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On Certain Geometric Properties in Banach

Spaces of Vector-Valued Functions

Jan-David Hardtke

We consider a certain type of geometric properties of Banach spaces,
which includes, for instance, octahedrality, almost squareness, lushness and
the Daugavet property. For this type of properties, we obtain a general
reduction theorem, which, roughly speaking, states the following: if the
property in question is stable under certain finite absolute sums (for example,
finite `p-sums), then it is also stable under the formation of corresponding
Köthe–Bochner spaces (for example, Lp-Bochner spaces). From this general
theorem, we obtain as corollaries a number of new results as well as some
alternative proofs of already known results concerning octahedral and almost
square spaces and their relatives, diameter two properties, lush spaces and
other classes.
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1. Introduction

Let K be the real or complex field. We consider a class E of Banach spaces
over K which is closed under isometric isomorphisms, i.e., if X ∈ E and Y is
isometrically isomorphic to X, then Y ∈ E .

For a given Banach space X, we denote by X∗ its dual space, by BX its closed
unit ball and by SX its unit sphere. Furthermore, Bfin

X and Sfin
X will denote the

sets of all finite sequences in BX and SX . For fixed n ∈ N, Bn
X and SnX will stand

for the sets of all sequences of length n in BX and SX . Given x = (x1, . . . , xn) ∈
Bn
X , we set ‖x‖∞ := maxi=1,...,n‖xi‖. Finally, U(X) denotes the set of all closed

non-zero subspaces of X.
The following is our main definition.

Definition 1.1. Let X be a Banach space. A family of real-valued functions
Fε,U on Bfin

U × Bfin
U∗ × Bfin

U × Bfin
U∗ with U ∈ U(X) and ε > 0 is said to be a test

family for E in X if the following conditions are satisfied:

(i) For every U ∈ U(X), one has that U ∈ E if and only if for every ε > 0
and all x ∈ Sfin

U and x∗ ∈ Sfin
U∗ there exist y ∈ Sfin

U and y∗ ∈ Sfin
U∗ such that

Fε,U (x,x∗,y,y∗) ≤ ε.
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(ii) If 0 < ε1 < ε2 and U ∈ U(X), then Fε1,U ≥ Fε2,U .

(iii)There exists c > 0 such that for all U ∈ U(X), all ε > 0, every x,y ∈ Bfin
U

and every x∗,y∗ ∈ Bfin
X∗ one has

Fε,X(x,x∗,y,y∗) ≤ cFε,U (x,x∗|U ,y,y∗|U ),

where for x∗ = (x∗1, . . . , x
∗
n) we define x∗|U = (x∗1|U , . . . , x∗n|U ) (and analo-

gously for y∗).

(iv) For every ε > 0, all τ > 0, each x∗ ∈ Bfin
X∗ , all n ∈ N and all x ∈ Bn

X , there
exists a δ > 0 such that

|Fε,X(x,x∗,y,y∗)− Fε,X(z,x∗,y,y∗)| ≤ τ

holds for all y ∈ Bfin
X , all y∗ ∈ Bfin

X∗ and every z ∈ Bn
X with ‖x− z‖∞ ≤ δ.

(v) For every ε > 0, all n,m ∈ N and all η > 0, there exists θ > 0 such that for
every U ∈ U(X) one has

|Fε,U (x,x∗,y,y∗)− Fε,U (x, z∗,y,y∗)| ≤ η

for all x ∈ Bn
U , all y ∈ Bfin

U , all y∗ ∈ Bfin
U∗ and all x∗, z∗ ∈ Bm

U∗ with ‖x∗ −
z∗‖∞ ≤ θ.

Roughly speaking, we want to show that if a Banach space property can be
characterised in terms of test families and is stable under certain finite, absolute
sums, then it is also stable under the formation of corresponding Köthe–Bochner
function spaces.

Some examples of Banach space properties which can be described by test
families will be presented in the next section (the constant c in the above definition
will be 1 for all these examples). Here we continue with the necessary basics on
absolute sums and Köthe–Bochner spaces.

Let I be a non-empty set, E be a subspace of RI with ei ∈ E for all i ∈ I
and ‖·‖E be a complete norm on E (here ei denotes the characteristic function
of {i}).

The norm ‖·‖E is called absolute if

(ai)i∈I ∈ E, (bi)i∈I ∈ RI and |ai| = |bi| ∀i ∈ I
⇒ (bi)i∈I ∈ E and ‖(ai)i∈I‖E = ‖(bi)i∈I‖E .

The norm is called normalised if ‖ei‖E = 1 for every i ∈ I.
Standard examples of subspaces of RI with absolute normalised norm are of

course the spaces `p(I) for 1 ≤ p ≤ ∞ and the space c0(I).
We note the following lemma on absolute norms (see, e.g., [24, Remark 2.1]).

Lemma 1.2. Let (E, ‖ . ‖E) be a subspace of RI with an absolute normalised
norm. Then the following is true:

(ai)i∈I ∈ E, (bi)i∈I ∈ RI and |bi| ≤ |ai| ∀i ∈ I
⇒ (bi)i∈I ∈ E and ‖(bi)i∈I‖E ≤ ‖(ai)i∈I‖E .
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If (Xi)i∈I is a family of (real or complex) Banach spaces, we put

[⊕
i∈I

Xi

]
E

:=

{
(xi)i∈I ∈

∏
i∈I

Xi : (‖xi‖)i∈I ∈ E

}
.

This defines a subspace of the product space
∏
i∈I Xi which becomes a Banach

space when endowed with the norm

‖(xi)i∈I‖E := ‖(‖xi‖)i∈I‖E ∀(xi)i∈I ∈
[⊕
i∈I

Xi

]
E
.

We call this Banach space the absolute sum of the family (Xi)i∈I with respect to
E. For p ∈ [1,∞] and E = `p(I), one obtains the usual p-sums of Banach spaces.

The “continuous counterpart” to absolute sums are the Köthe–Bochner func-
tion spaces, whose definition we will recall now. Let (S,A, µ) be a complete
σ-finite measure space. For A ∈ A, we denote by χA the characteristic function
of A. A Köthe function space over (S,A, µ) is a Banach space (E, ‖·‖E) of real-
valued measurable functions on S (modulo equality µ-almost everywhere) such
that

(i) χA ∈ E for every A ∈ A with µ(A) <∞,

(ii) for every f ∈ E and every set A ∈ A with µ(A) < ∞ f is µ-integrable over
A,

(iii) if g is measurable and f ∈ E such that |g(t)| ≤ |f(t)| µ-a.e., then g ∈ E and
‖g‖E ≤ ‖f‖E .

