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In this paper, biharmonic Hopf hypersurfaces in the complex Euclidean
space Cn+1 and in the odd dimensional sphere S2n+1 are considered. We
prove that the biharmonic Hopf hypersurfaces in Cn+1 are minimal. Also,
we determine that the Weingarten operator A of a biharmonic pseudo-Hopf
hypersurface in the unit sphere S2n+1 has exactly two distinct principal
curvatures at each point if the gradient of the mean curvature belongs to
D⊥, and thus is an open part of the Clifford hypersurface Sn1(1/

√
2) ×

Sn2(1/
√

2), where n1 + n2 = 2n.
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1. Introduction

A smooth map f : (Mm, g) → (Nn, h) between two Riemannian manifolds,
Mm being compact, is known to be a harmonic map if it is a critical point of the
bienergy functional E2(f) = 1

2

∫
M |τ(f)|2 dνg, where τ(f) = trace∇df denotes the

tension field associated to the map f , see [9, 10]. It is known that the vanishing
of the tension field characterizes harmonic maps. Also, a new definition of the
biharmonic maps associated to the Euler–Lagrange equation was proposed by
Jaing [11], that is, f is a biharmonic map if and only if τ2(f) = 0, where

τ2(f) = −∆τ(f)− traceRN (df(·), τ(f))df(·). (1.1)

The conception and characterization of a biharmonic submanifold based on the
use of the mean curvature in the Euclidean space was started independently by
B.Y. Chen [5]. Indeed, biharmonic immersions are a special class of biharmonic
maps. An isometric immersion f : (Mm, g)→ (Nn, h) is called biharmonic if and

only if the mean curvature vector field
−→
H of Mm in Nn satisfies equation (1.1),

written as

0 = 4
−→
H + traceRN (dϕ(·),

−→
H ) dϕ(·),
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due to τ(f) = mH. Since each harmonic map is biharmonic because of (1.1),
non harmonic biharmonic maps called proper biharmonic maps are of interest.
Because in the Euclidean space biharmonic submanifolds and biharmonic im-
mersions coincide, the biharmonicity in Chen’s sense can be recovered, i.e., any
biharmonic submanifold in the Euclidean space is minimal (harmonic) [6], that
is, ∆H = 0.

Nonexistence results for the proper biharmonic maps were obtained in the
non-positively curved manifolds. More precisely, in [7], it is proved that in the
Euclidean space every biharmonic submanifold with the constant mean curvature
is minimal, every hypersurface with at most two distinct principle curvatures in
Em is minimal and a pseudo-umbilical submanifold Mn of n 6= 4 is minimal
in Em. Later on, K. Akutagawa and Maeta [2] proved that the biharmonic
submanifolds in the Euclidean space are minimal under some circumstances such
as completeness. Also, the biharmonic hypersurfaces in the Euclidean 4−space
are only minimal ones, see [12]. Recently, a classification of the biharmonic
hypersurfaces, depending on the number of distinct principal curvatures, was
obtained in [3, 16].

On the other hand, in the positively curved spaces there are several examples
of the non minimal biharmonic hypersurfaces. For instance, it was proved that a
compact orientable proper biharmonic hypersurface with at most three distinct
principal curvatures in the sphere Sn+1 is either the hypersphere Sn( 1√

2
) or the

Clifford hypersurface, see [14]. Furthermore, a complete classification of the
proper biharmonic submanifolds in the sphere with the parallel mean curvature
vector and parallel Weingarten operator related to the mean curvature vector was
obtained in [4].

Actually, the attractiveness of the biharmonic immersion encouraged us to
study biharmonic Hopf hypersurfaces in the space form M(c). In this paper, we
concentrated on the biharmonic Hopf real hypersurfaces M2n+1 in Cn+1 with the
natural complex structure and in the unit sphere S2n+1. Here it should be taken
into account that the notion of a structural vector field of the hypersurface plays
an important role. It is defined by U = −JN , where J is the complex structure
and N is a local unit normal vector field on the hypersurface M . If U is one
of the principle vectors, then hypersurfaces are called Hopf hypersurfaces. Thus,
the target of our research is to study the biharmonicity of Hopf CR-hypersurfaces
in the complex Euclidean space Cn+1 and of pseudo-Hopf hypersurfaces in the
unit sphere S2n+1.

