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In this paper, we show that the four-dimensional Lorentzian Damek–
Ricci spaces are not a Ricci soliton. This is a generalization of the result of
Tan and Deng (see [11]) who proved that these spaces are not a Ricci soliton
only with respect to the left-invariant vector fields.
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1. Introduction

A pseudo-Riemannian manifold (M, g) is called a Ricci soliton if there exists
a smooth vector field X such that

LXg + % = λg, (1.1)

where LX denotes the Lie derivative in the direction ofX, % is the Ricci tensor and
λ is a real number. A Ricci soliton is said to be shrinking, steady or expanding
according to whether λ > 0, λ = 0 or λ < 0, respectively.

Ricci solitons are natural generalizations of Einstein metrics, they also are
self-similar solutions of Hamilton’s Ricci flow [9], and they are important since
they were applied by Grigori Perelman for solving the long standing Poincaré
conjecture. In recent years, there have been seen much interest and increased
activities in studying Ricci solitons, which are called quasi-Einstein metrics in
physics literature (see [8]). For more details and further results we may refer
to [4] and references therein.

Damek–Ricci spaces are semidirect products of Heisenberg groups with the
real line. They were constructed by Damek and Ricci in [6], where the authors
provided the examples of harmonic manifolds that were not symmetric and proved
that the conjecture posed by Lichnerowicz fails in the non-compact case.

The geometry of these spaces has been studied by many authors. In [7], Degla
and Todjihounde proved the nonexistence of a proper (nongeodesic) biharmonic
curve in a four-dimensional Damek–Ricci space although such curves exist in
three-dimensional Heisenberg groups. In [1], they studied the dispersive prop-
erties of the linear wave equation on Damek–Ricci spaces and their application
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to nonlinear Cauchy problems. In [3], it was constructed unaccountably many
isoparametric families of hypersurfaces in Damek–Ricci spaces by characterizing
those of them that have the constant principal curvatures. In [10], Koivogui
and Todjihounde gave a setting for constructing the Weierstrass representation
formulas for simply connected minimal surfaces in four-dimensional Riemannian
Damek–Ricci spaces. This was extended to the case of spacelike and timelike
minimal surfaces in the four-dimensional Damek–Ricci spaces equipped with the
left-invariant Lorentzian metric [5].

In [11], Tan and Deng considered the four-dimensional Lorentzian Damek–
Ricci spaces and studied some of their geometrical properties, including some
problems related to Ricci solitons, harmonicity of invariant vector fields and cur-
vature properties. In particular, they proved that these spaces did not even ad-
mit a left-invariant Ricci soliton (that is, the left-invaraint vector field satisfying
equation (1.1)). In this paper, we consider the left-invariant Lorentzian metrics
admitted by the four-dimensional Damek–Ricci spaces and prove the existence of
the vector field for which the soliton equation (1.1) holds.

The paper is organized in the following way. In Section 2, we give some basic
information about four-dimensional Damek–Ricci spaces and their left-invariant
metrics in global coordinates, we also describe their Levi-Civita connection and
Ricci tensor. In Section 3, Ricci solitons of four-dimensional Damek–Ricci spaces
are characterized via a system of partial differential equations. In particular, we
prove that some of Lorentzian Damek–Ricci spaces admit different vector fields
resulting in expanding and shrinking Ricci solitons.

2. Geometry of four-dimensional Damek–Ricci spaces

We start with a short description of four-dimensional Damek–Ricci spaces by
referring to [2] and [6] for more details and further results. First, we are to recall
the so-called generalized Heisenberg group since Damek–Ricci spaces depend on
it.

2.1. Generalized Heisenberg group. The generalized Heisenberg alge-
bras are defined as follows. Let b and z be the finite-dimensional real vector
spaces such that n is the orthogonal sum n = b⊕ z. We define in n the bracket

[U +X,V + Y ] = β(U, V ), (2.1)

where β : b × b → z is a skew-symmetric bilinear map. This product defines a
Lie algebra structure on n.

We equip b with a positive inner product and z with a positive or Lorentzian
inner product denoting the product metric by 〈·, ·〉n. Define a linear map J : Z ∈
z → JZ ∈ End(b) by

〈JZU, V 〉n = 〈β(U, V ), Z〉n for all U, V ∈ b and Z ∈ z. (2.2)

Then n is a two-step nilpotent Lie algebra with center z.
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If the inner product in z is positive and J2
Z = −〈Z,Z〉n idb for all Z ∈ z, then

the Lie algebra n is called a generalized Riemannian Heisenberg algebra, and
the associated simply connected nilpotent Lie group, endowed with the induced
left-invariant Riemannian metric, is called a generalized Riemannian Heisenberg
group.