Standard examples are the spaces Lp(µ) for 1 ≤ p ≤ ∞.
Further recall that, given a Banach space X, a function f : S → X is called

simple if there are finitely many disjoint measurable sets A1, . . . , An ∈ A such
that µ(Ai) < ∞ for all i = 1, . . . , n, f is constant on each Ai and f(t) = 0 for
every t ∈ S \

⋃n
i=1Ai. The function f is said to be Bochner-measurable if there

exists a sequence (fn)n∈N of simple functions such that limn→∞‖fn(t)− f(t)‖ =
0 µ-a.e.

For a Köthe function space E and a Banach space X, we denote by E(X) the
space of all Bochner-measurable functions f : S → X (modulo equality a. e.) such
that ‖f(·)‖ ∈ E. Endowed with the norm ‖f‖E(X) = ‖‖f(·)‖‖E , E(X) becomes
a Banach space, the so-called Köthe–Bochner space induced by E and X. For
E = Lp(µ), we obtain the usual Lebesgue–Bochner spaces Lp(µ,X) for 1 ≤ p ≤
∞. For more information on Köthe–Bochner spaces the reader is referred to the
book [25].

2. Examples

We will now discuss a number of examples of the Banach space properties
which can be described via test families. We start with the octahedral spaces
and their relatives.
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2.1. Octahedrality. A real Banach space X is called octahedral (OH)
(see [12]) if the following holds: for every finite-dimensional subspace F of X and
every ε > 0 there is some y ∈ SX such that

‖x+ y‖ ≥ (1− ε)(‖x‖+ 1) ∀x ∈ F.

`1 is the model example of an OH space. It is known that a Banach space
has an equivalent OH norm if and only if it contains an isomorphic copy of `1

(see [11, Theorem 2.5, p. 106]).
In the paper [15], two variants of octahedrality where introduced.
X is called locally octahedral (LOH) if for every x ∈ X and every ε > 0 there

exists y ∈ SX such that

‖sx+ y‖ ≥ (1− ε)(|s|‖x‖+ 1) ∀s ∈ R.

X is called weakly octahedral (WOH) if for every finite-dimensional subspace F
of X, every x∗ ∈ BX∗ and each ε > 0 there is some y ∈ SX such that

‖x+ y‖ ≥ (1− ε)(|x∗(x)|+ 1) ∀x ∈ F.

The motivation for this definition in [15] was the study of the so-called diameter
two properties. Given x∗ ∈ SX∗ and α > 0, the slice of BX induced by x∗ and α
is S(x∗, α) := {z ∈ BX , x∗(z) > 1− α}. According to [1], the space X is said to
have the local diameter two property (LD2P) if every slice of BX has diameter 2;
X has the diameter two property (D2P) if every nonempty, relatively weakly open
subset of BX has diameter 2; X has the strong diameter two property (SD2P) if
every convex combination of slices of BX has diameter 2.

The following results were proved in [15]:

(a) X has LD2P ⇐⇒ X∗ is LOH.

(b) X has D2P ⇐⇒ X∗ is WOH.

(c) X has SD2P ⇐⇒ X∗ is OH.

The equivalence (c) was also proved independently in [5].
It is known that the three diameter two properties are really different. For

example, it follows from the results on direct sums in [15] that c0 ⊕2 c0 has the
D2P but not the SD2P (we will recall these results in Section 4).

Concerning the nonequivalence of the LD2P and the D2P, it has been shown
in [6] that there is a Banach space with the LD2P whose unit ball contains
relatively weakly open subsets of arbitrarily small diameter (every Banach space
containing an isomorphic copy of c0 can be renormed to become such a space [6,
Theorem 2.4] (note that the abbreviation SD2P in [6] does not stand for “strong
diameter two property” but for “slice diameter two property”, which coincides
with the LD2P of [1]).

In [21] it was shown that Cesàro function spaces have the D2P.
It is possible to characterise all three octahedrality properties in terms of test

families. To do this, we make use of the following equivalent formulations proved
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in [15] (other equivalent characterisations in terms of coverings of the unit ball
were proved in [14]).

A Banach space X is OH if and only if for every n ∈ N, all x1, . . . , xn ∈ SX
and every ε > 0 there exists an element y ∈ SX such that ‖xi + y‖ ≥ 2− ε for all
i = 1, . . . , n.

X is LOH if and only if for every x ∈ SX and all ε > 0 there exists y ∈ SX
such ‖x± y‖ ≥ 2− ε.

Of course, the same characterisations also hold for all closed subspaces of X.
Thus, if we put

Fε,U (x,x∗,y,y∗) := max{2− ‖xi + y1‖ : i = 1, . . . , n}

for U ∈ U(X), x = (x1, . . . , xn),y = (y1, . . . , ym) ∈ Bfin
U and x∗,y∗ ∈ Bfin

U∗ , we
obtain a test family for the class of octahedral spaces in X.

If we put instead

Fε,U (x,x∗,y,y∗) := max{2− ‖x1 + y1‖, 2− ‖x1 − y1‖},

we obtain a test family for LOH in X.

In both cases, condition (i) in Definition 1.1 follows from the above charac-
terisations, while conditions (ii)–(v) are easily verified.

For weak octahedrality, the following was proved in [15]: X is WOH if and
only if for every n ∈ N, all x1, . . . , xn ∈ SX , every x∗ ∈ SX∗ and every ε > 0
there exists a y ∈ SX such that ‖xi+ ty‖ ≥ (1−ε)(|x∗(xi)|+ t) for all i = 1, . . . , n
and every t ≥ ε.

The original formulation in [15] reads “for every x∗ ∈ BX∗”, but it clearly
suffices to take x∗ ∈ SX∗ .

Thus, if we define

Fε,U (x,x∗,y,y∗) := max
i=1,...,n

sup
t≥ε

(
1− ‖xi + ty1‖
|x∗1(xi)|+ t

)
for U ∈ U(X), x = (x1, . . . , xn),y = (y1, . . . , ym) ∈ Bfin

U and x∗ = (x∗1, . . . , x
∗
k),

y∗ ∈ Bfin
U∗ , then condition (i) in the definition of a test family for the class of

WOH spaces is satisfied and (ii) and (iii) are clearly true as well. Conditions (iv)
and (v) easily follow from the next auxiliary lemma.

Lemma 2.1. If Y is a real Banach space and ε > 0, define the function f :
BY ×BY ×BY ∗ → R by

f(x, y, x∗) := sup
t≥ε

(
1− ‖x+ ty‖
|x∗(x)|+ t

)
∀x, y ∈ BY ,∀x∗ ∈ BY ∗ .