The paper is organized as follows: in Preliminaries, we recall some essen-
tial definitions and give equivalent conditions for a biharmonic hypersurface in
the space forms. In Section 3, we prove that the biharmonic Hopf hypersur-
faces in Cn+1 are minimal. Finally, in Section 4, we consider the biharmonic
pseudo-Hopf hypersurfaces in the unit sphere S2n+1 and obtain that if the Wein-
garten operator has exactly two distinct principal curvatures at each point, then
these hyperspheres are an open part of the Clifford hypersurface Sn1(1/

√
2) ×

Sn2(1/
√

2), where n1 + n2 = 2n.



Biharmonic Hopf Hypersurfaces 163

2. Preliminaries

Let x : Mn → En+1 be an isometric immersion of an n-dimensional hyper-
surface (Mn, g) into the Euclidean space En+1. Let ∇ and ∇ be the Levi-Civita
connections on Mn and En+1, respectively. Suppose that X and Y are tangent
vector fields on Mn. Let N be a local unit normal vector field to Mn in En+1.
We recall the Gauss and the Weingarten formulas:

∇XY = ∇XY + h(X,Y ),

∇XN = −AX,

where A is the Weingarten operator and h is the second fundamental form of
Mn. Express the definition of the curvature tensor as

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Furthermore, we have the Gauss and the Codazzi equations

R(X,Y )Z = 〈AY,Z〉AX − 〈AX,Z〉AY,
(∇XA)Y = (∇YA)X,

respectively, where R is the tensor curvature and X,Y and Z are vectors tangent

to Mn. Denote the mean curvature vector by
−→
H = HN , where H is the mean

curvature. The isometric immersion x : Mn → En+1 is called biharmonic if and
only if

0 = 4
−→
H = 2A(gradH) + nH gradH + (4H +H traceA2),

where the Laplacian–Beltrami operator is defined as 4 = − trace∇2. So, by
identifying the tangent and the normal parts of the above equation, we arrive at
the necessary and sufficient conditions for Mn to be a biharmonic hypersurface
in the Euclidean space En+1:

4H +H traceA2 = 0,

2A(gradH) + nH gradH = 0. (2.1)

Now we suppose that the ambient space is the complex Euclidean space Cn+1

which is equipped with the Euclidean metric 〈·, ·〉 viewed as an Hermitian metric
g. We regard J as a map of the tangent bundle T (Cn+1). There exists a natural

basis
{(

∂
∂x1

)
x
,
(

∂
∂y1

)
x
, . . . ,

(
∂
∂xn

)
x
,
(

∂
∂yn

)
x

}
for the tangent space Tx(Cn+1) at

a point x, where (x1, y1, . . . , xn, yn) are local complex coordinates at x. Put

J

(
∂

∂xi

)
x

=

(
∂

∂yi

)
x

,

J

(
∂

∂yi

)
x

= −
(
∂

∂xi

)
x



164 Najma Mosadegh and Esmaiel Abedi

for 1 ≤ i ≤ n. Then J is called an almost complex structure. A differentiable
manifold is called an almost complex manifold if it is equipped with an almost
complex structure J satisfying J2 = −id. Consider the complex Euclidean space
(Cn+1, J). Assume that M is a real hypersurface of Cn+1. For any X ∈ Tx(M),
it can be written JX = FX + u(X)N , where F is an endomorphism on the
tangent bundle T (Cn+1), u is a one-form and N is a local unit normal vector
field on M . Now we consider U = −JN , which is called a structural vector field
of M in Cn+1.

