, (4, B) = tr B*A.
For sets of matrices, (A, B) = }_,(4;, B;).

(Tg) X (T) matrices appear in the statement of Proposition 2.1. It is natural
to number rows and columns of such matrices by subsets of an m-element set.
To this end, set

Imp ={a€ZV|1<a1 <...<ay <m}. (1.12)

If p’ = 0, we define Z,,, ,y as {@}.

Throughout the paper, U(m), O(m), USp(m) denote the groups of unitary
m Xm matrices, orthogonal m x m matrices, unitary symplectic 2m x 2m matrices.
1 denotes a corresponding Haar measure. In addition, C, C denote various n-
independent constants which can be different in different formulas.

2. Integral representation for f,,

In this section, we obtain a convenient integral representation for the corre-
lation function of the characteristic polynomials f,, defined by (1.4).

Proposition 2.1. Let an ensemble M,, be defined by (1.1) and (1.2). Then
the m* correlation function of the characteristic polynomials f,, defined by (1.4)
can be represented in the following form:

= (1) [ s(@etr=e@uq 21
where ¢y =271, Q = (@)1, Qj = {Qps | P+5=25,0<p,s <m}, Qps is
a complex (Tg) x (") matriz, dQ = H dQy sdQp s and

P0<pim
f(Q) =—(Q,Q) +logh(Q); (2.2)
9(Q) = (M(Q)™ +n"pa(Q)) exp {—cm(Q, Q)} ;
Q) = PEF +n~'?h(Q2) +n”'p.(Q); (2.3)

By 0 —Z 1
0 By, -Qi -2
A (oN B>2k,0 0 ’
-Qf  z~ 0  DBope

2,0 0,2
(B270)Oé1062 = _q((x@ )7 (3072)041042 = _q(z(x )7 Q€ Im,%

F=

with pa(Q), pc(@) and %(QQ) being certain polynomials specified in the proof
below, Q containing all Q; except Q1, and Iy, o defined in (1.12).



On the Correlation Functions of the Characteristic Polynomials 97

Remark 2.2. Let us consider the transformations

By 0 —-Z @ Z* 0 By -QF
o | O B Q@1 -2 | 0 -2 @i Bap
Z @ B3, 0 By, —Q1 —Z* 0
-Qf  z» 0 Bop Q1 By, 0 4
z* 0 Boa —-QF
0 Z Q1 B S Z Q) _. :
S (_ o Z) P, (2.5)

Qy —B3y 0 A

where Q and Z are the 2m x 2m matrices. Notice that det F' = det F, because
the first transformation in (2.5) is a permutation of lines and columns, and the
second one is a sign change. Moreover, %tr Q*Q = tr Q52Qo2 +trQi Q11 +
tr Q3 (Q2,0- Thus one can replace Q1 by Q and Pf F by det'/2 F in the assertion
of Proposition 2.1.

Remark 2.3. There is a well-known fact from the matrix theory that any
skew-symmetric matrix can be block-diagonalized with a unitary matrix. In our
case, this fact implies that ) = UAUT, where

0 1

A= dlag {)\JL};nzl y >‘j > 0, L= (_1 0

); U e U@2m).

Permuting lines and columns of A and changing U in a proper way, one can
assume that A has the form

X 0 A . m
A= <—A 0>, A =diag {\;}], .

In order to perform an asymptotic analysis let us change the variables Q = UAUT

n (2.1). Then the Jacobian is %A‘l(/\?) IT Aj. We obtain
(IT7=" ) Jj=1

b= Ot [ A1) T # [gom, Q)+ = (UAU", @)]

<exp{ (0 en) | (8.Q) + J= £ WAUT, Q)| fau)ira@.  (20)

Sk

where D = {(A, U, @) |A;j>0,j=1,...,m, U € U(2m)}, p is a Haar measure,
dA = ] d\; and

7=1

fo(Q) = —(Q. Q) +1log ho(Q); (2.7)

90(Q) = ho(Q)™ exp {—cn(Q, Q) } = /o),
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= zodlom ) i
Q) = vn(f(Q) — fo(Q)); (2.9)
9r(Q) = Vn(9(Q) — 90(Q))-

Notice that fo(UAUT, é) = fo(A, C/j) and the same is for go.
Remark 2.4. In the special case m = 1, we have

n

fi() =2 [ exp {n(- laf* +log(l=F* +14f*) } dada.

Changing the variables to polar coordinates and performing a simple Laplace
integration, we obtain

+o0
fi(z) =2n / T exp {n(—TZ +log(|z]* + 7"2))} dr

0
= V2 e (1 4 o(1)). (2.10)

Remark 2.5. In the real Gaussian case, representations (2.1) and (2.6) become
much more simple and have the form

T (n>2m2_m/enf(Q)dQ*dQ

s
= Cn2m2—m/ / AYAY) Ty x e VA Dau()aa, (2.11)
R™ U(m) J=1
where . X
f(Q) = —5rQ"Q+ 5 logdet F (2.12)

and @, F are defined in (2.5).

