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In the paper, a generalization of the Toponogov theorem about the length
of a curve in a two-dimensional Riemannian manifold is proved for the case
of two-dimensional Aleksandrov spaces.
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Let R be an Aleksandrov space of curvature ≥ c homeomorphic to a disc
(see [1, p. 308]). Suppose G is a domain in R that is bounded by a rectifiable
curve γ. Denote by τ(γ1) the integral geodesic curvature (the swerve) of a subarc
γ1 of γ [1, p. 309]. The curve γ is called λ-convex with λ > 0 if any subarc γ1
of γ satisfies

τ(γ1)

s(γ1)
≥ λ > 0, (1)

where s(γ1) is the length of γ1. For regular curves in a two-dimensional Rieman-
nian manifold this condition is equivalent to the assumption that the geodesic
curvature at each point of this curve is ≥ λ > 0. In the general case the condition
(1) allows γ to have corner points.

We prove the following theorem.

Theorem 1. Let G be a domain homeomorphic to a disc and G lie in a two-
dimensional Aleksandrov space of curvature ≥ c (in the sense of Aleksandrov).

I. If the boundary curve γ of G is λ-convex and c+λ2 > 0, then the length s(γ)
of γ satisfies

1. s(γ) ≤ 2π

λ
for c = 0;

2. s(γ) ≤ 2π
√
c√

c+ λ2
for c > 0;

3. s(γ) ≤ 2π
√
−c√

c+ λ2
for c < 0.
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II. All these inequalities become equalities if and only if the domain G is a disc
on the plane of constant curvature c.

This theorem is a generalization of the Toponogov theorem [10] about the
length of a curve in a two-dimensional Riemannian manifold. We need the fol-
lowing statements to prove Theorem 1.

Theorem A (A.D. Aleksandrov [1, p. 269]). A metric space with intrinsic
metric of curvature ≥ c homeomorphic to a sphere is isometric to a closed convex
surface in a simply connected space of constant curvature c.

Theorem B (A.V. Pogorelov [9, pp. 119–167, 267, 320–321], [4]). Closed
isometric convex surfaces in the three-dimensional Euclidean and spherical spaces
are equal up to a rigid motion.

Theorem C (A.D. Milka [8]). Closed isometric convex surfaces in the three-
dimensional Lobachevsky space are equal up to a rigid motion.

Theorem D (W. Blaschke [2]). Let γ be a closed embedded C2 regular curve
in the Euclidean plane.

I. If the curvature k of γ at each its point P satisfies

k ≥ λ > 0,

then the curve belongs to the disc that is bounded by the circle of radius R =
1/λ tangent to the curve at P .

II. If the curvature k of γ at each its point P satisfies

0 ≤ k ≤ λ,

then the circle of radius R = 1/λ tangent to the curve at P belongs to the
domain G that is bounded by the curve γ.

Theorem D remains true if the condition for the curvature k of γ is replaced
by the same condition for the specific curvature τ(γ1)

s(γ1)
for any arc.

Lemma 1. Let γ be a closed embedded rectifiable curve in the Euclidean
plane.

I. If for any subarc γ1 of γ the specific curvature τ(γ1)
s(γ1)

satisfies

τ(γ1)

s(γ1)
≥ λ > 0,

then the curve γ belongs to the disc that is bounded by the circle of radius
R = 1/λ tangent to the support straight line of γ at its point P .
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II. If for any subarc γ1 of γ the specific curvature τ(γ1)
s(γ1)

satisfies

0 ≤ τ(γ1)

s(γ1)
≤ λ,

then the circle of radius R = 1/λ tangent to the curve at its point P belongs
to the domain G that is bounded by the curve γ.

Proof. I. In this case the support function h(φ), 0 ≤ φ ≤ 2π, of the curve γ
is C1,1 regular and a.e. it satisfies the equation

h+ h′′ = R, 0 ≤ R ≤ 1

λ
,

where R is the radius of curvature of γ. Therefore,

h(φ) =

φ∫
0

R(σ) sin(φ− σ) dσ,

and the proof coincides with Blaschke’s proof [2].

