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Automorphisms of Cellular Divisions of
2-Sphere Induced by Functions with Isolated
Critical Points

Anna Kravchenko and Sergiy Maksymenko

Let f : S — R be a Morse function on the 2-sphere and K be a connected
component of some level set of f containing at least one saddle critical point.
Then K is a 1-dimensional CW-complex cellularly embedded into $2, so the
complement S2?\ K is a union of open 2-disks Dy, ..., Dy. Let Sk (f) be
the group of isotopic to the identity diffeomorphisms of S? leaving invariant
K and also each level set f~1(c), ¢ € R. Then each h € Sk(f) induces a
certain permutation o, of those disks. Denote by G = {0}, | h € Sk (f)} the
group of all such permutations. We prove that G is isomorphic to a finite
subgroup of SO(3).
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1. Introduction

The studying of groups of automorphisms of discrete structures goes far back
in time. One of the first general results obtained by A. Cayley (1854) claims that
every finite group G of order n is a subgroup of the permutation group of a set
consisting of n elements (see also E. Nummela [34] for extension of this fact to
topological groups). C. Jordan [14] (1869) described the structure of groups of
automorphisms of finite trees and R. Frucht [13] (1939) showed that every finite
group can also be realized as a group of symmetries of certain finite graph.

Given a closed compact surface M endowed with a cellular decomposition
= (e.g., with a triangulation), one can consider the group of “combinatorial”
automorphisms of M. More precisely, say that a homeomorphism h : M — M
is cellular or a Z-homeomorphism if it maps i-cells to i-cells, and h is =-trivial
if it preserves every cell with its orientation. Then the group of combinatorial
automorphisms of = is the group of =Z-homeomorphisms modulo Z-trivial ones.
This group is denoted by Aut(Z). It was proved by R. Cori and A. Machi [8] and
J. Sirdn and M. Skoviera [39] that every finite group is isomorphic with Aut(Z)
for some cellular decomposition of some surface which can be taken equally either
orientable or non-orientable.
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Notice that the 1-skeleton M' of Z can be regarded as a graph. Suppose
that each vertex M! has even degree. Then in many cases one can construct a
smooth (C*°) function f : M — R such that M! is a critical level containing all
saddles (i.e., critical points being not local extremes), and the group Aut(Z) can
be regarded as the group of “combinatorial symmetries” of f.

This point of view was motivated by works of A. Fomenko on classification
of Hamiltonian systems, see [10,11]. The group Aut(Z) is called the group of
symmetries of an “atom” of f. Such groups for the case when f is a Morse
function were studied by A. Fomenko and A. Bolsinov [4], A. Oshemkov and
Yu. Brailov [5], Yu. Brailov and E. Kudryavtseva [6], A.A. Kadubovsky and
A.V. Klimchuk [15], and A. Fomenko, E. Kudryavtseva and I. Nikonov [25].

In [29], the author gave sufficient conditions for a =-homeomorphism to be Z-
trivial, and in [30] estimated the number of invariant cells of a =-homeomorphism.

It was proved by A. Fomenko and E. Kudryavtseva [23,24] that every finite
group is the group of combinatorial symmetries of some Morse function f on
a compact orientable surface which has a critical level containing all saddles.
However, the number of critical points of f, as well as the genus of M, can be
arbitrarily large.

In general, if f : M — R is an arbitrary smooth function with isolated critical
points, then a certain part of its “combinatorial symmetries” is reflected by the
so-called Kronrod-Reeb graph Ay, see, e.g., [2,3,18,19,26,33,35,38] and Section
2.3. Such a graph is obtained by shrinking each connected component of each
level set f~1(c), c € R, of f into a point.

Let D(M) be the group of diffeomorphisms of M, and

S(f)y={heDM) | f(h(z)) = f(z) for all z € M}

be the group of diffeomorphisms h of M which “preserve” f in the sense that
h leaves invariant each level set f~1(c), ¢ € R, of f. Hence it yields a certain
permutation of connected components of f~!(c) being the points of A f, and
thus induces a certain map p(h) : Ay — Ay. It can be shown that p(h) is a
homeomorphism of Ay, and the correspondence p : h + p(h) is a homomorphism
of groups

p:S(f) = H(Ay),

where H(Ay) is the group of homeomorphisms of Ay. One can also verify that
the image of p(S(f)) is a finite group.
Let also Dijq(M) be the identity path component of D(M), and

S'(f) = S8(f) N Dia(M)

be the group of f-preserving diffeomorphisms which are isotopic to the identity
via an isotopy consisting of not necessarily f-preserving diffeomorphisms. We
will be interested in the group

Gy =p(S'(f))
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of automorphisms of Ay induced by elements from S’(f), see Remark 1.3 for the
structure and applications of G.

Suppose that the set Fix(Gf) of common fixed points of all elements of Gy in
Ay is non-empty. Let v € Fix(G ) be a vertex of Ay fixed under G, and Star(v)
be a star of v, i.e., a small G y-invariant neighborhood of v. Then each v € G
induces a homeomorphism of Star(v), and we can also define the group

GLOC = {7’Star(v) ‘ v e Gf}

of restrictions of elements of G to Star(v). We will call GI°° the Iocal stabilizer
of v.

