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1. Introduction

Let (ag), where k = 1,2,..., be a sequence of all rational numbers and every
rational number be included only one time. The function

fla)y=>Y 2"

ap<x

is increasing in the whole real axes, has the range in (0, 1) and jumps at rational
points.
The next function,

g(2) = 3 [2n"] /n,
n=1

is a strictly increasing function of z > 0 which does not take rational values
(see [4, Remark to Corollary 3.4]). Here K is an arbitrary positive integer and
[y] is an integer part of y. By analogy, the function

S lme) /!
n=1

is a strictly monotonic function of @ > 0 and v > 0 without rational values
(see [4, Remark for Corollary 3.5]).

The present paper is devoted to certain functions defined in terms of positive
Cantor series that are singular or non-differentiable.

Let @Q = (gx) be a fixed sequence of positive integers, ¢ > 1, © be a sequence
of the sets O = {0,1,...,qx — 1}, and ¢} € O.
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The Cantor series expansion

£ £ £
L (1.1)
@ 4192 142 - - - gk

of z € [0, 1] was first studied by G. Cantor in [2]. It is easy to see that the Cantor

series expansion is the g-ary expansion

S . S
q q q
of numbers from the closed interval [0, 1] whenever the condition gx = ¢ holds
for all positive integers k. Here ¢ is a fixed positive integer, ¢ > 1, and a4 €
{0,1,...,q —1}.
By * = Adc,..c,..., denote any number = € [0, 1] represented by series (1.1).
This notation is called the representation of x by Cantor series (1.1).
We note that certain numbers from [0, 1] have two different representations
by Cantor series (1.1), i.e.,

m

¢ 000-++ = i [ I It J Z .
€1€2°"Em—1Em S €1€2Em—1lem—1 QM+1_1 Qm+2_1 e P
o 1192 qi

Such numbers are called Q)-rational. The other numbers in [0, 1] are called Q-
irrational.

Let c¢i1,c0,...,¢,, be an ordered tuple of integers such that ¢ €
{0,1,...,q; — 1} for i =1, m.

A cylinder Agc2...cm of rank m with base cica - - - ¢, is a set of the form

A9 ={z:2=A% 1

C1C2**Cm, C1C2 " CmEM+1EM+2 " Em4k

i.e., any cylinder ACQ102~--cm is a closed interval of the form

B

ci1c2---cm 0007 A12162'-'Cm [gm+1—1[gm+2—1][gmy3—1]- |

Define the shift operator o of expansion (1.1) by the rule

o

Ek Q
o@)=0(A%, )= ——— =qA{, ., ..
= 4203 a

It is easy to see that

(@) = " (AL, .0,
_ - €k . AQ
N Z g, T nR0 06
k=n+1 An+19n+2 dk T
Therefore,

x = Z & + ! o"(x). (1.2)

q1492 - - - q; q1492 - - - qn
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In [13], the notion of the shift operator of the alternating Cantor series is
studied in detail.
In [7], Salem modeled the function

00 n—1
S(J;) =5 (AilaT“anm) = ﬁo41 + Z (Ban H qz) =Yy = Agfag---an---a
n=2 i=1

where qg > 0, ¢¢ > 0, and gg + g1 = 1. It is a singular function. However,
generalizations of the Salem function can be non-differentiable functions or not
have the derivative on a certain set. Some parers (see, for example, [9, 10, 15])
are devoted to modeling and studying generalizations of the Salem function.

In the present paper, two examples of certain functions with complex local
structure are constructed and investigated.

Suppose that the condition ¢, < ¢ holds for all positive integers n. The first
function has the form

[ix= AgEQ'"En'" — Ag152--~5n~- =Y.

This function is interesting since the generalization of the Salem function studied
in [9] can be represented as

F(.’B) = F&,Q ] f

Here, o denotes the composition of functions. Also, the function F¢ g is the
function of the type

[e%) k—1
Fro®) = Baa + 2 | Becwrk [1 e |-
k=2 j=1

where y = A ...

Note that the function F),, is a distribution function of a certain random
variable 1 whenever the elements p;, of the matrix P, described in the last-
mentioned examples, are non-negative.

Remark 1.1. Let n be a random variable defined by the g-ary expansion, i.e.,

1 2
n=i+;+§+m+i+mzﬁhﬂw
where the digits § (kK =1,2,3,...) are random and take the values 0,1,...,q —
1 with probabilities po k, 1k, - - -, Pg—1,k- That is, & are independent and P{¢, =
Zk} = Piy k> Zk’ €0 = {0717"'aq_ 1}
From the definition of the distribution function and the following expressions
for x = AglaZ...ak...:

<zt ={& <a(z)} U{&L = (), < aa(z)}U---
Ul = au(z), & = as(),... . & < ag(x)}U-- -,
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k—1
P{& = a1(z), e = as(x),..., 5 < ag(x)} = Bak(x),k Hpaj(a:),j
j=1

we get that the distribution function F; , of the random variable 7 has the form

0 for x <0
Fyq(®) = S Bar(@)1 + 2nea | Bag(@).k l_[?;ll pozj(w),j] for0<z<1
1 forx>1

since the conditions F;, ,(0) = 0, F}, 4(1) = 1 hold and F;, 4 is a continuous, mono-
tonic and non-decreasing function. Most generalizations of the Salem function
were studied in [11]).

Remark 1.2. In the general case, suppose that (f,) is a finite or infinite se-
quence of certain functions (the sequence may contain functions with complicated
local structure). Let us consider the corresponding composition of the functions

ccofpo--rofaofi= fooo

or

fno"'onOfl:fc,n-

Also, we can take a certain part of the composition, i.e.,

Jro+t 00 fng10 fng = fc,no,no-i-t?

where ng is a fixed positive integer (a number from the set N), ¢t € Zy = NU {0}
and ng +t < n.

One can use this technique for modeling and studying the functions with
complex local structure. Also, one can use new representations of real numbers
(numeral systems) of the type

:c’:Aszéf..in:"'Ofno"'0f20f1($),

Jj'/ _ Afc,'nm' — fTL O--+0 f2 o fl(.%')
or

f -
/ »ng,no+t
© = Azfzzozs = fn0+t ©...0 fn0+1 © fno(z)

in fractal theory, applied mathematics, etc.

The second map considered in this paper can be used for modeling fractals in
the space R?:

frx=A%L

ay—1 ag—1 anp—1

R EAY,

UL U UQ2 U Uy Q1O
—— ——
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where v € {0,1,...,9 — 1} is a fixed number, a,, € {1,2,...,9 — 1} \ {u}, and
3 < q is a fixed positive integer. It is easy to see that one can consider this map
defined in terms of other representations of real numbers (e.g., the Qs, Q*, QF, Q,
the nega-Q-representations and other positive and alternating representations).
Actually, the functions with complex local structure defined in terms of different
representations of real numbers, as well as their compositions, are useful for
modeling fractals (the Moran sets) in R?. Regularity properties of different sets
under the map generated by the functions with complex local structure and their
compositions are interesting and unknown.

2. One function defined in terms of positive Cantor series
Let us consider the function

f(l’) = f (Agez.‘.en.‘.) = f (Z En) = Ei = Aglf:‘Q...En..A =Y,

[N n
ey 11927 dn e 4
where ¢, € ©,, and the condition ¢, < ¢ holds for all positive integers n.

Lemma 2.1 (On the well-posedness of the definition of the function). The
values of the function f for different representations of Q-rational numbers from
[0,1] are:

e identical whenever for all positive integers n the condition q, = q holds;
o different whenever for all positive integers n the condition q, < q holds;

o different for numbers from no more than a countable subset of Q-rational
numbers whenever there exists a finite or infinite subsequence ny of positive
integers such that qn, < q for all positive integer values of k.

Proof. Let x be a Q-rational number. Then there exists a number ny such
that

x:xleQ

£1€2..-Eng 180000+ = A5152'”5n071[Eno*1][qﬂoﬂ*1][qno+2*1][qno+3*1]"' = T2

Whence,

f(xl) = Agl€2"'€n0715n0000"" f(:U?) = A

5152"'5n0—1[5n071][Qno-‘rl*l}[Qn0+2*1][%z0+3*1}"'

and

flan) = fa) = ——5+ Y T2t <o

n=ngo+1

Thus, certain Q-rational points are the points of discontinuity of the function. It
is easy to see that f(x2) — f(x1) = 0 if the condition ¢, = ¢ holds for all positive
integers n.

From the unique representation for each Q-irrational number from [0, 1], it
follows that the function f is well defined at any Q-irrational point. O
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Remark 2.2. We should not consider the representation
AQ

c1e2-en—1len—1][gn+1-1][gn+2—-1][gn+3—1] -

to get the function f to be well defined on the set of Q-rational numbers from
[0, 1].

Lemma 2.3. The function f has the following properties:
1. D(f)=10,1], where D(f) is the domain of f.

2. Let E(f) be the range of f. Then:

e FE(f) =[0,1] whenever the condition q, = q holds for all positive inte-
gers n,

o E(f)=1[0,1]\ Cy, where Cy = C1UCy, C = {y cy =Ad e En €
{qn,qn +1,...,q — 1} for all n such that ¢, < q} and Cy = {y Ty =

glfsznfl[En—ll[qn+1—1][qn+2—1}[qn+3—1]'"}’
3. fle)+f(1—2)=f(1) <1
4. f(o*(x)) = o* (f(x)) for any k € N.

Proof. Property 1 follows from the definition of f. Property 2 follows from
Lemma 2.1.
Let us prove property 3. Since

l_x_ZQn_l_En

o 1192
we have
-2 Z%‘l‘%
Whence,
€ —1—¢ —1
-0 =3 Sl S el

n= 1

Note that the last inequality is an equality where y = z, i.e., the condition ¢, =
q holds for all positive integers n.
Let us prove property 4. We have

w .
€j

1 Qk+19k+2 """ Q5

The lemma, is proved. ]
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Lemma 2.4. The function f is continuous at Q-irrational points from [0, 1].

The function f is continuous at all Q-rational points from [0, 1] if the condition
qn = q holds for all positive integers n.

If there exist positive integers n such that q, < q, then the points of the type

A9 and A€

€1€2+€p—16n000-- E182---8n_1[Enfl}[qnﬁ_lfl} [qn_,_gfl]---

are the points of discontinuity of the function.

Proof. Let z = A2, . .. €[0,1] be an arbitrary number.
Let z¢ be an Q-irrational number.
Then there exists ng = ng(z) such that

em(x) = em(xg) for m=1,n9—1
Eng (:L‘) # €ng (xo)

From the system, it follows that the conditions x — zg and ng — oo are equivalent
and

£@) = flao)| = | 3 22 ;;ﬂf(xo)) < 3 @) ;kfj(f(ﬂ:o))l
Jj=no j=no

= g-1 1
SZ e :qn0_1—>0 as ng — 00.
J=no

So, the function f is continuous at Q-irrational points. That is,

lim f(z) = f(zo).

T—T0

Let zg = Ag@...en... be a Q-rational number.
If the condition ¢, < ¢ holds for a certain n € N, then ¢, < ¢—1 and ¢, —
1 < g — 2. That is,

en €0, ={0,1,...,q, — 1} C{0,1,...,q — 2}.

Since
11m xTr) = Aq
z—x0—0 f( ) e162-n—1len—1][gn+1—1][gn+2—1]
and
i _ A4
xilxr?wf(x) B Aslfz---enﬂsnooo---a
we obtain

Ap= lim f(z)— lim f(a:):qln— Z qﬂ';lzo.

—x0+0 —x0—0
T—T0 T—T0 j:n+1 q

Notice that
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and -
1 1 q—2
Apctoy Lo am2
¢ L@ (a-De
Thus, zg is a point of discontinuity for ¢, < g and
1 q—2
— <A< —. O
(¢=Dg" =~ (gD

Lemma 2.5. The function f is strictly increasing.

Proof. Let z; = Aan,m...an... and xy = Ag@...e”... such that 1 < x2. Then
there exists ng such that a; =¢; for i = 1,19 — 1 and ay,, < €p,. So,

_ Eng — Qng > € — &y
flan) = flay) = o 3 S0

Jj=no+1
Since €p, > ap, and ¢, < ¢, we have
1 N og—1_ 1 = 1—gq
f(xQ)_f(x1)>qTO_ Z 7 ZqTo‘f' Z 7 =0. [
j=no+1 Jj=no+1

Theorem 2.6 (On differential properties).
o If the condition g, = q holds for all positive integers n, then f’ (xg) = 1.

o If for all n the condition g, < q holds or there exists only a finite number of
n such that g, = q, then f is a singular function.

o If there exists only a finite number of n such that q, < q, then f is non-
differentiable.

o Ifthere exists an infinite subsequence (ny) of positive integers such that gy, <
q, then f is a singular function.