If the inner product in z is Lorentzian and

J2
Z =

{
−〈Z,Z〉n idb, when Z is spacelike,

〈Z,Z〉n idb, when Z is timelike,
(2.3)

then the Lie algebra n is called a generalized Lorentzian Heisenberg algebra, and
the associated simply connected nilpotent Lie group, endowed with the induced
left-invariant Lorentzian metric, is called a generalized Lorentzian Heisenberg
group.

2.2. Damek–Ricci spaces. Now, let ε = ±1 and a−ε be a one-dimensional
pseudo-Riemannian real vector space, which is Lorentzian for ε = 1 and Rieman-
nian for ε = −1, and let nε = b⊕ z be a generalized Heisenberg algebra which is
Lorentzian if ε = −1 and Riemannian if ε = 1.

Consider a new vector space a−ε ⊕ nε as the vector space direct sum of a−ε
and nε. Let s, r ∈ R, U, V ∈ b and X,Y ∈ z. We define the Lorentzian product
〈·, ·〉 and a Lie bracket [·, ·] on a−ε ⊕ nε by

〈rA+ U +X, sA+ V + Y 〉 = 〈U +X,V + Y 〉nε − εrs,

[rA+ U +X, sA+ V + Y ] = [U, V ]nε +
1

2
rV − 1

2
sU + rY − sX (2.4)

for a non zero vector A in a−ε. Therefore a−ε⊕nε becomes a solvable Lie algebra.
The corresponding simply connected Lie group, equipped with the induced left-
invariant Lorentzian metric, is called a Lorentzian Damek–Ricci space and will
be denoted by Sε.

2.3. Four-dimensional Lorentzian Damek–Ricci spaces. Consider the
four-dimensional Lorentzian Damek–Ricci spaces (S4ε, gε) equipped with the left-
invariant Lorentzian metric gε. Note that Damek–Ricci spaces of dimension four
are diffeomorphic to R4 because they are simply connected solvable Lie groups.
So we can use global coordinates (x, y, z, t) , and throughout the paper we will

denote the coordinate basis
{

∂
∂x ,

∂
∂y ,

∂
∂z ,

∂
∂t

}
by {∂x, ∂y, ∂z, ∂t}.

As it was pointed in [5], the left-invariant Lorentzian metric gε on the four-
dimensional space S4ε is given by

gε = e−tdx2 + e−tdy2 + εe−2t
(

dz +
c

2
ydx− c

2
xdy

)2
(2.5)

where c ∈ R.
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Following [5], let us denote

e1 = e
t
2

(
∂

∂x
− cy

2

∂

∂z

)
, e2 = e

t
2

(
∂

∂y
+
cx

2

∂

∂z

)
, e3 = et

∂

∂z
, e4 =

∂

∂t
. (2.6)

Then {e1, e2, e3, e4} form an orthonormal basis of the Lie algebra s4 of S4ε for
which

gε(e1, e1) = gε(e2, e2) = 1, gε(e3, e3) = −gε(e4, e4) = ε. (2.7)

The bracket operation in s4 is given by the formulas:

[e1, e2] = ce3, [e1, e3] = 0, [e1, e4] = −1

2
e1,

[e2, e3] = 0, [e2, e4] = −1

2
e2, [e3, e4] = −e3. (2.8)

As stated in [11], it is easy to see that for these metrics J2
e3 = −c2idb, and

from the definition of the map JZ it follows that J2
e3 = −idb, so c2 = 1.

Let % denote the Ricci tensor of (S4ε, gε). The non-zero components %ij =
%(ei, ej) of the Ricci tensor are [11]:

%11 = %22 =
ε

2
, %33 =

5

2
, %44 = −3

2
. (2.9)

3. Ricci solitons of four-dimensional Lorentzian Damek–Ricci
spaces

In this section, we analyze the existence of Ricci solitons on four-dimensional
Lorentzian Damek–Ricci spaces (S4ε, gε).

Let X = f1e1 + f2e2 + f3e3 + f4e4 be a vector field on (S4ε, gε), where f1, .., f4
are smooth functions of the variables x, y, z, t. Then the Lie derivative of the
metric (2.5) with respect to X is given by :

(LXgε) (e1, e1) = 2e1 (f1)− f4,
(LXgε) (e1, e2) = e1 (f2) + e2 (f1) ,

(LXgε) (e1, e3) = ε (cf2 + e1 (f3)) + e3 (f1) ,

(LXgε) (e1, e4) =
1

2
f1 − εe1 (f4) + e4 (f1) ,

(LXgε) (e2, e2) = −f4 + 2e2 (f2) ,

(LXgε) (e2, e3) = ε (e2 (f3)− cf1) + e3 (f2) ,

(LXgε) (e2, e4) =
1

2
f2 − εe2 (f4) + e4 (f2) ,

(LXgε) (e3, e3) = 2ε(e3 (f3)− f4),
(LXgε) (e3, e4) = ε (f3 + e4 (f3)− e3 (f4)) ,

(LXgε) (e4, e4) = −2εe4 (f4) . (3.1)
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Thus, by using (2.5) and (3.1) in (1.1), a standard calculation gives that the
four-dimensional Lorentzian Damek–Ricci space (S4ε, gε) is a Ricci soliton if and
only if the following system holds:

2e
t
2 (∂xf1 −

cy

2
∂zf1)− f4 = λ− %11,

∂xf2 −
cy

2
∂zf2 + ∂yf1 +

cx

2
∂zf1 = 0,

et∂zf1 + ε
[
cf2 + e

t
2 (∂xf3 −

cy

2
∂zf3)

]
= 0,

∂tf1 − εe
t
2 (∂xf4 −

cy

2
∂zf4) +

f1
2

= 0,

2e
t
2 (∂yf2 +

cx

2
∂zf2)− f4 = λ− %22,

εe
t
2 (∂yf3 +

cx

2
∂zf3) + et∂zf2 − εcf1 = 0,

∂tf2 − εe
t
2 (∂yf4 +

cx

2
∂zf4) +

f2
2

= 0,

2ε(et∂zf3 − f4) = ελ− %33,
∂tf3 − et∂zf4 + f3 = 0,

2ε∂tf4 = ελ+ %44. (3.2)

(3.2) yields

f4 =

(
λ+ ε%44

2

)
t+A, (3.3)

where A = A(x, y, z) is a real-valued smooth function on S4ε.
Taking the derivative of the fourth equation of (3.2) with respect to t and

using (3.3), we obtain

∂tf1 + 2∂2t f1 + εe
t
2

(cy
2
∂zA− ∂xA

)
= 0, (3.4)

which, together with the fourth equation of (3.2), gives

f1 = He
t
2 +He−

t
2 (3.5)

for some smooth functions H = H(x, y, z) and H = H(x, y, z).

Next, taking the derivative of the seventh equation of (3.2) with respect to t
and using (3.3), we have

∂tf2 + 2∂2t f2 − εe
t
2

(cx
2
∂zA+ ∂yA

)
= 0. (3.6)

Thus, from the seventh equation of (3.2) we deduce that

f2 = Ge
t
2 +Ge−

t
2 , (3.7)

where G = G(x, y, z) and G = G(x, y, z) are smooth functions.



Ricci Solitons of Four-Dimensional Lorentzian Damek–Ricci Spaces 195

Again, we derive the ninth equation of (3.2) with respect to t and use (3.3),
to get

∂tf3 + ∂2t f3 − et∂zA = 0. (3.8)

Hence, by the ninth equation of (3.2), we prove that

f3 = Ket +Ke−t. (3.9)

where K = K(x, y, z) and K = K(x, y, z) are smooth functions.
Now, replacing (3.5) and (3.3) in the fourth equation of (3.2), we obtain

H = ε
(
∂xA−

cy

2
∂zA

)
. (3.10)

Then, replacing (3.7) and (3.3) in the seventh equation of (3.2), we have

G = ε
(
∂yA+

cx

2
∂zA

)
. (3.11)

Again, replacing (3.9) and (3.3) in the ninth equation of (3.2), we get

K =
1

2
∂zA. (3.12)

Next, from the eighth equation of (3.2), (3.3), (3.9), and (3.12) we prove that(
λ+ ε%44

2

)
t+A− (∂zK) e2t − ∂zK =

ε%33 − λ
2

, (3.13)

which must hold for any value of t. Therefore, using (2.9), we have
λ =

3ε

2
,

K = K(x, y),

∂zK = A− ε

2
.

(3.14)

By (3.3) and (3.7), the fifth equation in (3.2) implies, since λ = 3ε
2 ,

(2∂yG+ cx∂zG) et + 2∂yG+ cx∂zG−A− ε = 0, (3.15)

which holds for any value of t and thus is equivalent to{
2∂yG+ cx∂zG = 0,

2∂yG+ cx∂zG−A = ε.
(3.16)

Using the first equation in (3.2), (3.3), and (3.5), we obtain

(2∂xH − cy∂zH) et + 2∂xH − cy∂zH −A− ε = 0. (3.17)

Therefore, {
2∂xH − cy∂zH = 0,

2∂xH − cy∂zH −A = ε.
(3.18)
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By (3.5) and (3.7), the second equation in (3.2) yields ∂xG+ ∂yH −
cy

2
∂zG+

cx

2
∂zH = 0,

∂xG+ ∂yH −
cy

2
∂zG+

cx

2
∂zH = 0.

