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On Projective Classification of Points of a

Submanifold in the Euclidean Space

Alexander Yampolsky

We propose the classification of points of a submanifold in the Euclidean
space in terms of the indicatrix of normal curvature up to projective trans-
formation and give a necessary condition for finiteness of number of such
classes. We apply the condition to the case of three-dimensional submani-
fold in six-dimensional Euclidean space and prove that there are 10 types of
projectively equivalent points.
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1. Introduction

The affine classification of points of a submanifold F l ⊂ El+p was given by
A. Borisenko [1–3], A. Borisenko and Yu. Nikolayevskii [4], and in complex setting
by A. Borisenko and O. Lejbina [6]. By definition, two points of a submanifold are
said to be affinely equivalent if there is an affine transformation G = GL(l, IR)×
GL(p, IR) in the ambient space under which the osculating paraboloids at one
point map onto the corresponding osculating paraboloids at the other point.
The osculating paraboloids are completely defined by the vector-valued second
fundamental form. At a given point, the subgroup GL(l, IR) ⊂ G action means
the change of parameterization in a neighborhood of the point and the subgroup
G(p, IR) ⊂ G action means the change of normal frame in normal subspace of the
submanifold. In these terms, two points of a submanifold are affinely equivalent
if there are local parameterizations and normal framing such that the vector-
valued second fundamental forms at these points coincide. Informally speaking,
one can “recultivate” the osculating paraboloids from one point to the other by
affine transformation. The orbits of such a “recultivation” define affine classes
of points. In general, the number of classes could be infinite. As it was proved
by A. Borisenko, for the number of affine classes to be finite it is necessary that
dimension and codimension of the submanifold satisfy the inequality

p

(
l(l + 1)

2
− p

)
≤ l2 − 1.
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Detailed analysis of the inequality one can find in [1, 2]. As it was shown, in
case l = 3 there is a finite number of classes of affinely equivalent points if p =
2 or p = 4. In this paper, we prove that one can distinguish a finite number of
classes of points in case (l = 3, p = 3) too, but with respect to a wider (projective)
group of transformations. The classification is based on the notion of indicatrix of
normal curvature and extended point-wise codimension. It would be interesting
to analyze the types of points in special case of submanifolds of revolution with
the metric of revolution [5] in order to understand what types of normal curvature
indicatrix one can get.

2. Steiner surfaces and their projective classes

Definition 2.1. Let p0, p1, p2, p3 be second order polynomials of two vari-
ables (u1, u2). Suppose one of them is non-zero, say p0 6≡ 0. A surface in E3,
parameterized by the vector-function

S =

{
p1(u1, u2)

p0(u1, u2)
,
p2(u1, u2)

p0(u1, u2)
,
p3(u1, u2)

p0(u1, u2)

}
,

is called Steiner surface provided that the polynomials p0, p1, p2 and p3 are linearly
independent and have no base points (i.e., common roots).

The Steiner surface has natural projective representation. To do this, pass to
the homogeneous coordinates (u0 : u1 : u2) in the domain of definition and to the
homogeneous coordinates (x0 : x1 : x2 : x3) in the target space. Then the poly-
nomials (p0, p1, p2, p3) take the form of homogeneous second order polynomials
of homogeneous coordinates in the domain of definition, and

PS = {p0(u0 : u1 : u2) : p1(u0 : u1 : u2) : p2(u0 : u1 : u2) : p3(u0 : u1 : u2)}

defines the mapping
PS : IRP 2 → IRP 3. (2.1)

The image of the mapping PS is called by the projective Steiner surface.

Definition 2.2 ([7]). Two Steiner surfaces
(
u,PS1

)
and

(
v,PS2

)
are said to

be projectively equivalent if there are affine transformations g1 ∈ GL(3, IR) and
g2 ∈ GL(4, IR) such that v = g1(u) and PS2 = g2(PS1).

In accordance with Definition 2.2, A. Coffman et el. [7] have found the simplest
forms of projective Steiner surfaces.

Theorem 2.3 ([7]). A projective Steiner surface is projectively equivalent to
one of the following ones:

1. Roman surface [u20 + u21 + u22 : u1u2 : u0u2 : u0u1];

2. Steiner’s parabolic surface [u0u2 : u1u2 : u20 − u21 + u22 : u0u1];

3. Whitney’s cross-cap [u20 + u21 + u22 : u1u2 : 2u0u1 : u20 − u21];
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4. Steiner’s butterfly [u20 − u21 + u22 : u22 − u21 : u1u2 : u0u1];

5. Steiner’s T-surface [u20 + u21 + u22 : 2u0u2 : 2u0u1 : u20 − u21 + u22];

6. Steiner’s cross-cup [u20 + 2u21 + u22 : 2u21 + u22 : u22 + 2u0u2 : u1u2 + u0u1];

7. Zindler’s conoid [u21 − u22 : u1u2 : u0u1 : u0u2];

8. Whitney’s umbrella [u22 : u0u1 : u0u2 : u21];

9. Caylay’s ruled cubic [u0u1 : u0u2 − u21 : u1u2 : u22].

A detailed description of these classes together with the images one can find
on A. Coffman web-page [8].

3. Indicatrix of normal curvature and affine-projective classes
of points

Definition 3.1. The normal curvature of a submanifold (F l, g) ⊂ El+p at
q ∈ F l in a direction X ∈ TqF l with respect to ξ ∈ T⊥q F l is a number

kξ(q,X) =
Bξ(X,X)

g(X,X)

∣∣∣∣
q

, (3.1)

where Bξ(X,X) is the second fundamental form of the submanifold with respect
to unit normal ξ and g(X,X) is the first fundamental form of F l.

If X varies all over the unit sphere Sl−1 ⊂ TqF l, then (3.1) defines the affine
mapping

kξ(q,X) : Sl−1 → T⊥q F
l (3.2)

for each fixed ξ ∈ T⊥q F l.

Definition 3.2. The image of the mapping (3.2) is called by indicatrix of
the normal curvature at q ∈ F l with respect to ξ ∈ T⊥q F l.

Remark that the indicatrix of normal curvature is always compact. Due to
the evident property kξ(q, λX) = kξ(q,X), the indicatrix can be considered as the
affine projection to the first homogeneous coordinate of a projective immersion
ind : RP l−1 → RP p given by

Ind(X1 : X2 : . . . : X l) = (g(X,X) : B1(X,X) : . . . : Bp(X,X)),

where B1, . . . , Bp are the second fundamental forms with respect to some normal
frame n1, . . . , np.

Definition 3.3. The points of a regular submanifold F l ⊂ El+p are said to
be projectively equivalent if their normal curvature indicatrices are the same up
to projective transformations GL(l, IR) × GL(p + 1, IR) of RP l−1 × RP p acting
over their projective images.
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The following lemma is similar to the one in [3] and gives necessary condition
for the number of projectively equivalent points to be finite.

Lemma 3.4. Let F l be a submanifold in the Euclidean space El+p. If

(p+ 1)
( l(l + 1)

2
− (p+ 1)

)
≤ l2 − 1,

then the number of classes of projectively equivalent points is finite.

In case l = 3 the inequality implies p ≤ 3. Therefore, the unique non-trivial
case is (l = 3, p = 3).

Definition 3.5. Denote by ν = dim(span(B1, . . . , Bp) the point-
wise codimension and define extended point-wise codimension by µ =
dim(span(g,B1, . . . , Bp)). Define a point-wise extended codimension index as
the pair (ν, µ).

The definition is correct since the index ν does not depend on the choice of the
normal frame and the index µ does not depend on the choice of parameterization
of a submanifold. The index µ is the rank of mapping Ind : IRP l−1 → IRP p

acting as

Ind(X1 : X2 : . . . : X l) = (g(X,X) : B1(X,X) : . . . : Bp(X,X).

The image of Ind defines a projective image of the normal curvature indicatrix.
The affine projection to the first homogeneous coordinate defines the affine indi-
catrix of normal curvature, namely

ind : TqF
l → T⊥F lq,

acting as

ind(X) =

{
B1(X,X)

g(X,X)
, . . . ,

Bp(X,X)

g(X,X)

}
.

The main result consists of the following theorem.

Theorem 3.6. There are 10 projective classes of points of a submanifold
F 3 ⊂ E6 in accordance to the values of extended point-wise codimension index
(ν, µ) and the type of normal curvature indicatrix, namely

Index Type of indicatrix

(3,4) • Roman surface • Cross-cap • Cross-cup • T-surface

(3,3) a compact part of a plane that does not pass trough the origin

(2,3) a compact part of a plane that passes trough the origin

(2,2) a segment on a straight line that does not pass trough the origin

(1,2) a segment on a straight line that passes trough the origin

(1,1) a point that does not coincide with the origin

(0,1) a point that coincides with the origin
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Proof. Let q1 and q2 be two different points of a submanifold. By using an
affine transformationG1 ∈ GL(3, IR)×GL(3, IR), one can achieve Tq2F

3×T⊥q2F
3 =

G1(Tq1F
3×T⊥q1F

3). By using another transformation G2 ∈ GL(3, IR)×GL(3, IR),
one can achieve the coincidence of the G1-transformed tangent and normal frames
at q1 with the tangent and normal frames at q2. The G2 tangent transformation
means the local parameterization change and G2-normal transformation means
the change of normal frame. The G2 ◦G1 transformation leads to “joint” framing
at q2. As a consequence, we get g(q2) = (G2 ◦ G1)(g(q1)) while for the second
fundamental forms Bα(q2) 6= (G2 ◦G1)(Bα(q1)) in general.

So the problem is reduced to the following one: at a given point, find the best
tangent and normal frames that reduce the first fundamental form and the second
fundamental forms to the simplest/canonical forms simultaneously. The problem
can not be solved by using the affine transformations only, except codimension 1.
To overcome this obstruction, consider the projective mapping

Ind(X1 : X2 : X3) = (g(X,X) : B1(X,X) : B2(X,X) : B3(X,X))

that assigns to the tangent direction X = {X1, X2, X3} a point in IRP 3 and
allows the actions of GL(3, IR)×GL(4, IR) over points of IRP 2× IRP 3. In generic
case the formes g(X,X), B1(X,X), B2(X,X) and B3(X,X) are homogeneous
second order linearly independent polynomials and hence define the projective
Steiner surface. This is exactly the case of index (3, 4). As it was proved in [7],
the number of orbits of group action GL(3, IR)×GL(4, IR) is finite and each orbit
can be represented by one of the surfaces listed in Theorem 2.3. Excluding the
non-compact forms, we come to 4 surfaces from A. Coffman’s list. Namely, the
Roman surface (Fig. 3.1), the T-surface (Fig. 3.2), the Cross-cap (Fig. 3.3) and
the Cross-cup (Fig. 3.4).

Fig. 3.1: Roman surface Fig. 3.2: T-surface

In the case of index (3, 3), the second fundamental forms B1(X,X),
B2(X,X) and B3(X,X) are linearly independent, while 4 forms g(X,X),
B1(X,X), B2(X,X) and B3(X,X) are linearly dependent at a point q ∈ F 3
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Fig. 3.3: Cross-cap Fig. 3.4: Cross-cup

we are interested in. Therefore,

g(X,X) = ξ1B1(X,X) + ξ2B2(X,X) + ξ3B3(X,X) = Bξ(X,X)

for some ξ ