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Biharmonic Hopf Hypersurfaces of Complex
Euclidean Space and Odd Dimensional
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In this paper, biharmonic Hopf hypersurfaces in the complex Euclidean
space C"*! and in the odd dimensional sphere S2"*! are considered. We
prove that the biharmonic Hopf hypersurfaces in C"*! are minimal. Also,
we determine that the Weingarten operator A of a biharmonic pseudo-Hopf
hypersurface in the unit sphere S?"*! has exactly two distinct principal
curvatures at each point if the gradient of the mean curvature belongs to
D+, and thus is an open part of the Clifford hypersurface S™(1/v/2) x
S"2(1/4/2), where ny + ny = 2n.
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1. Introduction

A smooth map f : (M™,g) — (N", h) between two Riemannian manifolds,
M™ being compact, is known to be a harmonic map if it is a critical point of the
bienergy functional Ex(f) = 1 [,,|7(f)|? dvy, where 7(f) = trace Vdf denotes the
tension field associated to the map f, see [9,10]. It is known that the vanishing
of the tension field characterizes harmonic maps. Also, a new definition of the
biharmonic maps associated to the Euler-Lagrange equation was proposed by
Jaing [11], that is, f is a biharmonic map if and only if 75(f) = 0, where

72(f) = —AT(f) — trace RN (df (-), 7(f))df (-). (1.1)

The conception and characterization of a biharmonic submanifold based on the
use of the mean curvature in the Euclidean space was started independently by
B.Y. Chen [5]. Indeed, biharmonic immersions are a special class of biharmonic
maps. An isometric immersion f : (M™,g) — (N, h) is called biharmonic if and
only if the mean curvature vector field H of M™ in N™ satisfies equation (1.1),
written as

0= Aﬁ + trace RN(dtp(-), ﬁ) de(-),
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due to 7(f) = mH. Since each harmonic map is biharmonic because of (1.1),
non harmonic biharmonic maps called proper biharmonic maps are of interest.
Because in the Euclidean space biharmonic submanifolds and biharmonic im-
mersions coincide, the biharmonicity in Chen’s sense can be recovered, i.e., any
biharmonic submanifold in the Euclidean space is minimal (harmonic) [6], that

is, AH = 0.

Nonexistence results for the proper biharmonic maps were obtained in the
non-positively curved manifolds. More precisely, in [7], it is proved that in the
Euclidean space every biharmonic submanifold with the constant mean curvature
is minimal, every hypersurface with at most two distinct principle curvatures in
E™ is minimal and a pseudo-umbilical submanifold M"™ of n # 4 is minimal
in E™. Later on, K. Akutagawa and Maeta [2] proved that the biharmonic
submanifolds in the Euclidean space are minimal under some circumstances such
as completeness. Also, the biharmonic hypersurfaces in the Euclidean 4—space
are only minimal ones, see [12]. Recently, a classification of the biharmonic
hypersurfaces, depending on the number of distinct principal curvatures, was
obtained in [3,16].

On the other hand, in the positively curved spaces there are several examples
of the non minimal biharmonic hypersurfaces. For instance, it was proved that a
compact orientable proper biharmonic hypersurface with at most three distinct
principal curvatures in the sphere S”*! is either the hypersphere S"(%) or the
Clifford hypersurface, see [14]. Furthermore, a complete classification of the
proper biharmonic submanifolds in the sphere with the parallel mean curvature
vector and parallel Weingarten operator related to the mean curvature vector was
obtained in [4].

Actually, the attractiveness of the biharmonic immersion encouraged us to
study biharmonic Hopf hypersurfaces in the space form M(c). In this paper, we
concentrated on the biharmonic Hopf real hypersurfaces M?"*! in C"*! with the
natural complex structure and in the unit sphere S?"*1. Here it should be taken
into account that the notion of a structural vector field of the hypersurface plays
an important role. It is defined by U = —JN, where J is the complex structure
and NV is a local unit normal vector field on the hypersurface M. If U is one
of the principle vectors, then hypersurfaces are called Hopf hypersurfaces. Thus,
the target of our research is to study the biharmonicity of Hopf C'R-hypersurfaces
in the complex Euclidean space C™*! and of pseudo-Hopf hypersurfaces in the
unit sphere S$2"+1,