If δ > 0, x, x̃, y, ỹ ∈ BY with ‖x − x̃‖, ‖y − ỹ‖ ≤ δ and x∗, x̃∗ ∈ BY ∗ with ‖x∗ −
x̃∗‖ ≤ δ, then

|f(x, y, x∗)− f(x̃, ỹ, x̃∗)| ≤ δ(3/ε+ 2/ε2 + 1).
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Proof. We have ||x̃∗(x̃)| − |x∗(x)|| ≤ |x̃∗(x̃)− x̃∗(x)|+ |x̃∗(x)− x∗(x)| ≤ 2δ.

Thus, for every t ≥ ε, we have

1− ‖x̃+ tỹ‖
|x̃∗(x̃)|+ t

−
(

1− ‖x+ ty‖
|x∗(x)|+ t

)
=
‖x+ ty‖(|x̃∗(x̃)|+ t)− ‖x̃+ tỹ‖(|x∗(x)|+ t)

(|x∗(x)|+ t)(|x̃∗(x̃)|+ t)

≤ ‖x+ ty‖(|x∗(x)|+ 2δ + t)− ‖x̃+ tỹ‖(|x∗(x)|+ t)

(|x∗(x)|+ t)(|x̃∗(x̃)|+ t)

≤ 2δ

t2
‖x+ ty‖+

‖x+ ty‖ − ‖x̃+ tỹ‖
|x̃∗(x̃)|+ t

≤ 2δ

t2
(1 + t) +

‖x− x̃‖+ t‖y − ỹ‖
|x̃∗(x̃)|+ t

≤ 2δ

t2
(1 + t) +

(1 + t)δ

t
= δ(3/t+ 2/t2 + 1)

≤ δ(3/ε+ 2/ε2 + 1).

By symmetry, we also have

1− ‖x+ ty‖
|x∗(x)|+ t

−
(

1− ‖x̃+ tỹ‖
|x̃∗(x̃)|+ t

)
≤ δ(3/ε+ 2/ε2 + 1)

for all t ≥ ε. This implies the desired inequality.

The above-mentioned dual characterisations from [15] allow us to write the
diameter two properties in terms of test families as well.

Since a Banach space has the LD2P if and only if its dual is LOH, we obtain
a test family for the LD2P in X by setting

Fε,U (x,x∗,y,y∗) := max{2− ‖x∗1 + y∗1‖, 2− ‖x∗1 − y∗1‖}

for U ∈ U(X), x,y ∈ Bfin
U and x∗ = (x∗1, . . . , x

∗
n), y∗ = (y∗1, . . . , y

∗
m) ∈ Bfin

U∗ .

Likewise, since a Banach space has the SD2P if and only its dual is OH, a
test family for the SD2P in X is given by

Fε,U (x,x∗,y,y∗) := max{2− ‖x∗i + y∗1‖ : i = 1, . . . , n}

for U ∈ U(X), x,y ∈ Bfin
U and x∗ = (x∗1, . . . , x

∗
n), y∗ = (y∗1, . . . , y

∗
m) ∈ Bfin

U∗ . (In
both cases conditions (i)–(v) are easily checked.)

We also know that a Banach space has the D2P if and only if its dual is
WOH. Then we can make use of the following characterisation (see [15]) for the
property WOH in dual spaces, which does not involve the bidual:

X∗ is WOH if and only if for every n ∈ N, all x∗1, . . . , x
∗
n ∈ SX∗ , every x ∈ SX

and every ε > 0 there exists y∗ ∈ SX∗ such that

‖x∗i + ty∗‖ ≥ (1− ε)(|x∗i (x)|+ t) ∀i ∈ {1, . . . , n} ∀t ≥ ε.
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Thus we can define a test family for the D2P in X by

Fε,U (x,x∗,y,y∗) := max
i=1,...,n

sup
t≥ε

(
1− ‖x

∗
i + ty∗1‖

|x∗i (x1)|+ t

)
for U ∈ U(X), x = (x1, . . . , xk),y ∈ Bfin

U and x∗ = (x∗1, . . . , x
∗
n), y∗ =

(y∗1, . . . , y
∗
m) ∈ Bfin

U∗ .
Conditions (i)–(iii) are clear, and conditions (iv) and (v) are proved by using

an auxiliary lemma similar to Lemma 2.1.
We remark that it is also possible to describe the LD2P via a different test

family, using directly the definition of the LD2P (and not its dual characterisa-
tion). It is easily checked that a Banach space X has the LD2P if and only if the
following holds: for every x∗ ∈ SX∗ and every ε > 0 there exist y1, y2 ∈ SX such
that x∗(y1), x∗(y2) ≥ 1− ε and ‖y1 − y2‖ ≥ 2− ε.

Thus we can define a test family for the LD2P in X as follows:

Fε,U (x,x∗,y,y∗) := max{1− x∗1(y1), 1− x∗1(y2), 2− ‖y1 − y2‖}

for U ∈ U(X), x,y = (y1, . . . , ym) ∈ Bfin
U and x∗ = (x∗1, . . . , x

∗
n),y∗ ∈ Bfin

U∗ , where
y2 := y1 if m = 1 (once again, conditions (i)–(v) in Definition 1.1 are easily
verified).

Finally, there is yet another weakening of the definition of octahedral spaces,
which was introduced in [16]: X is called alternatively octahedral (AOH) if for
every n ∈ N, all x1, . . . , xn ∈ SX and every ε > 0 there is some y ∈ SX such that

max{‖xi + y‖, ‖xi − y‖} ≥ 2− ε ∀i = 1, . . . , n.

Every octahedral space is alternatively octahedral while, for example, c0 is alter-
natively octahedral but not locally octahedral (see [16]).

It is easily checked that

Fε,U (x,x∗,y,y∗) := max{2−max{‖xi + y1‖, ‖xi − y1‖} : i = 1, . . . , n},

where U ∈ U(X), x = (x1, . . . , xn),y = (y1, . . . , ym) ∈ Bfin
U and x∗,y∗ ∈ Bfin

U∗ ,
defines a test family for AOH in X.

2.2. Almost square spaces. Next we turn to the classes of almost square
and locally almost square Banach spaces. These notions were introduced in [2].

A real Banach space X is said to be almost square (ASQ) if the following
holds: for all n ∈ N and all x1, . . . , xn ∈ SX there exists a sequence (yk)k∈N in
BX such that ‖yk‖ → 1 and ‖xi + yk‖ → 1 for all i = 1, . . . , n.