II. The position vector r(s) of the curve γ is a C1,1 regular vector function.
Fix an initial point P0 on γ and denote by e1 the unit tangent vector of γ at P0,
and by e2 the unit normal vector of γ at P0. Let P (s) be a point on γ such that
the length of the arc γ(s) = P0P (s) equals s. The function τ(s) = τ (γ(s)) is the
integral geodesic curvature of the arc γ(s), and τ(s) ≤ λs. Therefore,

r′(s) = cos τ(s) e1 + sin τ(s) e2. (2)

If we compare (2) with the equation for the circle of radius 1/λ, we obtain the
proof.

H. Karcher proved a generalization of the Blaschke theorem for regular curves
in the spherical space S2 and in the Lobachevsky space H2 [7]. We formulate
Lemma 2 for the cases where the curvature of S2 is equal to 1 and the curvature
of H2 is equal to −1. Lemma 2 remains true for the planes of any constant
curvature c and the proof is the same.

Lemma 2. Let γ be a closed embedded rectifiable curve in H2 or S2.

I. If the specific curvature satisfies

τ(γ1)

s(γ1)
≥ cothR0 = λ

for any subarc γ1 of γ in H2, then the curve γ belongs to the disc that is
bounded by the circle of radius R0 tangent to the support straight line of γ at
a point P ∈ γ.
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II. If the specific curvature satisfies

τ(γ1)

s(γ1)
≥ cotR0 = λ,

for any subarc γ1 of γ in S2, then the curve γ belongs to the disc that is
bounded by the circle of radius R0 tangent to the support straight line of γ at
a point P ∈ γ.

Proof. The curve γ is a closed convex curve. At any point P of γ there exists
a support straight line (a geodesic line in the plane of constant curvature).

I: γ ∈ H2. Let S be a circle of radius R0 tangent to the support straight line
of γ from the side containing γ. Assume that the center of the circle S is the
origin of the coordinate system in the Cayley–Klein model of the Lobachevsky
plane and it is also the origin for the support function h of the curve γ. The
support function h is C1,1 regular and a.e. the radius of curvature R of γ equals

R =
g + g′′(

1− (g′)2

1+g2

)3/2 , (3)

where g(h) = tanhh is the support function for the curve γ̃, and γ̃ is the image
of γ under the geodesic map from H2 to E2 [5, 6]. The radius of curvature R̃ of
γ̃ is a.e. equal to

R̃ = R

(
1− (g′)2

1 + g2

)3/2

, 0 ≤ R̃ ≤ R. (4)

The image of the circle S under the geodesic map is the circle S̃ in the Euclidean
plane E2 with the center at the origin of a Cartesian orthogonal coordinate system.
The curvature of S̃ equals cothR0. From Lemma 1(I), it follows that γ̃ belongs to
the disc bounded by the circle S̃. Applying the inverse geodesic transformation,
we obtain that the curve γ belongs to the disc that is bounded by the circle S in
the Lobachevsky plane H2.

II: γ ∈ S2. Let γ be the polar to the curve γ in S2. The position vector of γ is
C1,1 regular and its curvature is ≤ tanR0 a.e. Let P0 be a point on γ and S be a
circle of radius π/2−R0 tangent to γ at the point P 0. The curvature of this circle
is equal to tanR0. The center O of S is the south pole of the sphere. Consider
the geodesic map of the sphere S2 into the plane tangent to S2 at the point O.

The curve γ is mapped to a curve γ̃ ∈ E2, and the circle S is mapped to a circle S̃

of curvature tanR0. The curvatures satisfy k̃(γ̃) ≤ k(γ) ≤ tanR0. From Lemma

1(II) it follows that the circle S̃ belongs to the domain that is bounded by the
curve γ̃. Applying the inverse geodesic transformation, we obtain that the circle
S belongs to the domain bounded by γ and the polar curve γ belongs to the disc
bounded by the polar circle S of radius R0.

Proof of Theorem 1. Let G1 and G2 be two copies of the domain G. Let
us glue the domains G1 and G2 along their boundary curves γ1 and γ2 by an
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isometry between these curves. We obtain a manifold F homeomorphic to the
two-dimensional sphere with an intrinsic metric. Since the sum of the integral
geodesic curvatures of any two identified arcs of the boundary curves is non-
negative, from the Aleksandrov gluing theorem [1, p. 318] it follows that F is
an Aleksandrov space of curvature ≥ c. By Theorem A, this manifold can be
isometrically embedded as a closed convex surface F1 in the simply-connected
space M3(c) of constant curvature c. From Theorem B and C it follows that this
surface is unique up to a rigid motion.