The paper is organized as follows: in Preliminaries, we recall some essen-
tial definitions and give equivalent conditions for a biharmonic hypersurface in
the space forms. In Section 3, we prove that the biharmonic Hopf hypersur-
faces in C™*! are minimal. Finally, in Section 4, we consider the biharmonic
pseudo-Hopf hypersurfaces in the unit sphere S?**! and obtain that if the Wein-
garten operator has exactly two distinct principal curvatures at each point, then
these hyperspheres are an open part of the Clifford hypersurface S™ (1/v/2) x
S"Z(l/\/?), where nq + ng = 2n.
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2. Preliminaries

Let z : M™ — E™*! be an isometric immersion of an n-dimensional hyper-
surface (M™, g) into the Euclidean space E"*1. Let V and V be the Levi-Civita
connections on M" and E™*!, respectively. Suppose that X and Y are tangent
vector fields on M"™. Let N be a local unit normal vector field to M"™ in E"*1.
We recall the Gauss and the Weingarten formulas:

VxY =VxY +h(X,Y),
VxN = —AX,

where A is the Weingarten operator and h is the second fundamental form of
M™. Express the definition of the curvature tensor as

R(X,Y)Z =VxVyZ —VyVxZ —VxyZ.
Furthermore, we have the Gauss and the Codazzi equations

R(X,Y)Z = (AY, Z)AX — (AX, Z)AY,
(VxA)Y = (VyA)X,

respectively, where R is the tensor curvature and X,Y and Z are vectors tangent
to M™. Denote the mean curvature vector by H = HN, where H is the mean
curvature. The isometric immersion z : M™ — E™*! is called biharmonic if and
only if

0=AH = 2A(grad H) + nH grad H + (AH + H trace A?),

where the Laplacian-Beltrami operator is defined as A = —trace V2. So, by
identifying the tangent and the normal parts of the above equation, we arrive at
the necessary and sufficient conditions for M™ to be a biharmonic hypersurface
in the Euclidean space E™t!:

AH + H trace A2 =0,
2A(grad H) + nH grad H = 0. (2.1)

Now we suppose that the ambient space is the complex Euclidean space C"*!
which is equipped with the Euclidean metric (-, -) viewed as an Hermitian metric
g. We regard J as a map of the tangent bundle T(C™*!). There exists a natural

basis {(a%l)x , (%)x e (%)x , (%)I} for the tangent space T, (C™*1) at
a point x, where (x!,y', ... 2" y") are local complex coordinates at . Put

(o). = (o).
! <8(Z> o <ai>
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for 1 < i < n. Then J is called an almost complex structure. A differentiable
manifold is called an almost complex manifold if it is equipped with an almost
complex structure J satisfying J? = —id. Consider the complex Euclidean space
(C™1 ). Assume that M is a real hypersurface of C"*!. For any X € T,.(M),
it can be written JX = FX + u(X)N, where F is an endomorphism on the
tangent bundle T(C™"1), u is a one-form and N is a local unit normal vector
field on M. Now we consider U = —JN, which is called a structural vector field
of M in C™+1,

Let N?"*! be an odd dimensional manifold and ¢, & and 1 be tensor fields of
types (1,1), (0,1) and (1,0) on N?"*1 respectively. For X € T(N?"*1), if the
conditions

0*(X) = =X +n(X)¢,

1,
n(e(X)) =0

are satisfied, then the triple (p,&,n) is called an almost contact structure and
(N2 €, ) is said to be an almost contact manifold. If N?"*! is endowed
with a Riemannian metric g, in which

9(pX,pY) = g(X,Y) —n(X)n(Y),
9(X,0(Y)) = dn(X,Y), (2.2)

where X and Y are in T(N?"t1) then (N?"*1 p, £ n, g) is called a contact metric
manifold. Also, the contact metric manifold (N2"*1 ¢ € n,g) is said to be a
normal contact metric manifold if N, 4+ dn ® £ = 0, where

Ny (X)Y) =[pX,0Y] — 0[pX,Y] — o[ X, Y] + @*[X,Y] (2.3)

is the Nijenhuis tensor field of ¢. In this case, N?"! is called a Sasakian
manifold. The sufficient and necessary condition for a contact metric manifold
(N2 . €.m, ) to be a Sasakian manifold is well known:

(Vxp)Y = g(X,Y)§ —n(Y)X, (2.4)

where V is the Levi-Civita connection on N2"*1. In [18], the author proved the
following formula for a Sasakian manifold:

Vxé=—pX. (2.5)

Let (N2t . €. n,9) be a Sasakian manifold. Then the sectional curvature
of a 2-plane spanned by {X, pX} is called the y-sectional curvature, where X €
T(N?"*1) is orthogonal to £. A Sasakian manifold with the constant ¢-sectional
curvature c is called a Sasakian space form and denoted by N(c). The curvature
tensor field of N(c) satisfies

c—1
4

R(X,Y)Z = - {n(2) (V)X = n(X)Y]+ [g(Y, Z2)n(X) — g(X, Z)n(Y)]¢
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+ 9(0X, Z)pY +29(pX,Y)pZ — g(¢Y, Z)pX}
c+3

+ {9V, 2)X —g(X,2)Y}. (2.6)

3. Biharmonic Hopf hypersurfaces in C"*!

In this section, we concentrate on the biharmonic Hopf real hypersurface
M?"*1 in the complex Euclidean space (C™*!,.J). We suppose that the structural
vector field U is tangent to M?" 1. Let T,(M*" 1) = D@®RU, where D = {X €
T(M?* 1) u(X) = 0} for all x € M?*"*1. Now, by taking the assumptions into
account, the following lemmas will be required to reach a suitable frame field for
the Weingarten operator.

Lemma 3.1 ([8]). Let U be an eigenvector of the Weingarten operator A
corresponding to the eigenvalue o and let X be the eigenvector of A corresponding
to the second eigenvalue A. Then we have

2\ — a)AFX = 2k + a\)FX. (3.1)
With respect to the above lemma, we have the result as follows:

Lemma 3.2. Let M?*t! be a biharmonic Hopf hypersurface of (C”‘H,J)
with the non-constant mean curvature H. Then we have

Velel = 0,
2n+1
k 7
Ve,e1 = g Wy ek = Wy €,
k=1

Ve Fej = (Ve,Flej + F(Ve,ej),
Ve €ant1 = pFe;,
Vegii€mt1 =0, (3:2)

where V is the Levi-Civita connection on M2+l WF

i is known as the Cartan
coefficient, and eany1 = U.

Proof. It can be obtained from (2.1) that the gradient of the mean curvature
H is an eigenvector of the Weingarten operator A corresponding to the eigen-
value —%H . With respect to the proceeding lemma, there is an appropriate
orthogonal frame {ey,...,e,, Fei,...,Fe,, U} such that e; can be parallel to

grad H. Then the shape operator A of M?"*! takes the form

A1
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where \; and u; are the eigenvalues corresponding to the eigenvectors e; and Fle;,
respectively. The eigenvalue a corresponds to the eigenvector U. Taking it into
account, the mean curvature is non-constant. Without loss of generality, for ¢ >
n we put e; = Fe;_,. Assume that grad H is given by

2n+1
grad H = Z ei(H)e;,
i=1
so it follows that
er1(H)#0, e(H)=0, i=2,...,2n+1, (3.4)
because e; is parallel to grad H. Also, it can be written
2n+1
Ve€j = Z wfjek, (3.5)
k=1

where wfj is the Cartan coefficient. Then, by computing the compatibility con-
ditions, we have

Vek <ei7 ei> = 07 vék <ei7 ej> = 07 (36)

ie., ‘ ' '
wp =0, wl,+w, =0, i#j, 4,5k=1...2n+1. (3.7)
Moreover, it follows from (3.3), (3.5), and (3.6) that the Codazzi equation implies
ei(Ng) = (N = Al (= Aty = O — \)wl (3.8)

for distinct ¢, j,k =1, ,2n+ 1. From A\ = —2"2—+1H and (3.4), we get

61()\1) 750, ei()\l) =0, 2=2,...,2n+1, (39)
and
[6i76j])‘1 =0, 2<4,5<2n+1, Z#]a (310)
which imply
wilj = ng'i (3.11)

for distinct 4,5 = 2,...,2n+4 1. It is claimed [15] that A\; # Ay for j =2,...,2n+
1. Since A; = A for j # 1, then, by applying the first term of (3.8) and putting
1 =1, we have

0= (M — A\)wh = e1(N) = ex(M),

which contradicts to (3.9). For j =1 and k,i # 1, from the second term in (3.8)
we get
(N = AJewis = Ak = A (3.12)

which together with (3.11) yields
wy =0, i#j, 4,j=2,....2n+1 (3.13)

By combining (3.13) with the second equation of (3.7), it follows that wljl =0,
1#j,1,j=2,...,2n+ 1. Thus, the lemma is proved. O
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Now we are ready to prove the principal theorem.