(3.19)

From (3.5), (3.7), and (3.9), it follows that the third and the sixth equations of
(3.2) are equivalent to (since K = K(x, y))

εcG+ ∂zH = 0,

cG+ ∂xK −
cy

2
∂zK = 0,

ε∂xK + ∂zH = 0

(3.20)

and 
cH − ∂yK −

cx

2
∂zK = 0,

∂zG+ ε∂yK = 0,

εcH − ∂zG = 0,

(3.21)

respectively. We then replace (3.10) and (3.11) into the first equations of (3.16),
(3.18) and (3.19), respectively, obtaining

∂2yA+ cx∂y∂zA = 0,

∂2xA− cy∂x∂zA = 0,

2∂x∂yA+ cx∂x∂zA− cy∂y∂zA = 0.

(3.22)

Next, replacing (3.11) and (3.12) into the second equation of (3.21), we deduce
that

∂y∂zA = 0. (3.23)

Therefore, using (3.22) and (3.23), we prove that A can be written as follows:

A = Az + Ãy + Â, (3.24)

where A = A(x), Ã = Ã(x) and Â = Â(x) are smooth functions such that

2Ã′ + cxA
′
= 0, (3.25)

and
A
′′
z +

(
Ã′′ − cA′

)
y + Â′′ = 0, (3.26)

which must hold for any value of y and z. Consequently, A reduces to

A = ax+ δy + βz + b (3.27)

for some real constants a, b, δ, β ∈ R, and so (3.10), (3.11), and (3.12) become

H = ε

(
a− βcy

2

)
,

G = ε

(
δ +

βcx

2

)
,

K =
β

2
.

(3.28)
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From the last equation of (3.21), the first equation of (3.20), by using (3.14) and
(3.28), we get 

G = c

(
a− βc

2
y

)
z + G̃,

H = −c
(
δ +

βc

2
x

)
z + H̃,

K =
(
ax+ δy + b− ε

2

)
z +

β

2
z2 + K̃

(3.29)

for some smooth functions G̃ = G̃(x, y), H̃ = H̃(x, y) and K̃ = K̃(x, y). Since
c2 = 1, then the second equation of (3.16) is equivalent to{

2∂yG̃− δy = ε+ b,

β = 0.
(3.30)

Hence, (3.29) reduces to
G = caz + G̃,

H = −cδz + H̃,

K =
(
ax+ δy + b− ε

2

)
z + K̃.

(3.31)

Thus, the second equation of (3.20) is then equivalent to

a
(
c2 + 1

)
z + ∂xK̃ + cG̃− c

2

(
ax+ δy + b− ε

2

)
y = 0, (3.32)

which must hold for any z, so a(c2 + 1) = 0, that is a = 0. We have then

∂xK̃ + cG̃− c

2

(
δy + b− ε

2

)
y = 0, (3.33)

which, by derivation with respect to y, gives (since (3.30))

∂y∂xK̃ =
c

2

(
δy − 3ε

2

)
. (3.34)

Next, the second equation of (3.18) becomes

2∂xH̃ = ε+ b. (3.35)

By the first equation of (3.21) and using the second equation of (3.19), we prove
that 

∂yK̃ − cH̃ +
c

2

(
b− ε

2

)
x = 0,

δ = 0,

∂xG̃+ ∂yH̃ = 0.

(3.36)

Now, deriving the first equation of (3.36) with respect to x and using (3.35),
we get

∂x∂yK̃ =
3εc

4
. (3.37)
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Thus, ∂x∂yK̃ 6= ∂y∂xK̃ for c 6= 0, which is a contradiction.

Summarizing, we have proved that the four-dimensional Lorentzian Damek–
Ricci spaces (S4ε, gε) are not a Ricci soliton. This is a generalization of the result
of Tan and Deng (see [11]) who proved that these spaces are not a Ricci soliton
only with respect to the left-invariant vector fields. We have the following result:

Theorem 3.1. All four-dimensional Lorentzian Damek–Ricci spaces are not
a Ricci soliton.
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Солiтони Рiччi у чотиривимiрних лоренцевих
просторах Дамек–Рiччi

Noura Sidhoumi

У цiй статтi ми показуємо, що чотиривимiрнi лоренцевi простори
Дамек–Рiчi не є солiтоном Рiччi. Це є узагальненням результату Taна i
Денга (див. [11]), якi довели, що цi простори не є солiтоном Рiччi лише
вiдносно лiво-iнварiантних векторних полiв.

Ключовi слова: простори Дамек–Рiччi, солiтон Рiччi, лiво-iнварiант-
нi метрики, лоренцевi метрики
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