X is called locally almost square (LASQ) if for every x ∈ SX there is a
sequence (yk)k∈N in BX such that ‖yk‖ → 1 and ‖x± yk‖ → 1.

According to [2], X is ASQ if and only if for every ε > 0, every n ∈ N and
all x1, . . . , xn ∈ SX there exists a y ∈ SX such that ‖xi − y‖ ≤ 1 + ε for all i =
1, . . . , n, and X is LASQ if and only if for every ε > 0 and every x ∈ SX there is
some y ∈ SX such that ‖x± y‖ ≤ 1 + ε.
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c0 is the model example of an ASQ space. It was further proved in [2] that
every ASQ space contains an isomorphic copy of c0 and that every separable
Banach space containing an isomorphic copy of c0 has an equivalent ASQ norm.
In [8], it was proved that the same holds also for nonseparable spaces.

In [2], it was also proved that X∗ is OH (i. e., X has the SD2P) whenever X
is ASQ. By [21, Proposition 2.5], every LASQ space has the LD2P.

If we define

Fε,U (x,x∗,y,y∗) := max{‖xi − y1‖ − 1 : i = 1, . . . , n}

for U ∈ U(X), x = (x1, . . . , xn),y = (y1, . . . , ym) ∈ Bfin
U and x∗,y∗ ∈ Bfin

U∗ , then
we obtain a test family for ASQ in X, as is easily checked.

Likewise, a test family for LASQ in X is given by

Fε,U (x,x∗,y,y∗) := max{‖x1 + y1‖ − 1, ‖x1 − y1‖ − 1}.

There is also an intermediate notion of weakly almost square (WASQ) spaces
defined in [2] (by [21, Proposition 2.6], these spaces have the D2P) but it is not
clear whether this notion can be phrased in terms of test families.

2.3. The Daugavet property. We now consider spaces with the Daugavet
and the alternative Daugavet properties.

A real Banach space X is said to have the Daugavet property (DP) if the
equality ‖id + T‖ = 1 + ‖T‖ holds for every rank-one operator T : X → X (see,
for example, [18, 31]).

Examples of such spaces include C(K) for compact Hausdorff spaces K with-
out isolated points, and L1(µ) for atomless measures µ (see the examples in [31]).
In [18], the following remarkable result was proved: if X has the DP, then ‖id +
T‖ = 1 + ‖T‖ actually holds for all weakly compact operators on X.

According to [18, Lemma 2], X has the DP if and only if for every x ∈ SX ,
every x∗ ∈ SX∗ and all ε > 0 there exists y ∈ SX such that x∗(y) ≥ 1 − ε and
‖x+ y‖ ≥ 2− ε.

Thus a test family for the Daugavet property in X is given by

Fε,U (x,x∗,y,y∗) := max{1− x∗1(y1), 2− ‖x1 + y1‖}

for all U ∈ U(X), ε > 0, x = (x1, . . . , xn),y = (y1, . . . , ym) ∈ Bfin
U and all x∗ =

(x∗1, . . . , x
∗
k),y

∗ ∈ Bfin
U∗ (again conditions (i)–(v) are easily verified).

The following weaker version of the DP was introduced in [29]: a real or
complex Banach space X is said to have the alternative Daugavet property (ADP)
if maxω∈T‖id + ωT‖ = 1 + ‖T‖ holds for every rank-one operator T on X, where
T := {ω ∈ K : |ω| = 1}.

Again it was proved in [29] that the above equality holds for all weakly com-
pact operators if it holds for all rank-one operators. It was also proved in [29]
that X has the ADP if and only if for every ε > 0, every x ∈ SX and every x∗ ∈
SX∗ there is some y ∈ SX such that Rex∗(y) ≥ 1− ε and maxω∈T‖y+ωx‖ ≥ 2−
ε.
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We can thus define a test family for the ADP in X as follows:

Fε,U (x,x∗,y,y∗) := max

{
1− Rex∗1(y1), 2−max

ω∈T
‖y1 + ωx1‖

}
.

2.4. Lush spaces. Next we consider the class of lush Banach spaces which
was introduced in [9] (in connection with the study of the numerical index of
Banach spaces). A Banach space X is called lush provided that for every ε > 0
and all x1, x2 ∈ SX there exists a functional y∗ ∈ SX∗ such that x1 ∈ S(y∗, ε)
and d(x2, acoS(y∗, ε)) < ε, where aco denotes the absolutely convex hull and d is
the usual inf distance.

For example, if K is a compact Hausdorff space, then C(K) and, more gen-
erally, every so-called C-rich subspace of C(K), is lush (see [9]).

We can define a test family for lushness in X by

Fε,U (x,x∗,y,y∗) := max{1− y∗1(x1),d(x2, acoS(y∗1, ε))}

for ε > 0, U ∈ U(X), x = (x1, . . . , xn),y ∈ Bfin
U and x∗,y∗ = (y∗1, . . . , y

∗
m) ∈

Bfin
U∗ (where we set x2 := x1 if n = 1 and d(x2, acoS(y∗1, ε)) := 2 if ‖y∗1‖ < 1).

Conditions (i)–(v) in Definition 1.1 are easily verified.
In [30], the following related notion was introduced: the space X is called

generalised lush (GL) if for every x ∈ SX and every ε > 0 there is some functional
y∗ ∈ SX∗ such that x ∈ S(y∗, ε) and d(z, S(y∗, ε)) + d(z,−S(y∗, ε)) < 2 + ε for
every z ∈ SX .

It was shown in [30] that every separable lush space is GL, and that R2

equipped with the hexagonal norm ‖(a, b)‖ = max{|b|, |a|+ 1/2|b|} is GL but not
lush. It is not known whether every nonseparable lush space is GL.

The main result in [30] is that every GL-spaceX has the Mazur-Ulam property
(MUP), i.e., if Y is any Banach space and T : SX → SY is a surjective isometry,
then T can be extended to an isometric isomorphism between X and Y .

It is not obvious whether the property GL can be described via test families.
However, there is the following (at least formally) weaker version of GL-spaces:
X is said to have the property (∗∗) if for all x1, x2 ∈ SX and each ε > 0 one can
find y∗ ∈ SX∗ such that x1 ∈ S(y∗, ε) and d(x2, S(y∗, ε)) + d(x2,−S(y∗, ε)) < 2 +
ε.

This notion was introduced in the author’s paper [17] (with the help of an
anonymous referee) and the following observations were made:

(a) Every lush space has property (∗∗).