Let N2n+1 be an odd dimensional manifold and ϕ, ξ and η be tensor fields of
types (1, 1), (0, 1) and (1, 0) on N2n+1, respectively. For X ∈ T (N2n+1), if the
conditions

ϕ2(X) = −X + η(X)ξ,

η(ξ) = 1,

η(ϕ(X)) = 0

are satisfied, then the triple (ϕ, ξ, η) is called an almost contact structure and
(N2n+1, ϕ, ξ, η) is said to be an almost contact manifold. If N2n+1 is endowed
with a Riemannian metric g, in which

η(X) = g(ξ,X),

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

g(X,ϕ(Y )) = dη(X,Y ), (2.2)

where X and Y are in T (N2n+1), then (N2n+1, ϕ, ξ, η, g) is called a contact metric
manifold. Also, the contact metric manifold (N2n+1, ϕ, ξ, η, g) is said to be a
normal contact metric manifold if Nϕ + dη ⊗ ξ = 0, where

Nϕ(X,Y ) = [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + ϕ2[X,Y ] (2.3)

is the Nijenhuis tensor field of ϕ. In this case, N2n+1 is called a Sasakian
manifold. The sufficient and necessary condition for a contact metric manifold
(N2n+1, ϕ, ξ, η, g) to be a Sasakian manifold is well known:

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X, (2.4)

where ∇ is the Levi-Civita connection on N2n+1. In [18], the author proved the
following formula for a Sasakian manifold:

∇Xξ = −ϕX. (2.5)

Let (N2n+1, ϕ, ξ, η, g) be a Sasakian manifold. Then the sectional curvature
of a 2-plane spanned by {X,ϕX} is called the ϕ-sectional curvature, where X ∈
T (N2n+1) is orthogonal to ξ. A Sasakian manifold with the constant ϕ-sectional
curvature c is called a Sasakian space form and denoted by N(c). The curvature
tensor field of N(c) satisfies

R(X,Y )Z = −c− 1

4
{η(Z)[η(Y )X − η(X)Y ] + [g(Y,Z)η(X)− g(X,Z)η(Y )]ξ
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+ g(ϕX,Z)ϕY + 2g(ϕX, Y )ϕZ − g(ϕY,Z)ϕX}

+
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }. (2.6)

3. Biharmonic Hopf hypersurfaces in Cn+1

In this section, we concentrate on the biharmonic Hopf real hypersurface
M2n+1 in the complex Euclidean space (Cn+1, J). We suppose that the structural
vector field U is tangent to M2n+1. Let Tx(M2n+1) = D⊕<U , where D = {X ∈
T (M2n+1);u(X) = 0} for all x ∈ M2n+1. Now, by taking the assumptions into
account, the following lemmas will be required to reach a suitable frame field for
the Weingarten operator.

Lemma 3.1 ([8]). Let U be an eigenvector of the Weingarten operator A
corresponding to the eigenvalue α and let X be the eigenvector of A corresponding
to the second eigenvalue λ. Then we have

(2λ− α)AFX = (2k + αλ)FX. (3.1)

With respect to the above lemma, we have the result as follows:

Lemma 3.2. Let M2n+1 be a biharmonic Hopf hypersurface of (Cn+1, J)
with the non-constant mean curvature H. Then we have

∇e1e1 = 0,

∇eie1 =

2n+1∑
k=1

ωki1ek = ωii1ei,

∇eiFej = (∇eiF )ej + F (∇eiej),
∇eie2n+1 = µFei,

∇e2n+1e2n+1 = 0, (3.2)

where ∇ is the Levi-Civita connection on M2n+1, ωkij is known as the Cartan
coefficient, and e2n+1 = U .

Proof. It can be obtained from (2.1) that the gradient of the mean curvature
H is an eigenvector of the Weingarten operator A corresponding to the eigen-
value − (2n+1)

2 H. With respect to the proceeding lemma, there is an appropriate
orthogonal frame {e1, . . . , en, Fe1, . . . , F en, U} such that e1 can be parallel to
gradH. Then the shape operator A of M2n+1 takes the form

A =



λ1
. . . 0

λn
µ1

. . .

0 µn
α


, (3.3)
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where λi and µi are the eigenvalues corresponding to the eigenvectors ei and Fei,
respectively. The eigenvalue α corresponds to the eigenvector U . Taking it into
account, the mean curvature is non-constant. Without loss of generality, for i >
n we put ei = Fei−n. Assume that gradH is given by

gradH =
2n+1∑
i=1

ei(H)ei,

so it follows that

e1(H) 6= 0, ei(H) = 0, i = 2, . . . , 2n+ 1, (3.4)

because e1 is parallel to gradH. Also, it can be written

∇eiej =
2n+1∑
k=1

ωkijek, (3.5)

where ωkij is the Cartan coefficient. Then, by computing the compatibility con-
ditions, we have

∇ek〈ei, ei〉 = 0, ∇ek〈ei, ej〉 = 0, (3.6)

i.e.,
ωiki = 0, ωjki + ωjik = 0, i 6= j, i, j, k = 1, . . . , 2n+ 1. (3.7)

Moreover, it follows from (3.3), (3.5), and (3.6) that the Codazzi equation implies

ei(λj) = (λi − λj)ωjji, (λi − λj)ωjki = (λk − λj)ωjik (3.8)

for distinct i, j, k = 1, , 2n+ 1. From λ1 = −2n+1
2 H and (3.4), we get

e1(λ1) 6= 0, ei(λ1) = 0, i = 2, . . . , 2n+ 1, (3.9)

and
[ei, ej ]λ1 = 0, 2 ≤ i, j ≤ 2n+ 1, i 6= j, (3.10)

which imply
ω1
ij = ω1

ji (3.11)

for distinct i, j = 2, . . . , 2n+ 1. It is claimed [15] that λj 6= λ1 for j = 2, . . . , 2n+
1. Since λj = λ1 for j 6= 1, then, by applying the first term of (3.8) and putting
i = 1, we have

0 = (λ1 − λj)ωjj1 = e1(λj) = e1(λ1),

which contradicts to (3.9). For j = 1 and k, i 6= 1, from the second term in (3.8)
we get

(λi − λ1)ω1
ki = (λk − λ1)ω1

ik, (3.12)

which together with (3.11) yields

ω1
ij = 0, i 6= j, i, j = 2, . . . , 2n+ 1. (3.13)

By combining (3.13) with the second equation of (3.7), it follows that ωji1 = 0,
i 6= j , i, j = 2, . . . , 2n+ 1. Thus, the lemma is proved.
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Now we are ready to prove the principal theorem.

Theorem 3.3. Let ψ : M2n+1 → Cn+1 be an isometric immersion of the
biharmonic Hopf hypersurface M2n+1 in the complex Euclidean space Cn+1. Then
M2n+1 is minimal.

Proof. We suppose that the mean curvature H on M2n+1 is non-constant.
Then from the biharmonic condition we have that gradH is the eigenvector of
the Weingarten operator corresponding to the eigenvalue −2n+1

2 H. We con-
sider the orthogonal frame field {e1, . . . , en, Fe1, . . . , F en, U} on the hypersurface,
which consists of the eigenvectors of the Weingarten operator corresponding to
the eigenvalues satisfying Lemma 3.1. Take into account that e1 is proportional
to gradH. First, we compute the curvature tensor R(X,Y )Z of M2n+1, where
X,Y and Z are vectors tangent to M2m+1. Let X = e1 and Y = Z = e2n+1.
Then, by applying Lemma 3.2, we have

R(e1, e2n+1)e2n+1 = λ1µ1e1. (3.14)

On the other hand, the Gauss equation yields

R(e1, e2n+1)e2n+1 = 〈Ae2n+1, e2n+1〉Ae1 = αλ1e1. (3.15)

Consequently, from (3.14) and (3.15), we get λ1(µ1−α) = 0. Hence, either µ1 =
α or λ1 = 0. However, both choices are impossible because λ1 is unique and H
is non-constant, respectively. Indeed, according to Lemma 3.1, the eigenvalue
µ1 = λ1α

2λ1−α corresponding to the eigenvector Fe1 is equal to α if and only if λ1 =
α, which is a contradiction. Moreover, λ1 = 0 contradicts to the assumption
that gradH 6= 0. Therefore, H must be constant. Then, with respect to the
biharmonic condition, M2n+1 is a minimal hypersurface in the complex Euclidean
space Cn+1.

4. Biharmonic pseudo-Hopf hypersurfaces in S2n+1

In this section, we study the biharmonic pseudo-Hopf hypersurfaces M2n in
the Sasakian space form S2n+1. Let x : (M2n, g) → (S2n+1, g) be an isometric
immersion of the biharmonic Riemannian hypersurface M2n in S2n+1. Suppose
∇ and ∇ are the Levi-Civita connections on S2n+1 and M2n, respectively. Let
N be a local unit normal vector field on M2n and V = −ϕN . Then we have

T (M2n) = D ⊕D⊥ ⊕<ξ,

where D = {X ∈ T (M2n), η(X) = 0} is a ϕ-invariant distribution and D⊥ is a
one-dimensional subspace spanned by V . Suppose that the Weingarten operator
A keeps span{V, ξ}, that is, A(span{V, ξ}) ⊆ span{V, ξ} and AD = D. A hy-
persurface M2n is called a pseudo-Hopf hypersurface provided that span{V, ξ} is
invariant with respect to the shape operator A, see [1]. By taking equation (2.5)
into account, we can have

Aξ = −V, ∇XV = ϕAX, ∇Xξ = −ϕX (4.1)
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for all X ∈ D. Suppose also that W1,W2 ∈ span{ξ, V } are the eigenvectors of
the Weingarten operator A, AW1 = γ1W1 and AW2 = γ2W2, such that

W1 = ξ cos θ + V sin θ, W2 = −ξ sin θ + V cos θ (4.2)

for some 0 < θ < π
2 . If AV = αV + βξ, we have β = −1 and α = cos 2θ

cos θ sin θ .

Lemma 4.1. Let M2n be a 2n-dimensional pseudo-Hopf hypersurface in the
Sasakian space form (S2n+1, ϕ, ξ, η, g). If the Weingarten operator A for some
X ∈ D satisfies AX = µX, then

AϕX =
µα+ 2

2µ− α
ϕX, (4.3)

where µ is the eigenvalue corresponding to the eigenvector X.

Proof. Let X and Y in D be the eigenvectors of the shape operator A. Now,
by taking the covariant derivative of both sides AV = αV − ξ, where V ∈ D⊥,
and applying equation (4.1), we obtain

∇XAV = ∇X(αV − ξ),
(∇XA)V +A(∇XV ) = X(α)V + α∇XV −∇Xξ,
(∇XA)V +A(ϕAX) = X(α)V + α(ϕAX) + ϕX.

Similarly,

(∇YA)V +A(ϕAY ) = Y (α)V + α(ϕAY ) + ϕY.

Hence,

g((∇XA)V, Y ) + g(AϕAX,Y ) = X(α)g(V, Y ) + αg(ϕAX, Y ) + g(ϕX, Y )

and

g((∇YA)V,X) + g(AϕAY,X) = Y (α)g(V,X) + αg(ϕAY,X) + g(ϕY,X).

Then,

g((∇XA)Y, V ) + g(AϕAX,Y ) = αg(ϕAX, Y ) + g(ϕX, Y ), (4.4)

g((∇YA)X,V ) + g(AϕAY,X) = αg(ϕAY,X) + g(ϕY,X). (4.5)

From (4.4) and (4.5), we have

g((∇XA)Y − (∇YA)X,V ) + 2g(AϕAX,Y )

= αg(ϕAX, Y ) + αg(AϕX, Y ) + 2g(ϕX, Y ). (4.6)

Because M2n is a hypersurface, we have (∇XA)Y = (∇YA)X, and (4.6) yields

2g(AϕµX, Y ) = αg(ϕµX, Y ) + αg(AϕX, Y ) + 2g(ϕX, Y ).

Then,
(2µ− α)g(AϕX, Y ) = (αµ+ 2)g(ϕX, Y ). (4.7)

Thus the claimed result is obtained.
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Now we are equipped enough to prove the following theorem.