Remark 1.1. We will give now an equivalent description of the group G1°°.
Let K be the critical component of a level-set of f corresponding to the vertex
v € Ay. Since v € Fix(Gy), we obtain that h(K) = K for all h € S'(f). Let ¢ =
f(K) be the value of f on K, and € > 0 be a small number such that the segment
[c—¢, c+€] contains no other critical values of f except for c. Let also Ni be the
connected component of f~![c — ¢, ¢ + €] containing K. Notice that the quotient
map p induces a bijection between the connected components of Nk and the
edges of Star(v). Moreover, h(Ng) = Nk for all h € §'(f), and hence h induces
a permutation oy, of the connected components of dNg. Then GI°¢ is the same
as the group of permutations of the connected components of Nk induced by h.

In [17,27,28,31,32], the groups GI°¢ were calculated for all Morse functions on
all orientable surfaces distinct from S2. In the present paper, we give a complete
description of the structure of the group GI°° to the case when M = S2. For the
reader’s convenience, we present a general statement about the structure of the
group G°¢ for all orientable surfaces.

Theorem 1.2. Let f € C*(M,R) be a Morse function and v € Fix(Gy) be
some vertex.

(1) If M # S2,T?, then G'°¢ = Z,,, for some n > 1, [31].
(2) If M = T?, then GI°° = Zy, X Ly, for some m,n > 1, [27,28,32].
(3) Let M = S2. Then the following statements hold.

(a) For each vertex v € Fix(Gy), the group G°¢ is isomorphic to a finite
subgroup of SO(3), that is, to one of the following groups, see [16, pp. 21—
23]:

Zn, Dy, Ay, Sy As, n>1. (1.1)

(b) If Fix(Gy) has at least one edge, then for any vertex v € Fix(Gy), the
group G°¢ is cyclic.

(c) IfFix(Gy) consists of a unique vertex v and G\ is non-trivial and cyclic,
then GIo¢ = 7,.
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We need to prove only item (3) of this theorem. In fact, we will establish a
more general result including (3) of Theorem 1.2 as a partial case, see Theorem 2.3
and Subsection 2.6.

Remark 1.3. Notice that S(f) can be regarded as the stabilizer of f with
respect to the natural right action ¢ : C*°(M,R) x D(M) — C>*(M,R) of D(M)
on the space C*°(M,R) of smooth functions on M defined by ¢(f,h) = f o h.
Then the group Gy plays a key role in determining the homotopy type of the
orbit O(f) = {foh | h € D(M)} of f with respect to the above action, see
E. Kudryavtseva [20-22], S. Maksymenko [29, 31].

A function f € C*°(M,R) is Morse if the following conditions are fulfilled:

e f takes constant values on the connected components of the boundary 9M;

e each critical point f is nondegenerate and is contained in IntM.

We will denote by M (M, R) the set of all Morse functions on M.
Let P be the minimal set of isomorphism classes of groups satisfying the
following conditions:

e a unit group {1} € P;

o ifA BePandneN,then Ax B, AV1Z, € P,

where AVZ,, is the wreath product of the groups A and Z,, which can be defined as

the direct product of the sets A x --- X A xZ, with the following multiplication:
—_—

(ag,al, - ,an_l,k) (bo,bl, .. .,bn_l,l) = (aobk, albk+1, ceey Qp_1bp_1, K+ l),

where all indices are taken modulo n.
In [17], the authors described the structure of the set

G(M,R) ={Gy | f e M(M,R)} (1.2)

of groups Gy for all Morse functions on all orientable surfaces distinct from 2-
sphere and 2-torus. It was proved that G(M,R) = P. The structure of the groups
G(T?,R) and G(S%,R) will be studied in forthcoming papers.

2. Main result

2.1. Isolated critical points of smooth functions on the plane. Let
f : R?2 = R be a smooth function such that 0 € R? is an isolated critical point
of f. Then there exists an open neighborhood U of 0 in R? and a topological
embedding (homeomorphism onto its image) h : U — R? such that h(0) = 0,
and the composition foh : U — R is given by one of the following formulas
(see [9,36]):

+ (:U2 + y2) if 0 € R? is a local extreme of f
Im ((z + dy)*) for some k > 1 otherwise '

(foh)(z,y) = {
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foh(z,y)=x2+y? =xt+y?

Fig. 2.1: Local extreme.
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foh(z,y)=Im(z+iy)=y f@y) =y@®+y?)

Fig. 2.2: Saddle point of order 1.

The structures of level sets of f near isolated critical points are shown in Fig-
ures 2.1, 2.2, 2.3.

In particular, if 0 is a local extreme, then the level sets of f are concentric
simple closed curves wrapping around 0.

Otherwise, 0 is called a saddle, and the critical level set of f near 0 consists
of 2k arcs

Qp, 1, ..., Q2k—1

starting from 0. They split a neighborhood of 0 into 2k-sectors a;; ;1 such that
the values of f in the consecutive sectors a;_ia; and a;a; 41 are of opposite signs,
see Figure 2.4. In particular, the number £ does not depend on h, and will be
called the order of the critical point.

2.2. Functions with isolated critical points on compact surfaces.
From now on, M will be a compact two-dimensional manifold. Let f : M — R
be a smooth (C*°) function, ¥y be the set of all critical points of f, and K be
a connected component of some level set f~!(c), ¢ € R, of f. Then K is called
regular if it contains no critical points of f, and critical otherwise.

Definition 2.1. We will say that f belongs to class Z if

1) f takes constant values on the connected components of the boundary dM;
2) each critical point of f is isolated and is contained in IntM.

In particular, every Morse function belongs to Z.
Suppose f € Z. Then every connected component K of some level set of f
has the following structure.
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Fig. 2.3: Saddle point of order 3.
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Fig. 2.4: Arcs and sectors near the saddle point, £ = 3.