Theorem 3.3. Let ¢ : M?*" 1 — C™ 1 be an isometric immersion of the
biharmonic Hopf hypersurface M1 in the complex Euclidean space C™1. Then
M2+ s minimal.

Proof. We suppose that the mean curvature H on M?"*! is non-constant.
Then from the biharmonic condition we have that grad H is the eigenvector of
the Weingarten operator corresponding to the eigenvalue —QLQ‘HH . We con-
sider the orthogonal frame field {ey, ..., ey, Fe1,..., Fe,, U} on the hypersurface,
which consists of the eigenvectors of the Weingarten operator corresponding to
the eigenvalues satisfying Lemma 3.1. Take into account that e; is proportional
to grad H. First, we compute the curvature tensor R(X,Y)Z of M?"*! where
X,Y and Z are vectors tangent to M2+ Tet X = ey and Y = Z = €2n+1-
Then, by applying Lemma 3.2, we have

R(e1, ean+1)ean+1 = Arper. (3.14)
On the other hand, the Gauss equation yields
R(e1,eant1)eant1 = (Aeani1, eant1)Aer = ader. (3.15)

Consequently, from (3.14) and (3.15), we get A1 (1 — ) = 0. Hence, either g =
a or \;1 = 0. However, both choices are impossible because \; is unique and H
is non-constant, respectively. Indeed, according to Lemma 3.1, the eigenvalue
H1 = 2?;3‘& corresponding to the eigenvector Fe; is equal to « if and only if A\; =
«, which is a contradiction. Moreover, Ay = 0 contradicts to the assumption
that grad H # 0. Therefore, H must be constant. Then, with respect to the
biharmonic condition, M?"*! is a minimal hypersurface in the complex Euclidean

space C"H1, O

4. Biharmonic pseudo-Hopf hypersurfaces in S?**!

In this section, we study the biharmonic pseudo-Hopf hypersurfaces M?" in
the Sasakian space form S?"*1. Let x : (M?", g) — (S?"*1,g) be an isometric
immersion of the biharmonic Riemannian hypersurface M?" in S?"*1. Suppose
V and V are the Levi-Civita connections on S?"*1 and M?", respectively. Let
N be a local unit normal vector field on M?" and V = —pN. Then we have

T(M*) =D @ D+ @ R,

where D = {X € T(M?"), n(X) = 0} is a g-invariant distribution and D+ is a
one-dimensional subspace spanned by V. Suppose that the Weingarten operator
A keeps span{V, ¢}, that is, A(span{V,¢}) C span{V,¢} and AD = D. A hy-
persurface M?" is called a pseudo-Hopf hypersurface provided that span{V, £} is
invariant with respect to the shape operator A, see [1]. By taking equation (2.5)
into account, we can have

A==V, VxV =pAX, Vx&=—-pX (4.1)
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for all X € D. Suppose also that Wi, Ws € span{{, V'} are the eigenvectors of
the Weingarten operator A, AW, = v W1 and AWy = ~Whs, such that

Wi =¢€Ecosf+Vsinf, Wy =—Esinf+ V cosb (4.2)

for some 0 < 6 < Z. If AV = aV + B¢, we have 8 = —1 and a = %2

cosfsinf*

Lemma 4.1. Let M?" be a 2n-dimensional pseudo-Hopf hypersurface in the
Sasakian space form (S*"*1,0,&,n,g). If the Weingarten operator A for some
X € D satisfies AX = uX, then

po 4 2

ApX =
? 21—«

X, (4.3)

where | is the eigenvalue corresponding to the eigenvector X.

Proof. Let X and Y in D be the eigenvectors of the shape operator A. Now,
by taking the covariant derivative of both sides AV = aV — ¢, where V € D+,
and applying equation (4.1), we obtain

VxAV = Vx(OéV - f),
(VxA)V 4+ A(VxV)=X(a)V +aVxV — Vx¢,
(VxA)V 4+ A(pAX) = X()V + a(pAX) + pX.