Proof. Suppose xy = AgEQ...EmflcEm 41 Where ¢ is a fixed number from
{0,1,...,¢m — 1}, and (x,,) is a sequence of numbers z,, = AEQ152~-am,_1amam+1~-~
Then

Em — C Em — C
Tm—x90=——— and f(zm,)— flxg) =
" Q1492 gm (#m) = f{@0) qm

As the conditions x,, — x¢ and m — oo are equivalent, we have

lim f(em) = fwo) _ iy 02 dm

m—o0 Tm — L0 m—00 qm

(2.1)

Let us consider the cylinders Agcz...cn. The value piy (AQCQ...%), defined by
the equality

,LLf (Agc2"'6n) = f (SupAgCT“Cn) - f (ian(?lC?”C'n)
=/ (ASISQ"'&L[QHJA_1][‘1n+2_1]"') —f <A§152"'5"000"') ’
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is called the change piy of the function f on a cylinder Achch-cn-
Thus, for zy € A?m...cn, we obtain

Q
/'Lf <A61CQ~~-C"> e e . 1
fllwg) = lim ————— 2 = qim 8L N D) (2
n—00 ‘Achcz---c n—o0 qm i ¢

Since 2 < ¢, < ¢q, we have

1 X g —1
- tim <Q1QQ . Qn> < lim qmzn n 3 qj :
q — 1 n—oo q n—00 q Ja—) q

< lim <QIQQ : qn>
n—oo q”

Therefore,

f’(mo) = 1 if the condition ¢, = ¢ holds for all positive integers n;

f'(xg) =0, i.e., f is a singular function if for all n the condition ¢, < ¢ holds
or there exists only a finite number of n such that ¢, = ¢;

f is non-differentiable if there exists only a finite number of n such that ¢, <
q (since limits (2.1) and (2.2) are different);

e fis asingular function if there exists an infinite subsequence (ny) of positive
integers such that ¢,, <gq.

O]

Theorem 2.7. The Lebesgue integral of the function f can be calculated by

the formula
[ a1
x)dr = = .
0,1] 26~ q"

Proof. We have

o0 — 1
0< fla) <y T
n=1 q
Suppose that
T = {0, Afpgg... Adggg...s - -5 A?qu]ooo-m T Aﬁn71][q271]~--[qn71]~--}’

E,={z:yp1 < f(z)<yn}= Achcg...Cn’ cn € Op.
We get
_ 1
9192 qn’
where A(+) is the Lebesgue measure of a set.

Also, ¥ € [Yn—1,Yn). Suppose that T = y,_1. It is easy to see that the
conditions A\(E,) — 0 and n — oo are equivalent.

AN En)
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Hence,

Aq 000
f(z)dz = lim Ay en000--
/[071} n—00 Z

—~ QG2 n
-1 . 1 -1
~ fim ((qn )12 qn> _lya—l
n=oo \ 2¢"q1q2 " qn 2= q"
We have that ) .
SRR S
2(g—1) 0,1] 2
and the integral is equal to % if f(z) = =. O

3. Fractal in R? defined in terms of a certain map

Let us consider the function

. — q q
g:r= Au...ualu...uag.‘.u...uozn... — Aalagmanm’
N—— N——
ay—1 ag—1 anp—1

where u € {0,1,...,q — 1} is a fixed number, o, € © = {1,2,...,q — 1} \ {u},
and 3 < ¢ is a fixed positive integer. This function can be represented as

oo o0
. - u Ap — U Oén_ -
9'1’—8_1+Zm%2qn =g() =y.
n=1 n=1

Theorem 3.1. The function g has the following properties:

1. The domain D(g) of the function g is an uncountable, perfect, and nowhere
dense set of zero Lebesgue measure as well as a self-similar fractal whose
Hausdorff dimension aq satisfies the equation

SO

pef{1,2,....,q—1}
pFu

2. The range of g is a self-similar fractal
E(9) ={y:y = A azan- @ € O}
whose Hausdorff dimension «g can be calculated by the formula
ao(E(g)) = log, 6],
where | - | is the number of elements of a set.