A) Suppose K is regular, so it is a closed connected 1-submanifold of IntM.

Therefore K is diffeomorphic with the circle S'. Moreover, there exists an
open neighborhood U of K, £ > 0, and a diffeomorphism ¢ : S x (—¢,¢) —
U such that ¢(S! x 0) = K and fo¢(z,t) =t+c for all (z,t) € St x (—¢,¢).

If K is critical, then it follows from 2) that K is homeomorphic to a finite
1-dimensional CW-complex (“topological graph”). Moreover, let N be a
connected component of ffl[c —¢g,c + €] containing K, where ¢ > 0 is so
small that NNOM = @ and NNYX; = KNX;. We will call N an f-regular
neighborhood of K, or an atom in the sense of A. Fomenko, see, e.g., [4].

Let also V' be a connected component of N \ K. Then there exists a con-
tinuous map ¢ : S* x [~1,1] — N with the following properties:
e theset F:= ¢ '(3y) is finite and is contained in St x 1;
e the restriction of ¢ to (S* x [~1,1]) \ F is an embedding;
e ¢(S'x[-1,1)) =V;
e ¢ homeomorphically maps each connected component J of (S! x 1)\ F

onto some edge of K.

Thus, saying informally, N can be obtained from K by gluing to it cylinders
St x [~1,1] via maps ¥ : S' x 1 — K which are homeomorphisms except
some finite subsets, see Figure 2.5.
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V=¢(5"x[0,1])
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St x [0;1] St x [0;1]

Fig. 2.5: The gluing of cylinders to a critical component of a level set.

2.3. Kronrod—Reeb graph For each continuous function f € C (M,R) we
will denote by Ay the partition of M into connected components of the level set
of f. Let also p : M — Ay be the canonical quotient map associating to each
point # € M the connected component of the level set f~1(f(z)) containing .
Endow A with the factor topology with respect to the mapping p. Thus a subset
A C Ay is open if and only if its inverse image p~'(A) is open in M. Then f
induces a unique continuous function f : Ay — R such that f = f op.

It follows from A) and B) above that for f € Z the space A¢ has a structure
of a one-dimensional CW-complex: the vertices of Ay correspond to the critical
components of the level-sets of f, while the points of edges correspond to the
regular ones. The space Ay is often called the Kronrod-Reeb graph, or the
Lyapunov graph, or simply the graph of f, [1,12,18,37].

2.4. The action of the stabilizers of f on A;. Notice that for each
subgroup G of the group H (M) of homeomorphisms of M one can define a natural
action ¢ : C (M,R) x G — C (M,R) of G on the space C (M,R) of the continuous
functions on M defined by

o(f,h) = foh: M —R.
Given f € C(M,R), we will denote by

S9Uf)={heG|foh=f}

its stabilizer with respect to the above action. Notice that the relation f o h =
f means that h(f~1(c)) = f~!(c) for all ¢ € R, that is, h leaves invariant each
level-set f~1(c) of f. Hence it interchanges the connected components of f~!(c)
and therefore induces a map p(h) : Ay — Ay making the following diagram
commutative, see Figure 2.6:

p
M Ay

:
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h h p(h)  p(h)

¥\ ¥\ X N

AVARAYA
R B

~n

Fig. 2.6: The action of S9(f) on Ay.

Denote by H(Ay) the group of homeomorphisms of Ay. Then the following
Lemma 2.2 implies that p(h) is a homeomorphism of Ay, and one easily checks
that the correspondence

0 S9(f) = H(A) 2.2)
is a homomorphism of groups. In other words, SY(f) acts on A fe

Lemma 2.2. Suppose we have the following commutative diagram:

Moy

hl i“’
Moy

wn which M and Y are topological spaces, h is continuous, and p is a surjective
factor map. Then g is continuous as well. Moreover, if h is a homeomorphism,
then so s g.

Proof. We should show that g~1(U) is open in Y for each open U C Y. Since
h and p are continuous, we see that

p (g7 0) =P (D)

is open in M. But p is a factor map and thus the openness of the inverse image
p_l(g_l(U)) implies that ¢g~!(U) is open in Y. O

Assume now that f € Z and denote

Gy =p(S9(f)),

so Gy is the group of all homeomorphisms of A induced by some homeomorphism
G preserving f, i.e., belonging to SY(f).

One easily checks that if h(e) = e for some edge e of Ay and h € SY(f),
then hle = ide. This implies that Gy is a finite subgroup of H(A¢) and can be
regarded as a group of certain automorphisms of a “graph” Ay.
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2.5. Functions on the 2-sphere. Suppose now M = S? and f € Z. Then
Ay is always a tree. We claim that the set Fix(Gy) of common fixed points of
G is a non-empty subtree of Ay.

Indeed, it is well known that the group of automorphisms of a finite tree
always has

e either a common fixed point or

e an invariant edge e such that some automorphisms of Ay change the orien-
tation of e.

However, as mentioned above, the elements of G ¢ do not change the orientation
of the edges, whence Gy must have fixed points. Moreover, if v, w are two fixed
points of Gy, then there exists a unique path 7 in Ay connecting them, whence
this path is G g-invariant, and hence it must consist of fixed points of Gy as well.
Hence Fix(Gy) is a non-empty subtree of Ay.