Similarly,
(Vy A)V + A(pAY) =Y (a)V + a(pAY) + pY.
Hence,
g(VxAVY) + g(ApAX.Y) = X(a)g(V,Y) + ag(¢AX,Y) + g(¢X,Y)
and
g(Vy AV, X) + g(ApAY, X) = Y (a)g(V, X) + ag(pAY, X) + g(¢Y, X).
Then,

I(VxA)Y, V) + g(ApAX,Y) = ag(pAX,Y) + g(¢X,Y), (4.4)
g(Vy A)X, V) + g(ApAY, X) = ag(pAY, X) + g(¢Y, X). (4.5)

From (4.4) and (4.5), we have

9g((VxA)Y — (VyA)X,V) 4+ 2g(ApAX,Y)
= ag(pAX,)Y) + ag(ApX,Y) + 2¢(pX,Y). (4.6)

Because M?" is a hypersurface, we have (Vx A)Y = (Vy A)X, and (4.6) yields
29(ApnX,Y) = ag(ppX,Y) + ag(ApX,Y) +29(¢ X, Y).

Then,
(20— a)g(ApX,Y) = (ap + 2)g(¢X,Y). (4.7)

Thus the claimed result is obtained. O
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Now we are equipped enough to prove the following theorem.

Theorem 4.2. The biharmonic pseudo-Hopf hypersurfaces in S*™ 1 are an

open part of the Clifford hypersurface S”l(%) X 5”2(%) with n1 + ng = 2n and

n1 # no, wherever grad H belongs to D*.

Proof. Actually, the proceeding lemma lets the Weingarten operator A of the
pseudo-Hopf hypersurface M?" take the following form with respect to a suitable
orthogonal frame field {ey,...,e,—1,p€1,...,pen_1, W1, Wa}:

A1

V2]

where )\; and ); are the eigenvalues corresponding to the eigenvectors e; and we;,
respectively. Everywhere where ¢ > n — 1, we suppose that pe; 11—, = e;. Take
into account that AW, = W and AWy = y9Ws. In [1], the authors showed that
v1 = —tan @ and ~9 = cot §. Consequently, we have ;v = —1. Furthermore, it
is deduced that grad H is the eigenvector of the shape operator A corresponding
to the eigenvalue —nH, see [5]. So, without loss of generality, we distinguish the
following two cases.

Case I: Let e be a proportion of grad H. According to this assumption, we
can have the corresponding eigenvalue \; = —nH. Taking into account (3.4)-
(3.13), we can write

2n
Ve,€j = Z wfjek (4.9)
k=1
and

Ve, (ejs ej) = 0,
vek <ej7 ei> = w}sj + w;’lw
which imply that

w

L =0, w+wh =0, (4.10)

respectively, for the distinct ¢, 7, where 4,5,k = 1,...,2n. It is obvious that
[ei, €j]/\1 = eiej(/\l) — ejei(/\l) = 0 where i,j 7é 1. Thus,

0 = [ei,ej])\l = (Veiej — Veje,-))\l,

which yields
wi =wp; =0, i#j#1 (4.11)
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Now, by considering the above equations and applying the appropriate con-
nections, the noticeable result will be obtained in the following. Let eg, = Whs.
Then, from equation (4.9), we have

2n
Ve, €2n = Z Wk, e, (4.12)
k=1

where w23 =0 and wl,, = 0. On the other hand, with respect to (4.2), we get

Ve, Wa =V, (—&sinf + V cos )
= —e,(sinf)€ — sin(0) Ve, € + e, (cos0)V + cos(0)V,, V
= —e,(sin @) (W; sin + Wa cos 0) — sin 0(—pey,)
+ en(cos)(Wi cos @ — Wasin€) + cos0(pAey,)
= (—en(sin @) sinf + e, (cos ) cos ) W1 — (sin 6 + A1 cos6)ey
— (en(sin®) cos O + ep(cos f) sin 0) Wa.

By the above computation and (4.12), it follows that
0 =wy, =sind + X cosb.

Hence, o
)\1 = —tané. (413)

In a similar way, by computing V. ea,_1, where es,_1 = W;, we have
0=wly, | =cosfh — A siné,
which yields _
A1 = cot 6. (4.14)
However, it contradicts to (4.13). Hence, the following result is obtained.

Corollary 4.3. There is no biharmonic pseudo-Hopf hypersurface M?" of
S2n+1 with grad H belonging to D.