3. The function g is well-defined and bijective on its domain.

4. On the domain, the function g is:
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e decreasing whenever u € {0,1} for all ¢ > 3;
e increasing whenever u € {s —2,s — 1} for all ¢ > 3;

e non-monotonic whenever u € {2,3,...,s — 3} and q > 4.
5.  The function g is continuous at any point of the domain.
6. The function g is non-differentiable on the domain.

7. The following relations are true:

g0 () =
g (0.041+a2+-~-+an (x)) _

where o is the shift operator.
8.  The function does not preserve the Hausdorff dimension.

Proof. For any fixed u € {0,1,...,q— 1}, the domain D(g) of the function g
is an uncountable, perfect, and nowhere dense set of zero Lebesgue measure. It
is also a self-similar fractal whose Hausdorff dimension o satisfies the equation

(see [16,17]): P
> (3 -

p€{17257q_1}
pFu

This set does not contain g-rational numbers, i.e., the numbers of the form
q N
A o000 = By anang—1lg—1]lg—1]
Thus, any element of the domain D(g) of the function g has the unique g-
representation. Therefore the condition g(z1) # g(z2) holds for 1 # x3. The

value g(x) € E(g) is assigned to an arbitrary x € D(g) and vice versa.
Let us consider the difference

l9(z) — g(xo)| =

)

qn

0
Z Bn — an
n=1

where 2o = Al waju- wasu---ua,. 15 a fixed number from D(g) and z =
N—— = N——

a1 —1 ag—1 anp—1
q . o .
Au-~~uﬂ1u~~-u62-~u~~-u6n-~' It is easy to see that the conditions z — x¢ and
N~ = S~
5171 62*1 Bn—1
Bn — au, are equivalent, n = 1,2,.... Hence,

[e.9]

Z /Bn — Qp
n=1 q”l
From the definition of g it follows that the set

E(9) = {y:y = Al azay-» @n € O}

lim |g(z) — g(xo)| = lim = 0.

T—T0 Bn—ran
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is the range of g. It follows from Theorem 2 in [18] that E(g) is a self-similar
fractal whose Hausdorff dimension ag can be calculated by the formula

ao(E(g)) = log, 6],

where | - | is the number of elements of a set.
Thus properties 1-3 and 5 are proved.
Let us prove property 4. Let x1 = AZ...ualu---uag---u...uan--- and x9 =
\_Vir \-th \_VT/
) — ag— an—
AZ~~-u61u~-~uﬁ2mu~-~uﬁnm such that z1 # x9. Then there exists ng such that
~—— N — ——
B1—1 Bo—1 Bn—1
a; = f; for v = 1,n9 — 1 and ayp, # Bpn,. Suppose that a,, < By,. Consider the
following numbers:

— A4
1 =A% votu-was w-u R
—— —— ——
ay—1 ag—1 an0—171 anofl
and
q
T2 =A
u-uPrucufa uscu U u
B B Bng Brg
B1—1 Ba—1 Brg—1-1 Bng—1

when ay,, < fBp,. It is sufficient to consider the numbers

q q
Au-~~uo¢n0~~- and Auuﬁno
0‘”071 Bnofl

Then we obtain the following cases:
e  g(x1) < g(z2) for 1 > 5. The last condition is true for the case where u =

0 or u = 1. Thus g is decreasing.

o g(x1) < g(x2) for 1 < x2. The last condition is true for the case where u =
q—1loru=q—2.

o If g(z1) < g(x2) for x1 > x9 and 1 < 2, then this condition is true for the
case where u € {2,3,...,q — 3} and ¢ > 4. Thus g is non-monotonic.

For ¢ =4, g is increasing if u € {2,3} and decreasing if u € {0, 1}.
Let us prove property 6. Consider a sequence (x,) of numbers

Ty = Al
n U. . UL U. .. UA2.. U U Q1 U UQpy U... .U Qpf]...
N—— ——
ay—1 ag—1 ap_—1—1 anp—1 apy1—1

and a fixed number

— A4
‘rO_Au...ualu...uoag... U...U Op_1U...UC U...U Optl...0
N—— N—— N N —
ay—1 ag—1 an071—1 c—1 an+1—1

where ¢ is a fixed number. Then

an—cC
qn

lim M = lim

T—T0 €T — .’L‘O T—T0

Qn _
qa1+a2+~-+an,1+an

C
g1t tan_1+e
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y (Oén _ C)qa1+a2+~--+an_1+an+c
= lm n C _ qQin
an—e q"(ong® — cq®n)
qa1+a2+~~~+an71+an+c
= lim
an—c qc+n

Thus the function is non-differentiable.
Property 7. It is easy to see that

g(aal(qj)) = g(AZ U U U Ayl U Uy U~ U an+1~-v)
—— ——
ag—1 ap_1—1 anp—1 an+171

g (O_a1+o¢2+--~+an(x)) = g(Aquu Qpp1 U U an+2~-)
—— ——
ap41—1 ap42-1

::ngn+1an+3m ::Un(g(x))

Property 8. It is obvious that there exists a set S such that ag(S) # ag(g(5)),
where ag(+) is the Hausdorff dimension of a set. O

Theorem 3.2. The Hausdorff dimension of the graph of the function g is
equal to 1.

Proof. Suppose that

X:[O,l]x[(),l]:{(:p,y)::ﬂ:zZm, am €0,={0,1,...,9 — 1},
m=1
y:ZSZLL? /Bmegq}
m=1

Then the set

_ q
M) (@2B2)(amBm) = Agzmz"um X Aﬁlﬁzwﬁm

is a square with the length of a side ¢7™. This square is called a square of rank

m with base (a101)(a2B2) ... (mBm)-
If F C X, then the number

o (E) = inf{a : Hy(E) = 0} = sup{av : Ho(E) = o0},

where

3 _ . . (6%
H,(F)= 21_1}% |:CIZIS1£K(E, d)d }
and K(FE,d) is the minimal number of squares of diameter d required to cover
the set E. The value K(F,d) is called the fractal cell entropy dimension of the
set E. Tt is easily seen that o (E) > ag(E).
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From the definition and properties of the function g it follows that the graph
of the function belongs to 7 = |0| squares from ¢? first-rank squares (here 7 is
equal to (s — 1) for w = 0 and equal to (s — 2) for u # 0):

it

i101)

_ [Ag M}, i € 0,.

Louty? Ty
——

ip—1
The graph of the function f belongs to 72 squares from ¢* second-rank squares:
Miria)(irin) = | DL wi A9 i1 € O,
(iri2)(i142) U... UL U... . ulx? Tii | 1,02 q
==
i1 — ig—

The graph I'y of the function g belongs to 7™ squares of rank m with sides
gortextotam and ¢—™. Then

(0%

ﬁ—a(l—‘g) = lim Tm <\/q_2(a1+a2+.--+am) +q—2m> )
m—r0o0

Since q~m~Y) < g(ertarttan) < gmm we get

(=4
2

I/-\IQ(FQ) = lim 7™ (2q_2m)% = lim 7™ (2q_2m)

m—00 m— 00
>m>

= lim (Q%qu*ma) = lim <23 <T
m—00 Mm—00 q*

for oy + g + -+ + @, = m and

1 2m %
~ 2 a 2m
H,(y) = lim 7™ <q72m(q71) + q72m) * = lim (T ) + (qlqu-é)

m—00 m—00 q

for ag +ag + -+ apy =m(qg—1).
1

m 1\ 2m 1\ 2m
It is obvious that if <q%> — 0, (T) — 0, and (qlquE) — 0 for

a > 1, and the graph of the function has self-similar properties, then o (T'y) =
ao(Fg) = 1. ]
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Heski dynKIlii, Bu3Ha4YeHi B TepmiHax psiziB KanTtopa
Symon Serbenyuk
o crarTio IPUCBIYEHO AEIKUM NpHUKJafgaM (YHKINNA, apryMeHT AKUX
IIOJIaHO B TepMiHax psaiB Kanrtopa.

KirogoBi cioBa: Hime memmudepenmiiioBna GYyHKINS, CHHTYASpHA DyH-
KITisI, PO3BUHEHHS JifiICHOTO YHCIa, HEMOHOTOHHA (DYHKITisI, pO3MipHicTh ['a-
yenopda
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