2.1. Proof of Proposition 2.1. The proof is strongly relied on the SUSY
techniques. A reader who is not familiar with Grassmann variables can find all
the necessary facts in [15] or [16]. For more serious introduction to SUSY, see [4].

The key formulas of the subsection are the well-known Gaussian integration
formulas

/exp{—t*At —t*hy — hit} dt*dt = 7" det ™' Aexp{hiA 'hy}, (2.13)
(Cn

1
/eXp {—ZtTAt} dt = (2m)"2 det ™1/ 4, (2.14)
R
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valid for any positive definite matrix A and even Grassmann variable vectors (i.e.,
vectors whose components are sums of products of even number of Grassmann
variables) hi, ho, and its Grassmann analogs

/exp {—T+AT — 7 vy — vf'T} drdr = det Aexp{va_lvg}, (2.15)

/eXp {—;TTAT} dr =Pt A. (2.16)

(2.15) is valid for an arbitrary complex matrix A and odd Grassmann variable
vectors (i.e., vectors whose components are sums of products of odd number
of Grassmann variables) ’Uf_ , Vg, whereas (2.16) is valid for any complex skew-
symmetric matrix A. Rewrite the expression (1.4) for f,, using (2.15) and (1.1),

= el -So (Frr-5)e
- ;Oj <\/15X - zj)*oj}dcbd@},

where ¢;, 6;, j = 1,...,m are n-dimensional vectors whose components are ¢y;
m m

and 0y, respectively, d® = Hl dqudcﬁj and dO = Hl dH;rdOj. The terms in the
j= j=

exponent can be rearranged as follows:

m n
_ Z ¢;r)(¢j = —tr®dTXP =tr ddTX = Z (@) s,
=1 k=1
n

_ Z g;rx*aj = —trOt X0 =tre0TX* = Z (OO kT,

k=1
m n
S0t = 3N byt = 33 iy = Y i Zen
j=1 j=1k=1 k=1 j=1 k=1
m n m n
SUETIED 9D SUSTNED 35 ST ST A
7j=1 7j=1 k=1 k=1 j=1 k=1
where © and ¢ are matrices composed of columns 6,...,0,, and ¢1,...,Pm,

respectively, i = (®T)i, 9, = (0T);, Z is defined in (1.5). Hence,

fn, =E { /exp { ZcpZZgok + Zﬁ;Z*ﬁk

k=1 k=1

\F Z <I)(I) )ikTr + —— n Z(@@+)klfkl}dq)d@}. (2.17)

k=1 k=1

Let us introduce a notation for a kind of the “Laplace—Fourier transform”

Y (ty,t2) == E {etlxllﬂﬂu} .
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Then the expectation in (2.17) can be written in the form

/ H 1/1< )llm\/lﬁ(eeJr)kl)

k=1

X exp { > @i Zer+> ﬁgz*ﬁk}c@d@

k=1 k=1

= /exp { Zcp;Zgok + ZﬁZZ*ﬁk

k=1 k=1

+ Z 1og¢( )lk,\/lﬁ(@@ml) }dcbd@.

k=1

Expansion of log v into series gives us

fm = /exp { Z(p,chpk +20ZZ*19"“

(plsln

+ Z Z Fp.s ((q)q)+)lk)p((@@+)kl)s}d@d@,

k,l=1p,s=0
with
i
s OPt10%t9

Kp log ¢ (t1,12)

t1=t2=0
In particular,
ko,0 = 0;

k1,0 = ko1 = E{z11} = 0;

2
koo =Koz = E{a},} — E{zn} = E{a}, };
k1,1 = E{lzn’} — [BE{zu}* = 1.

Let us transform the terms in the exponent again

n

> (@2)i)” (00T )w)"

k=1

= pls! Z Z H ¢laq¢kaq H ekﬁ elﬁr

kl=1a€Lm, pq=1
/BGITHS

'S‘ Z Z H ekﬁr H ¢kaq H cbla H HZ/Br

kJl=1a€Llm pr=s
BELm,s

(2.18)

(2.19)

(2.20)
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“t 3 (320 o Tk, ) (1T, I ). 220

a€lm,p k=1 k=1q=1
ﬂezm,s

where Z,, s is defined in (1.12).