For a vertex v € Fix(Gy), let Star(v) be the star of v in Ay that is the union
of v and all edges incident to v. Then Star(v) is invariant with respect to Gy,
whence we can define the group

GLOC - {(b’Star(v) ‘ ¢ € Gf}

consisting of the restrictions of automorphisms of Gy to Star(v). Notice that Gy
can be regarded as a subgroup of the permutation group of edges of Star(v). We
will call GI°¢ the local stabilizer of v, see Remark 1.1.

In particular, we have an epimorphism

ro: Gy — GY©, 7o(9) = Plstar(v),
and the composition
po: S9(f) 5 Gy = Gy (2.3)
Our aim is to prove the following statement.

Theorem 2.3. Let f € C (SZ,R) be a function from class Z on 2-sphere
S2. Let also G C HY(S?) be a subgroup of the group of orientation preserving
homeomorphisms of S*, G; = p(S9(f)), and v € Fix(G}) be a common fired
vertex of the group Gy. Then the following statements hold.

(a) Gl is isomorphic to a finite subgroup of HT(S?). Therefore, by the Brouwer—

Kerekjarto theorem [7], GI°° is isomorphic to a finite subgroup of SO(3) and

thus to one of the following groups:

Zna ]D)na A47 847 A57 n = 17 (24)
see, e.g., [16, pp. 21-23].

(b) If Fix(G¢) has at least one edge, then for any vertex v € Fix(Gy), the group
Gloc is cyclic.
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(c) Suppose Fix(Gy) consists of a unique vertex v and GI°¢ = Zy. for some k >
2. Let also X' be the critical component of a level set of f corresponding to
v. Then there are two critical saddle points z1, 2o € X' of orders ki and ks,

respectively, such that k divides GCD(ki1, k), and every h € SY(f) fives z1
and z9.

Theorem 2.3 will be deduced in Sections 4 and 5 from Theorems 3.1 and 3.2
below about cellular homeomorphisms of CW-complexes.

2.6. Proof of Theorem 1.2. We need only to establish statement (3) of
Theorem 1.2. Notice that each Morse function f : S?> — R has isolated critical
points, whence Theorem 2.3 is applicable for f. In particular, statements (a)
and (b) of Theorem 1.2 are the same as the corresponding statements in Theo-
rem 2.3.

(¢) Suppose Fix(Gy) consists of a unique point and G1°¢ 2 7, for some k >
2. We need to show that k& = 2. Indeed, by (c) of Theorem 2.3, k must divide
the order of some saddle critical point of f. But each non-degenerate saddle has
order 2, whence k = 2. O

3. Cellular homeomorphisms of CW-complexes

In what follows D¥, k > 1, is the closed k-disk of radius one in R* with center
at the origin.

Let X be a CW-complex. Then, by X*, k > 0, we will denote its k-skeleton
and by j : X¥ < X, the canonical embedding. A cell always means an open
cell. Also 0- and 1-cells will often be called vertices and edges respectively.

A homeomorphism h : X — X is cellular if h(X*) = X* for all k > 0, i.e., for
every cell e of X, its image h(e) is also a cell of X. We will denote by HY(X)
the group of all cellular homeomorphisms of X.

Note that for each k > 0 there is a restriction to X* homomorphism:

pr s HY(X) = H(XP), pr(h) = h|xk.
Let also
HY(XF, k) o= pe(HV(X)

be the image of py. Evidently, it consists of the cellular homeomorphisms h of
X%, which can be extended to some cellular homeomorphism of X. In particular,
we have an epimorphism

Pk - HCW(X) — HCW(Xk,jk).

Finally, let H{V(X) C H®V(X) be the subgroup consisting of homeomor-
phisms which leave invariant each cell e of X and preserve its orientation if
dime > 1.
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Theorem 3.1. Let X' be a 1-dimensional CW-complez, and d be a metric on
X1 such that the length of each edge equals 1. Let also ITsom®¥(X1') C HV(X1)
be the subgroup consisting of all cellular isometries of X'. Then the following
statements hold.

(1) There exists a homomorphism
q: HY(X) — Isom™(X1),

which is a retraction onto Isom®¥ (X1, that is, q(h) = h for each h €
Isom“" (X).

(2) ker(q) = HEV(X1), so we get the following exact sequence:

q
1—— M (X)) —=HY(XY) _ Tsom®™(X!) —1 (3.1)
n

in which the natural inclusion 7 : Tsom® (X1) C HV(X?1) is a section of q.

Thus, we have a splitting of H (X ') into a semidirect product of its sub-
groups:
HV(XY) = HEV(XT) % Tsom®™ (X ).

In particular, for each h € HSV(X1), its image {q(h)} is the only element
of the intersection of its adjacent class hHSY (X1) with Isom®™ (X1):

{q(R)} = AHS"(XY) N Isom®™(X1). (3.2)

Proof. (1) Let {e;}ica be all 1-cells of X!. For each i € A, let
¢ [-1,1] = X'

be the characteristic map of e;, so the restriction ¢;|f_; 1y : {-1,1} — X0 of ¢;
to the boundary 9[—1, 1] = {—1,1} is the gluing map of the cell e;, and

(Zsi‘(fl,l) : (—1,1) — Xl \XO

is an embedding.
By assumption, the length of each 1-cell in the metric d equals 1 and thus,
without loss of generality, we may assume that the restriction

Gil(—1,1) : (=1,1) = e

is an isometry.

Let h € HV(X!). We need to construct an isometry q(h) : X* — X! so that
the correspondence q(h) +— h will satisfy the assertion of the theorem.

We will define ¢(h) in such a way that:

(a) q(h)(v) = h(v) for each vertex v € XY;
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(b) q(h)(e) = h(e) for each edge e of X!;

(c) if h(e) = e, then h preserves the orientation of e if and only if g(h)|e = ide.

According to (a), we must put q(h)(v) = h(v) for all v € X, so it remains to
extend g(h) to all of X!,

Let e; be an edge of X! and e; = h(e;) be its image under h. Then there is a
unique homeomorphism «; : [—1,1] — [—1, 1] such that the following diagram is
commutative:

(-1,1) —————(—1,1)

ml l@ (3.3)
h

€; €

that is, ai\(,l,l) =¢joho ¢i_1'
Due to (b), define g(h)|e, : e; — h(e;) = e; by

coidi_qqy 0t if o; preserves the orientation
q(We, =477~ LY
e; —

o (—id/_ o¢; "' if oy reverses the orientation
J (-11)

where id(_; 1) is the identity map of (—1,1), and —id(_;1)(t) = —t for all ¢ €
(—=1,1). In other words, we get the following commutative diagram:

+id,_
(—1,1) — 20 (21,1)

€; ej

Then (c) also holds. Moreover, since +id(_y 1) and ¢z’\(_1,1) for all 7 are isometries,
we see that q(h)l, is an isometry as well. Thus, ¢(H" (X)) C Isom®™(X1).
Note that if A € Isom“¥(X1!), then for each cell e; the homeomorphism

a; = ¢johog;

is an isometry of the segment [—1,1]. Hence af(_y,1) = +id(_;,1) and therefore

q(h)|e; = djoa;0d; = hle,.

In other words, q(h) = h for each h € Isom®™(X'). Thus ¢ is a retraction
HV (X1 by Isom®™ (X1).

Verification that ¢ is a homomorphism we leave for the reader.

(2) The identity ker ¢ = H§V(X1!) is a direct consequence of (a)—(c). All other
statements are easy and we also leave them for the reader. O

Theorem 3.2. Let X**t1, k > 0, be a (k + 1)-dimensional CW-complex.
Suppose that for each (k + 1)-cell of e, its gluing map V. : S* — X* has the
following property: there exists a (possibly empty) finite subset F, C S* such
that:
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(a) e~ H(X0) = Fe;

(b) Yelsm\p, Sk\ F, — X*\ X0 is an embedding, i.e., a homeomorphism on its
image.

Then the following statements hold true.

1) There exists a homomorphism s : H(X*, jx) — HV(X*) which is a
section of p : HV(XFH) — HY(XF 4), i-e., pr(s(h)) = s(h)|xx = h, for
all h € 1 (X jy).

2) Suppose k =1, so dim X? = 2. Then
(i) HEV(XY) C HV(X ).
(ii) Fiz a metric d on X' in which each 1-cell has the length 1, and let
q: HY(X) = Isom®™(X1)
be the homomorphism constructed in Theorem 3.1. Let also
Isom®™ (X1, j1) = H(X?, 51) N Isom®¥ (X1). (3.5)

Then
qH™ (X1, 51)) = Isom®™ (X1, j1). (3.6)

In other words, if a cellular homeomorphism h : X' — X! extends to
a cellular homeomorphism of X2, then the corresponding isometry q(h)
also extends to a cellular homeomorphism of X?2.

In particular, we have the following commutative diagram in which the
first line coincides with (3.1):

1 —— HG(X ) —— H (XD
"

Isom™(X1) ——1

1 —=HE"(XT) —=H(X 1) Isom™ (X', ji) —1

Proof. 1) Let h € H(X*, jx) = pr(HV (X 1)), Thus,
P(il) = B’Xk =h

for some h € HW (X +1). In other words, h can be extended to some cellular
homeomorphism hof X k+1 though this extension is not unique.

We need to construct extensions h = s(h) of all h € HY(X*, j;) so that the
correspondence of s : h — h will be a homomorphism of groups. In fact, one
needs to define s(h) only for each (k + 1)-cell.



Automorphisms of Cellular Divisions of 2-sphere 151

Let 1, : D**1 — X*+1 be the characteristic mapping of a (k+1)-cell e. Then,
by (a) and (b), there exists a finite subset F, C dD**! = S* such that the gluing
map

Yelgiy gt SE\Fe — XF\ X0
is an embedding. One easily checks that then the restriction
Ye|pring,: DM\ F, — XF\ XO

will also be an embedding.

Let ¢/ = h(e) be the image of e. Then the homeomorphism
Qe :¢;10EO¢6: Dk+1\Fe — Dk+1\Fe’

makes the following diagram commutative:

DM\ R, Pe Xkt Ik > xk

1T e

DFk+1 \ F. Yer Xk Ik dxk

Since F, and F, are finite subsets of 9D**1, they must consist of the same number
of points. Therefore a, extends to a unique homeomorphism a, : D1 — DF+1
making the following diagram commutative:

oDk+1 e Xk
O‘IDk+1l J{h (3.9)
oDk e xk

Define another homeomorphism B(h) : D¥1 — DF1 by
0, rz=0
Be(h)(z) = : (3.10)
a(z/|z])|z], = #0
Then B(h) = a, on D**!. Extend h to a homeomorphism s(h) : X*+1 — XF+1
by
h(z), e Xk
o) = { @) 7 R (3.11)
e 0 Be(h)opst, xeecC XFH\X

Then s(h) is a cellular homeomorphism, i.e., it belongs to HV(X**+1), and
for each (k + 1)-cell e it makes the following diagram commutative:

Dk+1 Ye Xkt Ik >xk
Be(h)i ls(h) J/h (3.12)

DE+1 Yer k1 Jk 5 xk
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It is easy to verify that the correspondence h — s(h) is a homomorphism of
groups

s HY(XE ) — HY(XF),
being also a section of py, i.e., s(h)|xr = h for all h € HV(X*, jp).