(b) For separable spaces, (∗∗) is equivalent to GL.

(c) Every space with property (∗∗) has the MUP.

A test family for (∗∗) in X can be defined by

Fε,U (x,x∗,y,y∗) := max{1− y∗1(x1),d(x2, S(y∗1, ε)) + d(x2,−S(y∗1, ε))− 2}

for ε > 0, U ∈ U(X), x = (x1, . . . , xn),y ∈ Bfin
U and x∗,y∗ = (y∗1, . . . , y

∗
m) ∈ Bfin

U∗ ,
where x2 := x1 if n = 1 and d(x2, S(y∗1, ε)) := d(x2,−S(y∗1, ε)) := 2 if ‖y∗1‖ < 1.
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3. Main result

Given a complete σ-finite measure space (S,A, µ), a Köthe function space E
over (S,A, µ) and pairwise disjoint sets A1, . . . , AN ∈ A with 0 < µ(Ai) <∞ for
i = 1, . . . , N , we define

‖(a1, . . . , aN )‖E(A1,...,AN ) :=

∥∥∥∥∥
N∑
i=1

ai
‖χAi‖E

χAi

∥∥∥∥∥
E

∀(a1, . . . , aN ) ∈ RN .

Then ‖·‖E(A1,...,AN ) is an absolute normalized norm on RN . If p ∈ [1,∞] and E =

Lp(µ), then this norm coincides with the usual p-norm on RN , regardless of the
choice of A1, . . . , AN .

For a Banach space X, we denote by E(A1, . . . , AN , X) the N -fold absolute
sum of X with respect to ‖·‖E(A1,...,AN ).

The following theorem is the main result of this paper.

Theorem 3.1. Let (S,A, µ) be a complete σ-finite measure space and E be a
Köthe function space over (S,A, µ). Suppose that X is a Banach space such that
the simple functions are dense in E(X) and E(A1, . . . , AN , X) ∈ E for every N ∈
N and all pairwise disjoint sets A1, . . . , AN ∈ A with 0 < µ(Ai) <∞ for each i.
Suppose further that there exists a test family for E in E(X). Then E(X) ∈ E.

Proof. Let (Fε,U )ε>0,U∈U(E(X)) be a test family for E in E(X). Let f =
(f1, . . . , fn) ∈ SnE(X), Φ = (ϕ1, . . . , ϕm) ∈ SmE(X)∗ and ε > 0. Choose δ > 0 such
that:

(a) For all y ∈ Bfin
E(X), all y∗ ∈ Bfin

E(X)∗ and all z ∈ Bn
E(X) with ‖f − z‖∞ ≤ δ, we

have
|Fε,E(X)(f ,Φ,y,y

∗)− Fε,E(X)(z,Φ,y,y
∗)| ≤ ε

2
.

(b) For every U ∈ U(E(X)), for all x ∈ Bn
U , all y ∈ Bfin

U , every y∗ ∈ Bfin
U∗ and all

x∗, z∗ ∈ Bm
U∗ with ‖x∗ − z∗‖∞ ≤ δ, we have

|Fε,U (x,x∗,y,y∗)− Fε,U (x, z∗,y,y∗)| ≤ ε

4c
,

where c is the constant from Definition 1.1 (iii).

This is possible because of (iv) and (v) in Definition 1.1.
Put ε̃ := min{ε, ε/4c}.
We can find simple functions h1, . . . , hn ∈ E(X) such that ‖hi‖E(X) = 1 and

‖fi − hi‖E(X) ≤ δ for all i = 1, . . . , n.
Also, there are simple functions g1, . . . , gm ∈ E(X) with ‖gj‖E(X) = 1 and

|ϕj(gj)| ≥ 1− δ for all j = 1, . . . ,m.
Fix pairwise disjoint sets A1, . . . , AN ∈ A with 0 < µ(Ai) <∞ such that each

hi and each gj belong to the subspace

U :=

{
N∑
k=1

xkχAk
: x1, . . . , xN ∈ X

}
⊆ E(X).
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By considering the map T : E(A1, . . . , AN , X)→ U defined by

T (x1, . . . , xN ) :=
N∑
k=1

xk
‖χAk

‖E
χAk

,

we see that U is isometrically isomorphic to E(A1, . . . , AN , X).

By assumption, we have E(A1, . . . , AN , X) ∈ E , thus U ∈ E .

Since gj ∈ SU , we have 1 ≥ ‖ϕj |U‖ ≥ 1 − δ for each j. Hence ψj :=
ϕj |U/‖ϕj |U‖ ∈ SU∗ with

‖ψj − ϕj |U‖ = |1− ‖ϕj |U‖| ≤ δ ∀j = 1, . . . ,m. (3.1)

Put Ψ := (ψ1, . . . , ψm) ∈ SmU∗ and h = (h1, . . . , hn) ∈ SnU . Since U ∈ E ,
we can find u = (u1, . . . , ul) ∈ Sfin

U and u∗ = (u∗1, . . . , u
∗
s) ∈ Sfin

U∗ such that
Fε̃,U (h,Ψ,u,u∗) ≤ ε̃.

Because of ε̃ ≤ ε and (ii) in Definition 1.1, it follows that Fε,U (h,Ψ,u,u∗) ≤
ε̃.

Then (b) and (3.1) imply Fε,U (h,Φ|U ,u,u∗) ≤ ε̃+ ε/4c ≤ ε/2c.
By the Hahn–Banach theorem, there are functionals ω1, . . . , ωs ∈ SE(X)∗ such

that ωi|U = u∗i for i = 1, . . . , s. Let Ω := (ω1, . . . , ωs).

Now it follows from (iii) in Definition 1.1 that Fε,E(X)(h,Φ,u,Ω) ≤ ε/2.

Since ‖f − h‖∞ ≤ δ, (a) implies Fε,E(X)(f ,Φ,u,Ω) ≤ ε/2 + ε/2 = ε and the
proof is finished.

Every Köthe function space E is a Banach lattice in its natural ordering (f ≤
g if and only if f(s) ≤ g(s) for a.e. s ∈ S). It is well known that if (E,≤) is
order continuous, then for every Banach space X the simple functions lie dense
in E(X). This includes in particular the case of Lp-spaces for 1 ≤ p < ∞. So,
from the above theorem, we obtain the following corollary (`pN (X) denotes the
N -fold p-sum of X).

Corollary 3.2. Let (S,A, µ) be a complete σ-finite measure space and 1 ≤
p <∞. If X is a Banach space such that `pN (X) ∈ E for every N ∈ N and there
exists a test family for E in Lp(µ,X), then Lp(µ,X) ∈ E.