At this point the Hubbard—Stratonovich transformation is applied. The trans-
formation is an employment of (2.13) or (2.15) in the reverse direction. It yields
for even p + s,

exp{ﬁp,sn (o+)/2 (Zn: 1) H Ors, H ¢kaq> <Z 11 oxa, H 9%) }

k=1 k=1gq=1
_n —bts—2 %k,p, (p,s)
_W/exp{ yﬂa Uop

—phe=2 k,p,s) (p,s
B Z Qo ya,@ - ‘qab’

}dq( Ddg?, (2.22)

where

k7 b
@éap Y = Vips( H ekﬂr H ¢kaq (2.23)

7107 \/% H ¢kaq H ekﬁr (224)

Here and below we take a branch of the square root such that its argument is
in [0, 7). Similarly, for odd p + s we have

eXp{/<cp,s7”b_(p+5)/2 (Z 1)P H Ors, H ¢kaq> <Z [ ¢xa, H 9%) }

k=1 k=1q=1

> A{k,p,s)éggs) _pEe Zn: (5%,5))* ygg,p,s)
— (e57) € } (€0) ey, (2.25)

k=1
Then the combination of (2.18), (2.21), (2.22) and (2.25) gives us

Cm =t = — —
= (D) [Tl T e ot

k=1 p+sisodd
0<p,s<m

< ] et @eQredqQ; dQy.s (2.26)

p+s is even
0<p,s<m



102 levgenii Afanasiev

where
_— ~1/2 —3/4_(1) (=
k= /GXP {bkz +n" e+ 0" p, (B, @, 0)
(2.27)
(0, @, @)} x def deydd; dvy,,
brp = — Z <tr 1~/kuv,st,s +tr Q;,Syk,p,s) + ol Zopr + 9L 27y,
pts=2
bk,4 = - Z <tI‘ ?k,p,st,s + tr Q;,sYk,p,s) ’ (2'28)
p+s*4
p)(Z, ®,0) Z” RIS (tr VipsEps + tr E;sYk,p,s> ,
ps=2j—1
m o~
(Q,<I> 0) Zn (7=3)/2 Z <tr Yip,s@p,s + tr Q;,sYk,p,S>'
pts=2j

In the formulas above, 5, 5, @p.s, Yip,s and Y}, s are matrices whose entries are

5(2 ﬂs), qéﬂ ), gj{ﬁ]zp %) and yé P ), respectively. The rows and columns are indexed

by the elements of the set Im,p for corresponding p (or s) in lexicographical order.
Note also that p((zl)Aand p((;l) are the first degree homogeneous polynomials of the

entries of E and @, respectively, where @ contains all the Q; except Q1. One

(1)

more thing we need is that all the monomials of p; * have odd degree with respect

(1)

to ¢y and Y, and all the monomials of p¢” have even degree with respect to
and 9.

Fortunately, the integral in (2.26) over ® and © factorizes. Therefore the
integration can be performed over ¢ and 1 separately for every k. Lemma 2.6
provides a corresponding result.

Lemma 2.6. Let j, be defined by (2.27). Then
e =PEF 40 20(Q2) + 07 'p(Q) + P (EQ), (229)
where F is defined in (2.4),
}VL(QQ) = /bk 4eb’“ 2d<pk dgokd’19+dl9k, (2.30)
p.(Q) and pgz)(E, Q) are polynomials such that
(i) pe(0) =0,
(ii) every monomial of pﬁf) has at least second degree with respect to E.

Proof. The integral j, is computed by the expansion of the exponent into
series. We start with
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ik = / (1+ > n‘g’“/“(pél)(a@,@))’“)

1<k<4m/3
_ 1.1, A
x P2t Pheatn e Q2O gt ooy d9 T dy,  (2.31)

where the terms of degree higher than 4m with respect to ¢ and 9J; van-
ish, because the square of any anti-commuting variable is zero. The mono-
mials of odd degree with respect to ¢ and ¥y also vanish after integra-
tion. Indeed, for every odd degree homogeneous polynomial p the expansion of
P (pr, %) ebr,2n 1 2be a0 pe(Q2.0) into series gives us only odd degree terms.
Whereas the number of Grassmann variables is even, there are no top degree
monomials and the integral is zero. Thus (2.31) simplifies to

k= / (1 +n P8, @, 9)) ebratn ™ 2b atn e (Q,2,0)
x dey depd9} doy, (2.32)

where p,(IS)(E, ®, ) is a polynomial and its every monomial has a degree at least

2 with respect to E and at least 2 with respect to ¢ and 9. Put

p((12) (E’ Q) = /p((z3) (E’ (I)7 @)ebk’2+n_l/2bkﬁ4+n_lpgl>(Q,‘P,@)
x dp} dppd9; ddy. (2.33)

Note that pi?(E, Q) satisfies condition (ii). Substitution of (2.33) into (2.32)
yields

_ -1.1) A
k= / bt Puatn TR QR0 ook dipydd ddy, + Y 2pP (B, Q).