2) Now consider the case dim X? = 2.
(i) We need to show that HEV(X1) € HV(X1L, j1), i.e., that every homeomor-
phism h € H¥(X!) can be extended to some homeomorphism

v(h): X? = X2

It suffices to show that for each 2-cell e there exists a homeomorphism S,
which makes the following diagram commutative:

D2 d)e X2 jl )Xl

Bel : ~y(h) J/h (3.13)

Y .
D2 the X2 J1 )Xl

where 1), : D?> — X! is the characteristic mapping of the cell e. Then ~(h) will
be uniquely determined by its restrictions on each 2-cell e by the formula

Y(h)le =2 © Be o e

To construct S, recall that there is a finite subset of F, ¢ 9D? = S! such
that the corresponding gluing map

Yelgnp, + ST\ Fo — X1\ X0

is an embedding. Therefore, there is a homeomorphism a, : S* \Fe = S 1 \ F.
which makes the following diagram commutative:

S\ FC - glc o p2 Yo x2 I 5x1

| lh

S1\ P> Sl s p2 Yo x2 oyl

Notice that for each connected component K of the set S'\ F. its image
Ye(K) is an edge in X2. As h € HV(X1!), it follows that h leaves invariant that
edge and preserves its orientation. In addition, h fixes each vertex of X!, and
therefore a, extends to a homeomorphism

e : St — St
which is fixed on F, and makes the following diagram commutative:

e

S\ FC > §lc D2 x2 <oyt
lae lae . (3.14)
ST\ FC—s Sl p2 Ve x2 Loy
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Using Alexander’s trick, extend a, to some homeomorphism f3, : D> — D?. Then
Be is a desired homeomorphism which makes the diagram (3.13) commutative.

(ii) We need to verify that q(H W (X1, j1)) = Isom®™ (X!, 1), see (3.6). Since
MG (X C HY(X ),
it follows that for each h € HV (X!, j;) we have
PHSY(XY) € HE(XE, 41). (3.15)
Hence,
{a(h)} = M (X*) 7 Isom™ ()
C HY(XY, j1) NIsom™ (X1) = Isom®™™ (X!, j1).

Here we conclude that the first and last equalities hold according to (3.2) and
(3.5), respectively, and the subset relation holds according to (3.15). In other
words,

g(H (X1, 1)) € Tsom®™ (X1 j1).

To check the inverse inclusion recall that the homomorphism ¢ from Theo-
rem 3.1 is a retraction onto Isom®¥(X!). Therefore, for each

h € Tsom®™ (X', j1) € HY(X, j1),
q(h) = h, whence
Isom®™ (X', 71) = ¢(Isom®™ (X', 71)) C q(H™ (X', j1)).

Theorem 3.2 is proved. O

4. Proof of (a) of Theorem 2.3

Proof of (a) of Theorem 2.3. Let X' be the critical component of a level set
of f corresponding to the vertex v, X° be the set of critical points of f belonging
to X!, and j; : X! <+ S? be the canonical embedding.

Then S? has a structure of a 2-dimensional CW-complex in which X%, X1,
and X2 = S? are 0-, 1 and 2-skeletons, respectively. We will denote by = the
corresponding CW-partition of S2.

Fix a metric d such that the length of each edge equals 1 and denote by
Isom® (X1) the group of isometries of X!. Similarly to Theorem 3.2, consider
the group

IsomCW(Xl,jl) = IsomCW(Xl) N HCW(Xl,jl)

of isometries of X! which can be extended to some homeomorphisms of S?
with respect to this embedding j;. Then Isom® (X!, j1) is a finite subgroup
of HCW(Xl,jl).
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As f has only finitely many critical points, and they are isolated, one can
assume that the gluing map v, : 9D — X© of each 2-cell e is a homeomorphism
outside some finite subset F, C dD'.

Thus, this cellular partition of S? satisfies the conditions of Theorem 3.2.
Therefore, the group H (X!, j;1), and thus its finite subgroup Isom®¥ (X!, j1), is
isomorphic to some subgroups of H(S?).

Hence, to prove the theorem it suffices to show that G1°°¢ is isomorphic to a
subgroup of Isom®™ (X1, 5).

Recall that there is an epimorphism (2.3):

po:S(f) X Gy T G
On the other hand, we have the homomorphism
o:89(f) C HV(S?) 5 HY(XY ) -5 Isom®™ (X1 5p),

where w(h) = h|x1 is the restriction homomorphism on X!, and ¢ is the homo-
morphism defined in Theorem 3.1. We will show that

ker(p,) = ker(o). (4.1)
As p, is an epimorphism, there will exist a unique monomorphism
s G¢ e Tsom™ (X1 5),

which makes the following diagram commutative:

$'(f) 4.2
GloCCy \ (

Isom®¥ (X1, j1)

In other words, we will get that G°¢ is isomorphic to some subgroup of

Isom®¥ (X!, j) and hence of H(S?).
Consider the following conditions on h € S'(f):

(al) h € ker(o); (bl) h € ker(py);
(a2) h fixes each vertex of X!, | (b2) h leaves each 2-cell S? in-
and also leaves invariant ev- variant.

ery edge X' and preserves
the orientation.