In the case p = ∞, it is well known that one still has the density of
{f ∈ L∞(µ,X) : ran(f) is countable} in L∞(µ,X), where ran(f) denotes the
range of f . Thus one can prove the following Theorem in an analogous way
to the proof of Theorem 3.1 (we omit the details).

Theorem 3.3. Let (S,A, µ) be a complete σ-finite measure space. If X is a
Banach space such that `∞N (X) ∈ E for every N ∈ N and `∞(X) ∈ E and there
exists a test family for E in L∞(µ,X), then L∞(µ,X) ∈ E.

Here `∞(X) stands for
[⊕

n∈NX
]
`∞

.

We also have a reduction result for the case of infinite absolute sums to finite
sums, which reads as follows.
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Proposition 3.4. Let I be an index set and E be a subspace of RI en-
dowed with an absolute normalised norm such that span{ei : i ∈ I} is dense in
E. Let (Xi)i∈I be a family of Banach spaces such that

[⊕
i∈J Xi

]
E
∈ E for every

nonempty, finite subset J ⊆ I. If there is a test family for E in
[⊕

i∈I Xi

]
E

, then[⊕
i∈I Xi

]
E
∈ E.

The notation
[⊕

i∈J Xi

]
E

means that all summands with indices in I \ J are
{0}. The proof is similar to that of Theorem 3.1 and will therefore be omitted.

As an immediate consequence of Proposition 3.4, we get the following results
for p-sums and c0-sums.

Corollary 3.5. If I is any index set, 1 ≤ p < ∞, (Xi)i∈I is a family of
Banach spaces such that

[⊕
i∈J Xi

]
p
∈ E for every nonempty finite subset J ⊆

I, and there exists a test family for E in
[⊕

i∈I Xi

]
p
, then

[⊕
i∈I Xi

]
p
∈ E.

Corollary 3.6. If I is any index set, (Xi)i∈I is a family of Banach spaces
such that

[⊕
i∈J Xi

]
∞ ∈ E for every nonempty finite subset J ⊆ I, and there

exists a test family for E in
[⊕

i∈I Xi

]
c0

, then
[⊕

i∈I Xi

]
c0
∈ E.

4. Applications

In this section, we will apply the abstract results to the examples discussed
earlier. This will yield some new results as well as some alternative proofs of
already known results.

We first collect what is known about sums of octahedral spaces and their
relatives. The following results were proved in [15]: if X and Y are real Banach
spaces, then

(a) X or Y is LOH/WOH/OH ⇒ X ⊕1 Y is LOH/WOH/OH.

(b) X and Y are LOH/WOH ⇒ X ⊕p Y is LOH/WOH for every p ∈ (1,∞].

(c) X and Y are OH ⇒ X ⊕∞ Y is OH.

(d) For p ∈ (1,∞) X ⊕p Y is never OH.

In [2], the following generalization was obtained: if I is an index set and E
is a subspace of RI with an absolute normalised norm, and (Xi)i∈I is a family of
LOH spaces, then

[⊕
i∈I Xi

]
E

is also LOH. If each Xi is WOH and, moreover,

span{ei : i ∈ I} is dense in E, then
[⊕

i∈I Xi

]
E

is also WOH.

It is also easily checked that `∞(X) is OH whenever X is OH (the proof is
analogous to the proof of (c) above that was given in [15]).

Combining all this with our Theorems 3.1, 3.3 and the fact that OH, WOH
and LOH can be described by test families (see Section 2), we obtain the following
results.

Theorem 4.1. If (S,A, µ) is a complete σ-finite measure space, E is a Köthe
function space over (S,A, µ) and X is an LOH/WOH space such that the simple
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functions are dense in E(X) (for instance, if E is order continuous), then E(X)
is also LOH/WOH.

In particular, if p ∈ [1,∞) and X is LOH/WOH, then so is Lp(µ,X).
Also, L∞(µ,X) is LOH if X is LOH.

Proposition 4.2. If (S,A, µ) is a complete σ-finite measure space and X is
an OH space, then L1(µ,X) and L∞(µ,X) are also OH.

This result is not optimal. In fact, it is not difficult to see that L1(µ,X) is
OH for any Banach space X (provided that L1(µ) is infinite-dimensional), see
the examples at the end of [22].

Now we turn to the diameter two properties. In [15], the following results
were derived via duality from the corresponding results on octahedrality in direct
sums.

(a) X or Y has the LD2P/D2P/SD2P ⇒ X ⊕∞ Y has the LD2P/D2P/SD2P,

(b) X and Y have the LD2P/D2P ⇒ X ⊕p Y has the LD2P/D2P for every p ∈
[1,∞),

(c) X and Y have the SD2P ⇒ X ⊕1 Y has the SD2P,

(d) For p ∈ (1,∞), X ⊕p Y never has the SD2P.

All these results have been known before (they are scattered in [1, 3, 4, 13, 26],
see [15] for a detailed account), but the previous proofs were based on different
methods. In [3], it was shown that the LD2P and the D2P are stable under sums
with respect to an arbitrary absolute norm.

Since LD2P, D2P and SD2P can be described by test families (see Section 2),
we obtain the following stability result from Theorem 3.1.

Theorem 4.3. Let (S,A, µ) be a complete σ-finite measure space, E be a
Köthe function space over (S,A, µ) and X be a Banach space such that the simple
functions are dense in E(X) (for instance, if E is order continuous). If X has
the LD2P/D2P, then E(X) also has the LD2P/D2P.

In particular, if p ∈ [1,∞) and X has the LD2P/D2P, then so does Lp(µ,X).
Further, if X has the SD2P, then L1(µ,X) also has the SD2P.

In [3] it was already proved that Lp(µ,X) has the D2P whenever 1 ≤ p <∞,
µ is a finite measure and X has the D2P (this proof also uses simple functions).
Also, for the special case p = 1, better results are already known, for instance,
it has been proved in [4, Theorem 2.13] that for a finite measure µ the space
L1(µ,X) has the D2P if and only if X has the D2P or µ has no atoms (and
L∞(µ,X) has the D2P if and only if L∞(µ) is infinite-dimensional or X has the
D2P).

Even more, it is known that the Daugavet property implies the SD2P (see [1,
Theorem 4.4]) and that L1(µ,X) and L∞(µ,X) have the Daugavet property for
any atomless measure µ and any Banach space X ( [31], see the discussion for
the DP below).
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Also, if X or Y has the LD2P, then so does X⊗̂πY (see [1, Theorem 2.7]),
and if X and Y have the SD2P, then so does X⊗̂πY (see [7]), where ⊗̂π denotes
the projective tensor product, and it is well known that L1(µ,X) = L1(µ)⊗̂πX.
For more information on octahedrality and related properties in tensor products
see also [22,23].