Further expansion implies

k= / (1 + 0 P+ 07 'p(Q, @, 9)) e 2depif dprd9f Aoy
+n732pI(E,Q),

where pg2)((§, ®, ©) is again a polynomial such that p£2)(0, ®,0) = 0. Similarly
to the above, we obtain

i = / (1407204 ) ehr2dipi deprdii ddy + n”'pe(Q)

+n732%p2(5,Q), (2.34)

~

where p.(Q) satisfies condition (i).

Recalling the definition of yggp ) (2.23) and the values of ;¢ (2.20), one can
render by o in the form

1
b2 = —§P£Fpk7 (2.35)
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where F' is defined in (2.4) and
Pk = . (236)

Then (2.34) and (2.16) imply the assertion of the lemma. O

A substitution of (2.29) into (2.26) gives us

nY €m — _ n —tr 2 Eps et =
fm=<;> / (h(Q)+n*?p@ @, Q)" [ e "=FredE; dE,,
p+s is odd
0<p,s<m

y H efntrQZ,st,SdQ;sde,sa

p+s is even
0<p,s<m

where h(Q) is defined in (2.3). Further,

Cm

_ — n _ _ _

Q)+ P Q) =3 ()o@ e = Q)
k=0

because there are 2¢,, anti-commuting variables and every monomial of p((f) has

at least second degree with respect to E. Hence,

o= (2)" [(@er + 0759 (2.Q)

X H e trEZ_’Sap’SdE;sdEp,s X enf(Q)—Cm logh(Q)dQ’ (237)

p+s is odd
0<p,s<m

where p((lg) is a polynomial and f(Q) is defined in (2.2). Taking into account
(2.15) and the definition of an integral over anti-commuting variables, one can
perform the integration over E in (2.37) and obtain (2.1).

3. Asymptotic analysis

The goal of the section is to study the asymptotic behavior of the integral
representation (2.6). To this end, the steepest descent method is applied. As
usual, the hardest step is to choose the stationary points of f(Q) and an N-
dimensional (real) manifold M, C C" such that for any chosen stationary point
Q. € M,

RF(Q) <Rf(Q.), VQ € M,,

where @ is not chosen. Note that N is equal to the number of real variables of
the integration, i.e., in our case N = 22™,
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The present proof proceeds by a standard scheme for the case when the func-
tion f(Q) has the form

(@) = fo(Q) +n2£.(Q),

where fo(Q) does not depend on n, whereas f,(Q) may depend on n. We choose
the stationary points of fo(Q) of the form Q = UAUT, Q =0, where

]\0:< 0 A0> :< 0 )\OIm>
—Ayp O ol 0 )7
Ao is a fixed positive number and U varies in U(2m). Then the steepest descent
method is applied to the integral over A and Q In the process U is considered
as a parameter and all the estimates are uniform in U. As soon as the domain of
integration is restricted by a small neighborhood, we recall about the integration
over U. After several changes of the variables the integral is reduced to the form
(1.9).

We start with the analysis of fj.

Lemma 3.1. Let the function fo: R2™ [—00,+00) be defined by (2.7).
Then fo(A, Q) attains its global maximum value only at the point

A =-=An=2X, Q=0,

where Ao = /1 — |zo|2. Moreover, the matriz of the second order derivatives of
fo w.r.t. A and Q at this point is negative definite.

~

Proof. Tt is evident from (2.7) and (2.8) that fy(A, Q) has the form

o(A,Q Z —(Qu, Qo) — Z;QJ,Q] (3.1)
pa pm

where
F(A) = =A% + log(|20]* + A%).

Since fi(A) =0 iff A = Ao and )\lim f«(A) = —o0, f«(A) attains its global maxi-
—00

mum value only at A = Ag. Furthermore, f(X\g) = —4A3. These facts and (3.1)
immediately imply the assertion of the lemma. O

To simplify the reading, the remaining steps are first explained in the case
when the matrices M, are from GinOE.

3.1. Gaussian case. Now we proceed to the integral estimates. In a stan-
dard way the integration domain in (2.11) can be restricted as follows:

fm = Cn®™* m/& (A?) H)\ x e AT gy (U)dA + O(e™/?),
= =1
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where

Y ={(AU) [A] <7}

The next step is to restrict the integration domain by

0= { (4,07 14 - do] < 52}, (32)

where Ag = A\ol,,. To this end we need the estimate of R f given by the following
lemmas.

Lemma 3.2. Let A be an m x m diagonal matriz such that |[A| < logn.
Then, uniformly in U,

F(U(Ag + n_l/QTX)UT) = —mA+n Vot Z 40t we(Zp 2l )2

—n 7 tr(2AoM + 202y + 2 25)? /4 (3.3)
+ O(n_3/2 log® n),

where Z is defined in (1.11), Zw = W*ZW, AR is a dual matriz defined in
(1.8), M = diag{A, A}.

Proof. If Q = U(Ag + n’l/ZK)UT, then F has the form

=0 o) (me ) (o or),

BN A W . [z, A
F = X 5 F == ~ o . 34
’ ( Ao 2012m> ! (A Z§> (34)

Taking into account that
det Fy = |det 2 Ao det [ *0 —o =1,
—Xo 20 Ao 20

log det F' = trlog(1 + n~V/2E; 1EY)

where

one gets

(S T log?
=t Fy 'y = oo te(Fy )2 40 (%) (3.5)

uniformly in U. Moreover,

- »‘C»_v A
o= (o k)

—]\02(] + Z()K Ao M + 2’025
Combining (3.5), (3.6), (2.12) and the fact that ]\OK = KAO = — oM, we get
FU(Rg + n2R)UT)
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1 < . .
=3 tr [Ag — o V2PA M —n M2+ n*1/2(2>\0./\/l + 202y + Z()Zg)

- n_l{()\g - Z%)M2 + QZvozUM + 220)\02(7}./\/1

5328+ (20)) + RoZuhoZT}] + O logn).  (37)

Note that
trZLT, =trZy =tr Z,
wZfM =t (ZEM)")" = w20,
tr(ZE)z = tr(Z§)2,
tr RoZuRo 2T = N tr 2y J 20T — —\2tr 2y 28,
Hence the expansion (3.7) yields (3.3). O

Lemma 3.3. Let f(Qv) = f(Q) — f(Ao). Then, for sufficiently large n,

log?n

max RF(UAUT) < —C

1
61 <[ A~ Aol|<r n

uniformly in U.

Proof. First, let us check that the first and the second derivatives of f, are
bounded in the d-neighborhood of Ag, where f, is defined in (2.9) and § is n-
independent. Indeed, since h and hg are polynomials and h == hg on compacts,

LRG| | 0% |0 ) _|2logh ~logho)
\/’71 8)\j - \/778)\] 8)\j 8)\]-
10 10h| _ C
- hoa/\j ha)\j _\/’ril'

For every real diagonal matrix E of unit norm and for k\)}g; <t <4, we have

SRFU(Ro +tBYUT) = (Vafo(U (Ao + LE)U"), (E)
+ 0 VHVARS (U (A 4+ tEYUT), v(E))
= (Vafo(Ao + tE),v(E)) + O(n1/?),

where E = diag{F, E}, v(E) denotes a vector with components e; and (-, ) is a
standard real scalar product. Expanding the scalar product by the Taylor formula
and considering that V fo(Ao) = 0, we obtain

SRFU(Ro + tBYUT) = Hf4 (Ro)u(B), o(E)) + 71+ O,
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where f{j is a matrix of second order derivatives of fo with respect to A and |rq| <
Ct2. fU(Ag) is negative definite according to Lemma 3.1. Hence %?R f(U(Ao +
tE)UT) is negative and

max  RFUAUT)= max RfFUAUT)

5L <[[A—Ao|| <6 IA—Aol|="2%2

. log?n .
< fUAUT) = CZEL — f(Ry).  (38)
Notice that f, is bounded from above uniformly in n. This fact and Lemma 3.1
imply that 0 in (3.8) can be replaced by r,

max  RFUAUT) < F(UAUT) — f(Ag) — olog’n

1
1982 || A—Ao | <r n

It remains to deduce from Lemma 3.2 that f(UAUT) — f(Ag) = O(n™') uni-
formly in U. O

Lemma 3.3 yields

f = On2m*~menf(Ro) ( / A [Ty x O D dp(u)da + O(e 10g2”)> ,
Qn J=1

where Q,, is defined in (3.2). Changing the variables A = Ao—i—ﬁx and expanding
f according to Lemma 3.2, we obtain

£, = Cky, / AYR)Adu(U)(1 + 0(1)) (3.9)
VnQin
1 - < 1 .
X exp {—4 tr(2AoM + 202y + 202{1)? + 3 tr ZUZ[]}} , (3.10)
where §
kn — nm2_m/2€—mn)\(2)+\/ﬁzo trZ. (311)

Let us do several changes of the variables. The first one is U = ODS*, where O is
a real orthogonal matrix, S is a unitary symplectic matrix and D = diag{D, D},
D = diag{e™i }71,. Taking into account that du(U) changes to Cdu(O)du(S)dn
with dn = A?(D*) IT5%, e~ (Um=1in;dn . we get

fm:(Jkn/N(fx)de / dn / du(0) / du(S)(1 + o(1))
R™ [0,m]™ O(2m) USp(m)

1 - .
X exp {—4 tr(2AoM + S*(Zozob + ZoZgD)S)Q

+ %tr ZoD*0fzR (ODQOR)*}
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= Cky, /N )dA / dn / du(O / du(S)(1+ o(1))

R™ [0,7]™ USp(m)

1 . 5 |
X exp {—4 tr(2ASMS* + 202, + zoZ(])%D)2 + 3 tr ZVZRV*} ,

where V' = OD?0O". The second change of the variables is H = SMJS*. Then
H runs over Hermitian self-dual matrices, and the Jacobian of the change is
CA*(A). Thus,

fin = Cky, / dH / dn / dp(O)(1 + o(1))
[0,7]m

H=H*= 0(2m)
1 7 >R \2 7 SRy *
X exp =7 (20 H + 2020p + 2025p)" + 5 tr ZVZEv*
where
dH = [[d(H);; [] dR(H)xdS(H)jkdRH) by mdS(H) j gt m-
j j<k<m

The Gaussian integration over H implies

1 . .
fn = Cky, / dn / du(O) exp {2 trZVZRV*} (14 o(1)). (3.12)
[0,7]™ O(2m)
Finally, the last change of the variables V' = OD?O" brings the integration do-
main to the set of all unitary self-dual 2m x 2m matrices. dndu(O) transforms to

the measure C'dus(V') which corresponds to the differential form (1.10). There-
fore,

1 . .
fn = Cky, / exp{QtrZVZRV*}d,us(V)(l +o(1)). (3.13)
V=VReU(2m)

(3.13) and (2.10) yield assertion (i) of Theorem 1.1.
In order to prove assertion (ii), let us compute the integral (3.13) for m = 2.

Lemma 3.4. Let A = diag{ai,az,as,as} be an arbitrary diagonal matriz.
Then

Pf((aj — ar)e™ ™)y
A(A)

1
St AVARV*} dus(V) =C (3.14)
V=VReU(4)
Proof. Observe that the left-hand side of (3.14) is analytic in a1, a2, a3, a4.
Thus, it is sufficient to evaluate series of the integral at A = 0. A straightforward
computation gives us

1 "
5 tr AVARV = ajas + asayg — (a1 — a2)(a3 — a4) ”1)12’2 — ((12 — CL3)(CL4 — al) ‘U14‘2 .
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Let us define the number sequence {c;;} by the equality

e~bo /“ exp{;trAVARV*}dMAV)::§§<¥ﬂﬁ@, (3.15)
V=VReU(4) Jk=0
where
bo = a1a3 + azaa,
by = (a1 — a2)(as — ay), (3.16)
by = (az — a3)(aq — ay).
Further,
e / (]’1!:!+k 012 Jv14*" dpus (V)
V=VReU(4)
S AC TR

V=VEelU(4)

In order to compute the last integral, the following bosonization formula (see [27,
Theorem 4.11]) is used:

T+HY T+ (rH)"
/f ((_ M — (1) (T+)T>> dYtdYy
vol(Oy,)

= (2m)™29
B GO myag)

/ £(V) det "2 Vapy(V), (3.18)
V=VEeU(29)

where T is an n X ¢ matrix with anti-commuting entries, £ is an analytic function
and vol stands for volume. Let us apply (3.18) to (3.17) for n = j + k and ¢ = 2.

n(n+1)

Taking into account that vol(O,,) = %, we obtain
p=1

cip=0C (-1)*
T GRG A+ R+ 21+ k).

J+k j itk j itk k j+k k
X /(Z Ul*lvl2> (Z UZ*QUH> (Z Ul*ll)l*2> <— Z U11U12> dYtdT,
1=1 1=1 1=1 1=1

where C depends neither on j nor on k. Doing some combinatorics, it is easy to
see that the integrand equals

J+k
(=1)7(J + k)15tk! H V[V VRV
=1
Hence,
(_1)j+k
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Summing over j and k, we get

S kN~ (D) 1k

§,k=0 1=0

D e et e

_ - (7) _ b1 bo
_CIZ;(ZJrQ)! b T b (3:19)

Note that by — b2 = (a1 — a3)(a2 — a4). Thus, (3.15), (3.16) and (3.19) imply

bo bgefbl — b167b2 + (bl — bg)
brba (b1 — bo)

1
/ exp {2 tr AVARV*} dus(V) = Ce

V=VE
VeU(4)
C
= 7—&(1‘1) [(ag — ag)(a4 — a1)€

— (a1 — a2)(asg — aq)e

+ (a1 — a3)(az — aq)e

aijaq+azaz

airaz+tazaq

ai a3+a2a4]

To finish the proof, it remains to observe that the expression in the brackets is
exactly —Pf((a; — ak)e“f“k)§ el O

Applying the lemma to (3.13), one obtains

(&G — G)eSiS (éj_gwe@&
IN(CHCNENS))

which in combination with (2.10) yields assertion (ii) of Theorem 1.1.

o ((cj G (- §k>e<f<‘k>2

fo = Cky

P11 4 o(1)),

3.2. General case. In the general case the proof proceeds by the same
scheme as in the Gaussian case. In this subsection, we focus on the crucial
distinctions from the Gaussian case and refine the corresponding assertions from
the previous subsection.

In order to formulate the refinement of Lemma 3.2, let us introduce some new

notations. Set
IRl = /(Q.Q).

Since z1; is real, kp s depends only on p+ s (see (2.19)). We denote the common
value of k4_s s by k4. It is also convenient to change indices of the entries of Q2.
For any 6 € Zop, 4, determine a number s such that é;, < m < ds41. Then put

g((;?) = (jglﬁ_s’s), where

o= (0s41 —Mmy...,04 —m);

B=(51,...,0).
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Tym 4 denotes a set of such indices 0 that s = 2 and a = 3. A*B is the fourth
exterior power of a linear operator B (see [41] for definition and properties of an
exterior power of a linear operator).

At the point we are ready to generalize Lemma 3.2.

Lemma 3.5. Let ||Al| + Hé” <logn. Then, uniformly in U and V,

FU(Ro +n~ 2R UT 0~ 12Q)
= —mA+n"Y20tr Z 4+ 0 te(Zp 2E) /2
—n! tr(2 oM + ZoZU + 2025)2/4
+n VR D> Y (AT 24732 (MUT). )

0€Tom 4 v€TLY,, 4

“1Q,Q) +O(n~¥log?n), (3.20)

where we keep the notations of Lemma 3.2. All new notations are described just
before this lemma.

Proof. Differently from the Gaussian case, f has an additional term (Q, Q>
and an additional term nY2h(Q3) + n'pe(Q) under the logarithm (cf. (2.2)
and (2.12)), where h and _Pc_are defined in the assertion of Lemma 2.6. The
contribution of the term (Q Q> to the expansion (3.20) is evident. Furthermore,

n~lp.(n 1/2Q) = ( —3/2]0g3 n) because p. is a polynomial with zero constant

term. Hence, it remains to determine the contribution of the term n~/ 2E(QQ).
In order to simplify notations, let us omit the index k in (2.30). Thus, now
¢ and ¥ denote the vectors

b1 61
: and o
bm Om,
respectively. Then (2.30) is written as

Q) = / bee??dpt dpd9tdo,
where b2 has the form (2.35) and b4 is defined in (2.28). Therefore,
n2h(n2Q0) = n7 h(Q2) = —% / dp*dpdd™dg e3P FP
x> (tr Yy sQps + tr QV;S,SYp,s) . (3.21)
pts=4

where p is defined in (2.36), F' is defined in (2.4), f/p,s and Y, s are defined by
(2.23). In order to make further computation more clear, we introduce some more
notations. Put

O e P ol (322
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Let us change the variables p; = U7 p, ﬁfr = PTU. We have
20 _TTs T : :
—-1/2 (p,s) __ * + +
Ry " Yap = H Pay H 05, = (=" H (P )m+aq H (p1 )m
q=1 r=1 q=1 r=1
1
p(p—1) | s(s—1) ~
=(-1)P(-1)"2z T2 H (prT)éT ,
r=p+s
where
6= (61,...,ﬂs,m—i—al,...,m—i—ap) EIQmA.
Taking into account that p + s = 4 and
—1 s(s—1
2 2
is even, we get
/2, (p:s) -
—-1/2 (p, ~
Ii4 yapﬁs = Z H (pii»)'yr udr"/r
vE([1,2m|NZ)* r=4
1
_ T ~t
= Z det {U }75 H (pl )%
Y€Zom,4 r=4
1
= Y (MU ]] (A7), - (3.23)
Y€L2m, 4 r=4

where uj, = (U) jk and {U T}7 5 is a submatrix of U” constructed as an intersec-

tion of rows 71, ..., y4 with columns 01, ..., d4. Similarly,
/2~(p,s) -
—1/2~(p, 457 ~
kg g = Z (A U)MH (p1)., -
’y€I2m74 r=1
Besides,

p Fp=—plFp.=—p Fyp. +O(n"?logn),
where Fy is defined in (3.4) and
T ~\T
p. = <(p1) > pl=(-rl of), p= <(pl) ) pi=(-pf
P1 p1
The “measure” changes as follows:
detdpddTd9 = det U det™! Udp dp, = dp{ dp:.

Eventually, substitution of (3.23)—(3.26) into (3.21) yields
T A 1 I A
@)=t Y S v [t

n
0€ZLom, 4 YEL2m 4

(3.24)

(3.25)

7).

(3.26)
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4 1
<(A4U H o), a0 + a3 (N [T (ﬁi)%>
r=1 r=4
£ O 1og n) (3.27)

uniformly in U.
Let us denote the components of p; and pf in the same way as in (3.22)

but with tildes. Then the integration in (3.27) can be performed over ¢;, 5]
separately for every j due to the structure of Fy. Thus, it remains to compute
the integral

4
/ 5., exp {zoeje;f + b8} + 200507 — A0¢j0;} A’ dd;d0do);
r=1

and the same one with pf instead of p;. Furthermore, expanding the expo-
nent into series, one can observe that the integral is non-zero only if v € T, 4
Moreover,

/ 05000, +200365-+200305 =303 131346 df); = M,
/ 310420005 +20036 209385 =30030 13 43 7% 4, = — Ao,
/ 200305 +000367+206,97 2007 43 454 d; = 1.
It implies

Th(Qa) =n I NVEL Y D (MT)syds i+ T (NUT).5)

0€lam 4 v€TLY,, 4
+ O(n_3/2 log® n)
The above relation completes the proof of (3.20). O
An analog of Lemma 3.3 is

Lemma 3.6. Let f(Q) = f(Q) — f(Ao,0). Then, for sufficiently large n,

Clog2 n

‘max _ RFUAUT,Q) < -
2 <[|A—Rol|+]| Q| <r n

uniformly in U.

The proof needs only cosmetic changes because of additional variables @
Following the proof in the Gaussian case, one can see that (3.9) transforms into

~ 1 g - 1 .
f, = Cky, / A4(A) exp{—4 tr(2AoM + 202y + ZOZII})Q + 5 tr ZUZ{;L
Vnin
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2
VR Y Y (WND)5s) + 3D (AUT))

661—2'm,4 'VEZém,

- (@ Q>} p(U)dAdQ(1 + o(1)),
where k,, is defined in (3.11). The Gaussian integration over Q yields
~ 1 < < 1 .
f, = Cky, / A4(A) exp{—4 tr(2AoM + 202y + 2025)2 + 3 tr ZUZ%2

FXe 305D (W) s\ D), )R+ o),
0€Zam 4 ’YEIémA

Note that A*UT and A*U are mutually inverse matrices. Hence,

Z (/\4UT)76(/\4U)67 = (/\4UT A U)'y'y =
0€Tom 4

Therefore,
m2 —
fin = Cky exp { /\0’%4} (1 + 0(1))
~ 1 - . 1 . . ~
X /A4(A) exp{—4 tr(2)\0/\/l + 202y + ZoZ[]})Q + B tr ZUZ(]J{}d,u(U)dA

The last formula shows that there are no differences in further proof up to a high

b
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IIpo xopensniiini GyHKIIIT XapaKTEPUCTUIHUX
HOJIIHOMIB AifiICHMX BUIMAJKOBUX MaTPUIb 3
He3aJIeKHUMHU eJIeMeHTaMu

Tevgenii Afanasiev

VY crarTi po3rigHYTO KOpessmiitai GyHKIN XapaKTePUCTUIHUX [TOJTIHO-
MiB AifiCHUX BHUIIQJKOBHUX MATPHUIb 3 HE3AJIE’KHUMH eJleMeHTaMH Ta BCTa-
HOBJIEHO ACHMIITOTHYHY IOBEJIHKY ITMX KOPeJIAIifiHuX (GyHKIiR y dopmi
JIESTKOTO iHTerpaJia 3a iHBapiaHTHOIO MipOIO MO0 MHOYKWHI YHITAPHUX CAMO-
JyaJpHUX MarTpuilb. Lleit iHTerpas 00YnUC/IeHO JJIs KOPEIAIiitHOT (hyHKIT
JIpYTOro TOPSJIKY. 3 OJep:KaHOl ACHMITOTHKY BUILINBAE, MO KOPEJISIiitHi
byHKIIT Be1yTh cebe TaKMM 2Ke INHOM, K 1 y BHMAJAKY JIfICHOrO aHCaMOJIIO
7Kunibpa 3 TOYHICTIO 70 MHOXKHHKA, IO 3aJEKUTDH JIUIIE BiJl I€TBEPTOrO
MOMEHTY CIIJIbHOTO PO3IOJILTY WMOBIpHOCTEHl MATPUIHUX €JIEMEHTIB.

Kimo4oBi csioBa: Teopist BUMMaKOBUX MATPHUIlb, ancambis 2Kunibpa, xo-
pensariitai GyHKINT XapaKTePUCTUIHNX MTOJIHOMIB, MOMEHTH XapaKTEePUCTH-
YHUX IIOJIIHOMIB, CyllepCUMETPist
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