Case II: Let Wy € D™+ be collinear to grad H. We will show that the
Weingarten operator A of a pseudo-Hopf biharmonic hypersurface M?" of the
Sasakian space form S?"t! has exactly two distinct principle curvatures if grad H
is collinear to Wy € D+.

Due to the above assumption, we have [e;, ;]2 = e;ej(72) — ejei(y2) = 0,
where 7, j # 2n. So,

0 = [es, e5]72 = (Ve — Ve, ei)72, (4.15)

which yields that
Wit = Wi, i # ] (4.16)

From (3.8), for j = 2n and k,i # 2n we have

(A = Aan)wit = (Ae — Azn)wiy'-
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Due to \; # A, we have
Wit = WA =0, ik+#2n. (4.17)

Actually, the following computations show us how to get the principal result. Let
ean, = Wo. Then, from (4.9), we have

6162’)1 szQneka Z = 17 A 7” - 17 (4]‘8)

where wjh,, = 0 for distinct 4 and n. On the other hand,

Ve, Wo =V, (=€sinh + V cosh)
= —e;(sin )& —sin(0) Ve, & + ei(cos§)V + cos(8) Ve,V
= —e;(sin0) (W1 sin @ + Wy cos 0) — sin 0(—pe;)
+ ei(cos 0) (W7 cos @ — Wasin 6) + cos 0(pAe;)
= (—e;i(sinf) sin O + e;(cos ) cos O) W1 + (sinf + \; cos 0)pe;
— (e;(sin @) cos 0 + e;(cos 0) sin ) Wh.

Hence, from the last relation and (4.18), we obtain that A\; = — tan 6, where i =
1,...,n — 1. Another useful relation is given by
Ve €2n = Zwﬂnek, j=mn,...,2n—2, (4.19)

where e; = pe,1-; is the eigenvector corresponding to the eigenvalue )\7 with
respect to (4.8). Putting ey, = Wy, we have

Ve, Wa = Ve, (—€sind + V cos )
= —e;j(sin )€ —sin(0)V,, & + ej(cos )V + cos(0) Ve,V
= —e;(sin @) (W7 sin @ + W cos ) — sin 0(—ype;)
+ €;(cos 0) (Wi cos @ — W sin 6) + cos 0(pAe;)
= (—e;(sinf) sin 6 + e;(cos ) cos )Wy — (sinf + \; cos 0)e;
— (ej(sin @) cos @ + e;(cos #) sin ) Wo.

Since wj = 0 for the distinct ¢ and j, it follows that /\ = —tanf, where
7 =mn,...,2n — 2. Hence, \; = XJ = —tanf, where i = 1,...,n — 1,5 =
n,...,2n — 1. Precisely, the above straightforward computation makes it clear

that the biharmonic pseudo-Hopf hypersurface M?" in the Sasakian space form
S27+1 has two distinct principle curvatures, —tan @ and cot 6, corresponding to
the eigenvectors e; and Wa, respectively, where ¢ = 1,...2n — 1. Finally, owing
to the result from [17], we complete the proof. O
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Birapmoniyni nmoBepxHi Xorda B KOMIIIEKCHOMY
€BKJIIJIOBOMY NPOCTOPi i HemapHOBUMIipHiil cdepi
Najma Mosadegh and Esmaiel Abedi

VY crarTi po3rAgIa0ThCA OirapMOHiUHI TimeprioBepxHi Xormda B KOMILIe-
KCHOMY eBKJiioBoMy mpocropi C™ 1! i ma memaprosumipwiit chepi S27H1.
Ioseneno, o Girapmoniuni rinepmosepxui Xonda B C" ! e MminiMambamIMIL.
TakoK MOKa3aHO, 10 AKINO IPAIEHT cepeIHbol KPHBIHE HAJIEKUTH 10 DT,
TO orepaTop Beitnraprena A GirapMoHIYHOI IICeBI0-XO0M(DOBOI riepIoBepXHi
Ha omuHMuHiil cdepi ST Mae TinbKu ABi Pi3Hi TOJIOBHI KPUBUHU B KOMKHii
TOYII 1, TAKMM YMHOM, TilIEPIIOBEPXHS € BIJIKPUTOIO YaCTUHOIO IIIEPIIOBEPXHI

Kuidopaa S™ (1/v/2) x 82 (1/V/2), se n1 + ny = 2n.

KrrowoBi coBa: 6irapMomivdHi rineproBepxHi, rimeprnosepxui Xorda, ri-
more3a Yena
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