For AOH spaces, the following equivalent characterisation can be proved: X
is AOH if and only if for every n ∈ N, all x1, . . . , xn ∈ SX and each ε > 0 there
is some y ∈ SX such that

max{‖xi + ty‖, ‖xi − ty‖} ≥ (1− ε)(1 + t) ∀t > 0, ∀i ∈ {1, . . . , n}.

The proof is analogous to the proof of the corresponding characterisation for
octahedral spaces in [15] and will therefore be skipped.

Using this characterisation, one can show that X ⊕1 Y is AOH if X or Y
is AOH and that X ⊕∞ Y is AOH if X and Y are AOH. The latter result also
extends to `∞(X). Again the proofs are analogous to those for the corresponding
results on OH spaces in [15] and thus we will skip them.

Using our Theorems 3.1 and 3.3, we can now obtain the following result.

Proposition 4.4. If (S,A, µ) is a complete σ-finite measure space and X is
an AOH space, then L1(µ,X) and L∞(µ,X) are also AOH.

Again, if L1(µ) is infinite-dimensional, then L1(µ,X) is even OH for any
Banach space X ( [22]).

Concerning the sums of ASQ and LASQ spaces, the following was proved
in [2]: if I is any index set, E is a subspace of RI with an absolute normalised
norm, and (Xi)i∈I is a family of LASQ spaces, then

[⊕
i∈I Xi

]
E

is also LASQ.
Further, X⊕∞Y is ASQ/LASQ if and only if X or Y is ASQ/LASQ. Analogously
to the proof of the “if” part in [2], one can show that `∞(X) is ASQ/LASQ
whenever X is ASQ/LASQ (it has also been proved in [2] that for p ∈ [1,∞) the
sum X ⊕p Y is never ASQ).

If we combine these facts with Theorems 3.1, 3.3 and the fact that ASQ
and LASQ can be expressed in terms of test families (Section 2), we obtain the
following stability result.

Theorem 4.5. If (S,A, µ) is a complete σ-finite measure space, E is a Köthe
function space over (S,A, µ) and X is an LASQ space such that the simple func-
tions are dense in E(X) (for instance, if E is order continuous), then E(X) is
also LASQ.

In particular, if p ∈ [1,∞) and X is LASQ, then so is Lp(µ,X).
Moreover, L∞(µ,X) is ASQ/LASQ whenever X is ASQ/LASQ.

Now we consider spaces with the Daugavet property. It has been shown in [20]
that L1([0, 1], X) and L∞([0, 1], X) have the DP if X has it. More generally,
L1(µ,X) has the DP for every atomless measure µ and every Banach space X,
see [31, p.81].

In [32], it was already proved that the `1- or `∞-sum of any (finite or infinite)
sequence of Banach spaces with the Daugavet property has again the Daugavet



Geometric Properties in Spaces of Vector-Valued Functions 133

property (the Daugavet property for weakly compact operators was considered
in [32], but this is equivalent to considering just rank-one operators by [18, Theo-
rem 2.3]). In [18], a different proof for the stability of the DP by finite or infinite
`1- and c0-sums has been given (the cases of infinite sums are reduced to the cor-
responding finite sums by a density argument, similarly to the general reduction
results for sums that we have stated in Section 3).

Putting everything together, the following characterisation was obtained in
[27, Remark 9]: L1(µ,X) has the DP if and only if X has the DP or µ has no
atoms. Likewise, L∞(µ,X) has the DP if and only if X has the DP or µ has no
atoms (see [28]).

Analogous results also hold for the alternative Daugavet property: the space
L1(µ,X) has the ADP if and only if X has the ADP or µ has no atoms if and
only if L∞(µ,X) has the ADP (see [29]). Also, the ADP is stable under arbitrary
`1-, c0- and `∞-sums (see again [29]).

Using the stability results for sums and our Theorems 3.1 and 3.3, we obtain
an alternative proof of the following known result.

Theorem 4.6. If (S,A, µ) is a complete σ-finite measure space and X is
a Banach space with the DP/ADP, then L1(µ,X) and L∞(µ,X) also have the
DP/ADP.

Concerning lush spaces, the following has been proved in [10]: if ‖·‖E is an
absolute norm on Rn, then the sum of every collection X1, . . . , Xn of lush spaces
with respect to ‖·‖E is again lush if and only if (Rn, ‖·‖E) is lush.

It was also proved in [10] that the `1-, c0- and `∞-sums of any family (Xi)i∈I
of lush spaces are again lush (also here the cases of `1- and c0-sums are reduced
to the corresponding finite sums).

Recently the following stability result has been proved in [19, Corollaries 8.10
and 8.13].

Theorem 4.7 ( [19]). Let (S,A, µ) be a σ-finite measure space and X be
a Banach space. Then L∞(µ,X) is lush if and only if X is lush if and only if
L1(µ,X) is lush.

In fact, even more general results are proved in [19] for the so-called lush
operators.

If we use instead the above-mentioned results on sums of lush spaces in com-
bination with our Theorems 3.1 and 3.3, we obtain an alternative proof for the
fact that lushness of X is sufficient for lushness of L1(µ,X) and L∞(µ,X) (the
proofs in [19] did not use a reduction to sums, but they also used the density of
the simple functions (respectively, functions with countable range) in L1(µ,X)
(respectively, L∞(µ,X)).

Let us now turn to generalised lushness. It was proved in [30] that the property
GL is stable under arbitrary `1-, c0- and `∞-sums. The same results also hold
for the property (∗∗), with completely analogous proofs.

Now we can apply our Theorems 3.1 and 3.3 to obtain the following result.
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Theorem 4.8. If (S,A, µ) is a complete σ-finite measure space and X is
a Banach space with property (∗∗), then L1(µ,X) and L∞(µ,X) also have the
property (∗∗).

We recall (see Subsection 2.4) that (∗∗) implies the MUP and (∗∗) is equivalent
to GL for separable spaces, but it is not known whether this equivalence is true
in general nor if it is in general possible to describe the property GL by test
families. Thus we cannot apply our general reduction theorems directly to GL-
spaces. However, it is still possible to show that GL is stable with respect to
L1-Bochner spaces by a similar proof technique. This is carried out in the next
section.