Theorem 4.2. The biharmonic pseudo-Hopf hypersurfaces in S2n+1 are an
open part of the Clifford hypersurface Sn1( 1√

2
)× Sn2( 1√

2
) with n1 + n2 = 2n and

n1 6= n2, wherever gradH belongs to D⊥.

Proof. Actually, the proceeding lemma lets the Weingarten operator A of the
pseudo-Hopf hypersurface M2n take the following form with respect to a suitable
orthogonal frame field {e1, . . . , en−1, ϕe1, . . . , ϕen−1,W1,W2}:

A =



λ1
. . . 0

λn−1
λ1

. . .

λn−1
0 γ1

γ2


, (4.8)

where λi and λi are the eigenvalues corresponding to the eigenvectors ei and ϕei,
respectively. Everywhere where i > n − 1, we suppose that ϕei+1−n = ei. Take
into account that AW1 = γ1W1 and AW2 = γ2W2. In [1], the authors showed that
γ1 = − tan θ and γ2 = cot θ. Consequently, we have γ1γ2 = −1. Furthermore, it
is deduced that gradH is the eigenvector of the shape operator A corresponding
to the eigenvalue −nH, see [5]. So, without loss of generality, we distinguish the
following two cases.

Case I: Let e1 be a proportion of gradH. According to this assumption, we
can have the corresponding eigenvalue λ1 = −nH. Taking into account (3.4)-
(3.13), we can write

∇eiej =

2n∑
k=1

ωkijek (4.9)

and

∇ei〈ej , ej〉 = 0,

∇ek〈ej , ei〉 = ωikj + ωijk,

which imply that
ωjij = 0, ωikj + ωijk = 0, (4.10)

respectively, for the distinct i, j, where i, j, k = 1, . . . , 2n. It is obvious that
[ei, ej ]λ1 = eiej(λ1)− ejei(λ1) = 0 where i, j 6= 1. Thus,

0 = [ei, ej ]λ1 = (∇eiej −∇ejei)λ1,

which yields
ω1
ij = ω1

ji = 0, i 6= j 6= 1. (4.11)
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Now, by considering the above equations and applying the appropriate con-
nections, the noticeable result will be obtained in the following. Let e2n = W2.
Then, from equation (4.9), we have

∇ene2n =
2n∑
k=1

ωkn2nek, (4.12)

where ω2n
n2n = 0 and ω1

n2n = 0. On the other hand, with respect to (4.2), we get

∇enW2 = ∇en(−ξ sin θ + V cos θ)

= −en(sin θ)ξ − sin(θ)∇enξ + en(cos θ)V + cos(θ)∇enV
= −en(sin θ)(W1 sin θ +W2 cos θ)− sin θ(−ϕen)

+ en(cos θ)(W1 cos θ −W2 sin θ) + cos θ(ϕAen)

= (−en(sin θ) sin θ + en(cos θ) cos θ)W1 − (sin θ + λ1 cos θ)e1

− (en(sin θ) cos θ + en(cos θ) sin θ)W2.

By the above computation and (4.12), it follows that

0 = ω1
n2n = sin θ + λ1 cos θ.

Hence,
λ1 = − tan θ. (4.13)

In a similar way, by computing ∇ene2n−1, where e2n−1 = W1, we have

0 = ω1
n2n−1 = cos θ − λ1 sin θ,

which yields
λ1 = cot θ. (4.14)

However, it contradicts to (4.13). Hence, the following result is obtained.

Corollary 4.3. There is no biharmonic pseudo-Hopf hypersurface M2n of
S2n+1 with gradH belonging to D.

Case II: Let W2 ∈ D⊥ be collinear to gradH. We will show that the
Weingarten operator A of a pseudo-Hopf biharmonic hypersurface M2n of the
Sasakian space form S2n+1 has exactly two distinct principle curvatures if gradH
is collinear to W2 ∈ D⊥.