Then it follows from the definitions of p, and o that (al) is equivalent to (a2),
and (bl) is equivalent to (b2).

Moreover, (a2) implies (b2), because each 2-cell is uniquely determined by
the edges to which it is glued and therefore ker(o) C ker(p,).

Conversely, (b2) implies (a2) due to [29, Theorem 7.1]. Hence ker(p,) C
ker(c) as well, and so ker(p,) = ker(c). Thus G°¢ is isomorphic to a certain
subgroup of H(S?). O
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5. Proof of (b) and (c) of Theorem 2.3
Now let

£:GY &y Tsom®™ (X', 51) © HY(XY 1) - HY(S?) c H(S?)

be the embedding constructed in (a) of Theorem 2.3. We will first discuss its
properties. To simplify notations for each v € G1°¢, denote its image in H(S?)

v
by 7, that is, 7 := ’5(7)
Lemma 5.1.

(1) Each 7y € £(G'°) C H(S?) is a cellular homeomorphism of E. Also, ¥ = idge
if and only if 5 leaves invariant every 2-cell of =.

(2) If h € S9(f) and v = py(h) € G, then h(e) = 7(e) for each cell e € .

(3) In each cell e € Z, we can choose a point z. € e such that their collection
{2 Yeex is E(G%)-invariant. In particular, if ¥(e) = e for some v € G,

then 7(ze) = ze.
(4) Lete be a cell in Z and A, be the subgroup in £(G°), which leaves e invariant.

(a) Suppose that dime = 0 which means that z = e is the critical point
f belonging to the critical level X'. Let also ag,...,a_1 be cyclically
ordered arcs on X' starting from the point z. for some k > 1 and having
the same length d < 0.5, see Figure 2.4. Then A, is a cyclic group freely
acting on the set of arcs ag, s, . . ., oo with even indices. In particular,
its order divides k.

(b) If dime = 1, that is, e is an edge X', then A. = {idg2} is a unit group.

(c) Suppose dime = 2. Let also 1. : D*> — X! be the characteristic mapping
2-cell e and F C S' = 0D? be that finite subset such that the correspond-
ing gluing map e|s1 satisfies the conditions of Theorem 3.2. Denote by
n the number of points in F, which coincides with the number of arcs in
ST\ F as well as with the number of connected components of €\ e. Then
A is a cyclic group freely acting on that set of arcs. In particular, its
order divides n.

(5) If 7 € £(G°°) is not the identity mapping, then 3 has exactly 2 invariant
cells e1,es € Z, which may have different dimensions. In particular, 5 has
two fixed points ze, and ze,.

Proof. (1) By the construction, £(G1°°) consists of cellular homeomorphisms
of S2. Also notice that there exists a canonical bijection between 2-cells of = and
edges of the star Star(v) of v such that for each v € GI°° the following conditions
are equivalent:

(i) 7 € H(S?) leaves invariant every 2-cell of Z,

(ii) 7 leaves invariant each edge of Star(v),
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(i)~ is the identity homeomorphism of Star(v),

(iv)¥ = &(7) = £(idstar(w)) = idg2-
(2) This statement also follows from the construction of the embedding &.

(3) In each e we should choose a point z. € e such that if (e) = e for some
7 € £(Gy°), then F(ze) = 2.

a) Ifdime =0, i.e., e is a critical point of f belonging to X!, then we must put
Ze = €.

b) Suppose dime = 1, i.e., e is an edge X'. Recall that we have chosen a
metric on X! in which each edge (in particular, e) has the length 1. Let
ze be the middle point of e, so it splits e into two arcs each of length %
Hence, if 7(e) = e, then 7|, is either the identity map or the unique reversing
orientation isometry. In both cases Y(z.) = z..

¢) Let dime = 2 and %, : D?> — X! be the characteristic mapping of the cell
e constructed in 2) of Theorem 3.2. Put z. = 1.(0), where 0 € D? C R? is
the origin. Then it follows from formulas (3.10) and (3.11) that Y(z.) = z.
whenever y(e) = e.

(4) Let e be a cell in Z. We need to compute the subgroup A, C &(G°) of
homeomorphisms that leave e invariant.

Let 7 € A, € £(G°), so there exists h € SY(f) such that v = p,(h) € Go°.
In particular, e is an h-invariant cell of 4 and z. € e is the corresponding fixed
point of 7.

(b) Suppose dime = 1. We will show that h leaves each 2-cell invariant.
Then, due to (1), we will get that ¥ = idg2, which will prove that A, = {idg=}.

First, we claim that h preserves orientation of e. Indeed, since e is an edge,
i.e., a part of the critical component of some level set of f, it follows that e
belongs to the closure of precisely two 2-cells a, 8 € Z, and f(a) < f(e) < f(b)
for all @ € @ and b € 5. But h preserves f, whence h(a) = « and h(B) = 3.
Moreover, since h € S9(f) C H*(S?) also preserves orientation of S2, it must
preserve orientations of open subsets a and 3 of S?, and therefore h also preserves
orientation of e.

Hence h fixes each vertex x € €\ e of the edge e being a saddle critical point
of f. Let k, be the order of z, see Figure 2.4. Then there are 2k, arcs in X!
starting from x which are cyclically ordered and h preserves their cyclic order.
Therefore h leaves invariant all the edges of X' incident to z.

This implies that the closure B of the set of h-invariant edges is open in X
Then it follows from the connectedness of X! that B = X!, i.e., all edges of X!
are invariant with respect to h. Therefore h leaves invariant each 2-cells, whence
Y= id52.