5. GL-spaces

Here we show directly that L1(µ,X) is GL whenever X is GL. The argu-
ment is similar to the proof for `1-sums given in [30] in combination with an
approximation by simple functions.

Theorem 5.1. Let (S,A, µ) be a complete σ-finite measure space. If X is a
GL-space, then so is L1(µ,X).

Proof. Let f ∈ L1(µ,X) with ‖f‖1 = 1 and let ε ∈ (0, 1). Choose η ∈ (0, 1)
such that

(2 + ε/2)(1 + η) + 4η < 2 + ε,

(1− ε/2)(1− η)− η > 1− ε,

(1− ε/2)
1− η
1 + η

> 1− ε.

We can find a simple function g on S such that ‖f − g‖1 ≤ η. Write g =∑N
i=1 xiχAi with pairwise disjoint sets A1, . . . , AN ∈ A and x1, . . . , xN ∈ X.
Since X is GL, we can find functionals x∗1, . . . , x

∗
N ∈ SX∗ such that x∗i (xi) ≥

(1− ε/2)‖xi‖ and

d(y, S(x∗i , ε/2)) + d(y,−S(x∗i , ε/2)) < 2 +
ε

2
∀y ∈ SX . (5.1)

Let h =
∑N

i=1 x
∗
iχAi and ϕ(v) =

∫
S h(s)(v(s)) dµ(s) for v ∈ L1(µ,X). Then ϕ ∈

L1(µ,X)∗ with ‖ϕ‖ = 1.
We further have

ϕ(g) =

N∑
i=1

∫
Ai

x∗i (xi) dµ(s) ≥ (1− ε/2)

N∑
i=1

∫
Ai

‖xi‖dµ(s) = (1− ε/2)‖g‖1.

Since ‖f − g‖1 ≤ η and ‖f‖1 = 1, it follows that ϕ(f) ≥ ϕ(g)− η ≥ (1− ε/2)(1−
η)− η. Thus the choice of η implies f ∈ S(ϕ, ε).

Now take any function w ∈ L1(µ,X) with ‖w‖1 = 1. There exists a simple

function w̃ on S such that ‖w − w̃‖1 ≤ η. Write w̃ =
∑M

j=1 yjχBj with pairwise
disjoint sets B1, . . . , BM ∈ A and y1, . . . , yM ∈ X.
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We put Cij := Ai ∩ Bj for (i, j) ∈ I := {1, . . . , N} × {1, . . . ,M}. By (5.1),
we can find, for each pair (i, j) ∈ I, vectors uij , vij ∈ BX such that x∗i (uij) > 1−
ε/2, −x∗i (vij) > 1− ε/2 and

‖yj − ‖yj‖uij‖+ ‖yj − ‖yj‖vij‖ ≤ (2 + ε/2)‖yj‖. (5.2)

Let u =
∑

(i,j)∈I‖yj‖uijχCij and v =
∑

(i,j)∈I‖yj‖vijχCij .
Since ‖uij‖ ≤ 1, we have ‖u(s)‖ ≤ ‖yj‖ = ‖w̃(s)‖ for all s ∈ Cij and all

(i, j) ∈ I. Hence ‖u‖1 ≤ ‖w̃‖1 ≤ ‖w− w̃‖1 + ‖w‖1 ≤ 1 + η. Analogously, one can
see that ‖v‖1 ≤ 1 + η.

Thus we have ũ := u/(1 + η) ∈ BL1(µ,X) and ṽ := v/(1 + η) ∈ BL1(µ,X).
We further have

ϕ(ũ) =
1

1 + η

∑
(i,j)∈I

∫
Cij

x∗i (uij)‖yj‖dµ(s) ≥ 1− ε/2
1 + η

∑
(i,j)∈I

∫
Cij

‖yj‖dµ(s)

= ‖w̃‖1
1− ε/2
1 + η

≥ (1− η)
1− ε/2
1 + η

> 1− ε.

Thus ũ ∈ S(ϕ, ε), and analogously one can show that ṽ ∈ −S(ϕ, ε).
It further follows from (5.2) that

‖w̃(s)− u(s)‖+ ‖w̃(s)− v(s)‖ ≤ (2 + ε/2)‖w̃(s)‖ ∀s ∈ S.

Hence, ‖w̃ − u‖1 + ‖w̃ − v‖1 ≤ (2 + ε/2)‖w̃‖1 ≤ (2 + ε/2)(1 + η).
Since ‖w − w̃‖1 ≤ η, we get ‖w − u‖1 + ‖w − v‖1 ≤ (2 + ε/2)(1 + η) + 2η.
We also have ‖u− ũ‖1 ≤ η and ‖v − ṽ‖1 ≤ η. Thus, ‖w − ũ‖1 + ‖w − ṽ‖1 ≤

(2 + ε/2)(1 + η) + 4η < 2 + ε, and we complete the proof.
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[16] R. Haller, J. Langemets, and M. Põldvere, Rough norms in spaces of operators,
Math. Nachr. (2017), 11p.

[17] J.-D. Hardtke, Some remarks on generalised lush spaces, Studia Math. 231 (2015),
No. 1, 29–44.

[18] V.M. Kadets, R.V. Shvidkoy, G G. Sirotkin, and D. Werner, Banach spaces with
the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), No. 2, 855–873.
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Про певнi геометричнi властивостi в банахових
просторах вектор-значних функцiй

Jan-David Hardtke

Розглянуто певний тип геометричних властивостей банахових про-
сторiв, куди входять, наприклад, октаедричнiсть, майже квадратнiсть,
пухлiсть та властивiсть Даугавета. Для цього типу властивостей отри-
мано загальну теорему редукцiї, яка стверджує приблизно таке: якщо
властивiсть, про яку йдеться, стабiльна за певних скiнчених абсолютних
сум (наприклад, скiнчених `p-сум), то вона також стабiльна при утво-
реннi вiдповiдних просторiв Кете–Бохнера (наприклад, Lp-бохнерових
просторiв). З цiєї загальної теореми отримано в якостi наслiдкiв декiль-
ка нових результатiв, а також деякi альтернативнi доведення вже вiдо-
мих результатiв, що стосуються восьмигранного та майже квадратного
просторiв та їхнiх похiдних, властивостей дiаметру 2, пухлих просторiв
та iнших класiв.

Ключовi слова: абсолютнi суми, простори Кете–Бохнера, просто-
ри Лебега–Бохнера, восьмиграннi простори, майже квадратнi просто-
ри, властивостi дiаметру 2, пухлi простори, узагальненi пухлi простори,
властивiсть Даугавета
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