Due to the above assumption, we have [ei, ej ]γ2 = eiej(γ2) − ejei(γ2) = 0,
where i, j 6= 2n. So,

0 = [ei, ej ]γ2 = (∇eiej −∇ejei)γ2, (4.15)

which yields that
ω2n
ij = ω2n

ji , i 6= j. (4.16)

From (3.8), for j = 2n and k, i 6= 2n we have

(λi − λ2n)ω2n
ki = (λk − λ2n)ω2n

ik .
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Due to λi 6= λk, we have

ω2n
ki = ω2n

ik = 0, i, k 6= 2n. (4.17)

Actually, the following computations show us how to get the principal result. Let
e2n = W2. Then, from (4.9), we have

∇eie2n =
2n∑
k=1

ωki2nek, i = 1, . . . , n− 1, (4.18)

where ωni2n = 0 for distinct i and n. On the other hand,

∇eiW2 = ∇ei(−ξ sin θ + V cos θ)

= −ei(sin θ)ξ − sin(θ)∇eiξ + ei(cos θ)V + cos(θ)∇eiV
= −ei(sin θ)(W1 sin θ +W2 cos θ)− sin θ(−ϕei)

+ ei(cos θ)(W1 cos θ −W2 sin θ) + cos θ(ϕAei)

= (−ei(sin θ) sin θ + ei(cos θ) cos θ)W1 + (sin θ + λi cos θ)ϕei

− (ei(sin θ) cos θ + ei(cos θ) sin θ)W2.

Hence, from the last relation and (4.18), we obtain that λi = − tan θ, where i =
1, . . . , n− 1. Another useful relation is given by

∇eje2n =
2n∑
k=1

ωkj2nek, j = n, . . . , 2n− 2, (4.19)

where ej = ϕen+1−j is the eigenvector corresponding to the eigenvalue λj with
respect to (4.8). Putting e2n = W2, we have

∇ejW2 = ∇ej (−ξ sin θ + V cos θ)

= −ej(sin θ)ξ − sin(θ)∇ejξ + ej(cos θ)V + cos(θ)∇ejV
= −ej(sin θ)(W1 sin θ +W2 cos θ)− sin θ(−ϕej)

+ ej(cos θ)(W1 cos θ −W2 sin θ) + cos θ(ϕAej)

= (−ej(sin θ) sin θ + ej(cos θ) cos θ)W1 − (sin θ + λj cos θ)ei

− (ej(sin θ) cos θ + ej(cos θ) sin θ)W2.

Since ωij2n = 0 for the distinct i and j, it follows that λj = − tan θ, where

j = n, . . . , 2n − 2. Hence, λi = λj = − tan θ, where i = 1, . . . , n − 1, j =
n, . . . , 2n − 1. Precisely, the above straightforward computation makes it clear
that the biharmonic pseudo-Hopf hypersurface M2n in the Sasakian space form
S2n+1 has two distinct principle curvatures, − tan θ and cot θ, corresponding to
the eigenvectors ei and W2, respectively, where i = 1, . . . 2n − 1. Finally, owing
to the result from [17], we complete the proof.
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Бiгармонiчнi поверхнi Хопфа в комплексному
евклiдовому просторi i непарновимiрнiй сферi

Najma Mosadegh and Esmaiel Abedi

У статтi розглядаються бiгармонiчнi гiперповерхнi Хопфа в компле-
ксному евклiдовому просторi Cn+1 i на непарновимiрнiй сферi S2n+1.
Доведено, що бiгармонiчнi гiперповерхнi Хопфа в Cn+1 є мiнiмальними.
Також показано, що якщо градiєнт середньої кривини належить до D⊥,
то оператор Вейнгартена A бiгармонiчної псевдо-хопфової гiперповерхнi
на одиничнiй сферi S2n+1 має тiльки двi рiзнi головнi кривини в кожнiй
точцi i, таким чином, гiперповерхня є вiдкритою частиною гiперповерхнi
Клiффорда Sn1(1/

√
2)× Sn2(1/

√
2), де n1 + n2 = 2n.

Ключовi слова: бiгармонiчнi гiперповерхнi, гiперповерхнi Хопфа, гi-
потеза Чена
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