(a) Suppose dime = 0. Since h preserves the cyclic order of the arcs
ao, ..., o1, it follows that h(e;) = ajqy for some n € {0,...,2k — 1}. Not
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loosing generality, one can assume that f equals to 0 on X!. Then on the consec-
utive sectors a;_,; and ml the function f takes the values of different signs.
As h preserves the values of f, it follows that n must be even, so h(a;) = a;12r
for some 7 € {0, ...,k —1}. Therefore the set of k arcs with even numbers is also
invariant with respect to 7.

In other words, we get an action of the group A. on the set of arcs with even
numbers by cyclic shifts, which can be viewed as a homomorphism ¢ : A, — Zy.
Note that if y(a;) = a; for some i € {0,2,...,2k — 1}, then, according to the
previous statement, (b) v =idg2. This means that the action of the group A, is
free, and thus ¢ is a monomorphism. Therefore, A, is a subgroup of Z;, whence
it is cyclic and its order divides k.

(c) Suppose dime = 2 and denote by n the number of points in F'. Then,
according to the diagram 3.13, « cyclically shifts n edges &g, ..., 8,1 of X' along
which e is glued to X!. Therefore, similarly to the previous paragraph (a), we
get a free action of A, on the set of those edges by cyclic shifts, which implies
that A, is also cyclic and its order divides n.

(5) According to [30, Corollary 5.4], a cellular homeomorphism 7 of a closed
orientable surface M with a cell partition =

e cither leaves every cell invariant and preserves its orientation,

e or the number of invariant cells is equal to the Lefschetz number L(7) of 7.

In our case, 7 is a preserving orientation homeomorphism of S2. Therefore 7
is isotopic to the identity and we get L(3) = x(S?) = 2. Thus, if 7 is not the
identity, then it has precisely two invariant cells. O

Proof of (b) and (c) of Theorem 2.3. Now we can prove (b) and (c) of Theo-
rem 2.3.

(b) Suppose Fix(G) has a fixed edge. Let v be a vertex in Fix(G¢) and = be
the cellular partition of S? constructed in (a) of Theorem 2.3. As Fix(Gy) is a
tree, it follows that v belongs to some edge 6 C Fix(Gy) corresponding to a 2-cell
e of Z. This cell is therefore invariant with respect to the action of £(GI°) on
S2?, that is, GI°¢ = A.. But then, by (4)(c) of Lemma 5.1, GI°¢ = A, is a cyclic
group.

(c¢) Suppose Fix(G ) consists of a unique vertex v and G1°¢ 2 7, for some k >
2. As £(G1°) is conjugated to a finite (cyclic) subgroup of SO(3), all elements of
£(GY°) have exactly two common fixed points, which we will denote by a and b.

On the other hand, according to (5) of Lemma 5.1, every nontrivial element
7 € £(G°) has exactly two invariant cells e; and eq, and, respectively, two fixed
points ze, and z,. Hence, one can assume that a = z,, and b = z,. In particular,
Gl¢ = A,, = A.,. Therefore, it suffices to consider the following three cases.

a) If dime; = 2, then Fix(Gy) must have a fixed edge that corresponds to the
2-cell e, which contradicts to the assumption that Fix(G¢) = {v} consists of
a unique vertex.
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b)

c)

1]

If dime; = 1, then, according to (4)(b) of Lemma 5.1, GI°¢ = A,, is a trivial
group, so Fix(Gy) = Ay # {v}, which again contradicts to the assumption.

Thus the remained situation is when both e; and es are vertices of X! being
therefore saddle critical points of f. Let k;, ¢ = 1,2, be the order of e;. Then
Gl°¢ = A,. is isomorphic to a subgroup of Zy, for both i = 1,2. Hence k
divides both k; and kg, and therefore GCD(k1, k2). O
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ABTOoMOp®di3MH KIITKOBUX /[ijIeHb 2-cdepu iHyKOBaHi
dbyHKIigME i3 i30JIbOBAHUMU KPUTUYHUMHU TOUYKAMHU

Anna Kravchenko and Sergiy Maksymenko

Hexait f : S? — R — dynxuis Mopca na 2-cdepi i K — KoMIoHenTa 38’4-
3HOCTI JIesIKOT MHOYKUHU PiBHs (MPYHKINI f, 10 MicTUTH X04a O OJHY CiJJIOBY
kputugHy TouKy. lomi K — 1e 1-Bumipauit CW-KoMILIEKC, KJIITKOBO BKJIa-
nenwit B S2, Tak mo gonosrenns S\ K € 06’€IHAHAAM BiIKDHTHX 2-7UCKiB
Dy, ..., Dy. Hexait Sk (f) rpyna audbeomopdismis S2, axi isorommi 10 To-
TOKHOTO BiMOOparkeHHs 1 3aJIMINAIOTH iHBapiaHTHUME MHOXKUHY K 1 KOXKHY
muoxkuny pisaa f~1(c), ¢ € R. Toxi koken h € Sk (f) inaykye nepmy re-
PeCTaHOBKY 0, BKasaHUX BuIe JuckiB. IlozHaummo vepes G = {0}, | h €
Sk (f)} rpyny Beix Takux nepecranosok. Mu mosesemo, mo G izomopdua
ckinvenniit migrpym 8 SO(3).

KirrouoBi ciioBa: niosepxust, dyukiiss Mopca, qudeomopdizmu
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