By plane domains we will understand domains on totally geodesic two-
dimensional surfaces in spaces of constant curvature; similarly we will call
geodesic lines in these spaces as lines.

Perform the reflection of the surface F1 with respect to a plane π passing
through three points on γ that do not belong to any line. We will get a mirrored
surface F2. The domains G1 and G2 are mapped to domains G̃1 and G̃2 on F2;
the curve γ is mapped to γ̃. But G1 is isometric to G2 and G̃2 is isometric to G̃1.
Let us reverse the orientation of the domains G̃1, G̃2. Then the surface F2 will be
isometric to F1 and they will have the same orientation. By Theorems B and C,
the surface F1 can be mapped to the surface F2 by a rigid motion of the ambient
space. But the three points of the curve γ are fixed under this rigid motion. Thus
it follows that this motion is the identity mapping and, moreover, the curve γ
coincides with the curve γ̃. Such a situation is possible only when the curve γ is
a plane curve and it is the boundary of a convex cup isometric to the domain G.
Recall that the convex cup is a convex surface with a planar boundary curve γ
such that the surface is a graph over a plane domain G enclosed by γ. Note that
since γ is a convex curve on the plane, the integral geodesic curvature of any arc
of the curve γ is non-negative if γ is viewed as a curve on the cup and as a curve
on a plane [3].

Let us show that the integral geodesic curvature of any arc of γ calculated on
G is not less than its corresponding integral geodesic curvature calculated on the
cup G. This means that γ as the boundary curve of G is also λ-convex.

Recall that the intrinsic curvature ω(D) of a Borel set D on a convex surface
in a space of constant curvature c is

ω(D) = ψ(D) + cF (D),

where ψ(D) is the extrinsic curvature, F (D) is the area of D [1, p. 397]. Consider
a closed convex surface M bounded by G and the plane domain G, and a surface
M composed of the double-covered domain G.

The intrinsic curvature concentrated on γ equals

ω(γ) = τγ(G) + τγ(G),

where τγ(G), τγ(G) are the integral geodesic curvatures of γ computed in G and
G respectively.

Since F (γ) = 0, we have

ψM (γ) = τγ(G) + τγ(G),
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ψM (γ) = 2τγ(G).

From the definition of the extrinsic curvature [1, p. 398] it follows that
ψM (γ) ≥ ψM (γ) because each plane supporting M at a point of γ is also sup-
porting M . Thus we obtain τγ(G) ≥ τγ(G). Moreover, this inequality holds for
any subarc of γ.

I. The curve γ is a λ-convex curve lying in the plane of constant curvature c.
From Lemmas 1 and 2, it follows that the curve γ belongs to a disc bounded by
the circle of radius R0. The curvature and the length s of this circle equal

1. λ = 1
R0

, s = 2πR0 for c = 0;

2. λ =
√
c cot

√
cR0, s = 2π sin

√
cR0 for c > 0;

3. λ =
√
−c coth

√
−cR0, s = 2π sinh

√
−cR0 for c < 0.

The curve γ on the plane of constant curvature c bounds the convex domain G.
It follows that the length of γ satisfies

s(γ) ≤



2π

λ
if c = 0

2π
√
c√

c+ λ2
if c > 0

2π
√
−c√

c+ λ2
if c < 0.

(5)

II. Suppose that there is equality in (5). Then the domain G is a disc bounded
by the circle γ. Furthermore, τγ(G) = τγ(G) and the intrinsic curvature of γ
satisfies ωM (γ) = ωM (γ) = 2τγ(G), and the extrinsic curvature for any subarc γ1
of γ satisfies

ψM (γ) = ψM (γ). (6)

It follows that the surfaces M and M coincide, M is a double-covered disk
and thus G is a disk. If M does not coincide with M , then there exists a set of
a positive measure of supporting planes to M along γ which are not supporting
planes to M . It follows that the extrinsic curvatures of M and M along γ do not
coincide. This contradicts equality (6), and thus Theorem 1 is proved.
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Про оцiнку довжини опуклої кривої у двовимiрному
просторi Александрова

Alexander A. Borisenko

Доведено узагальнення теореми Топоногова про довжину кривої у
двовимiрному рiмановому просторi на випадок двовимiрного простору
Александрова.
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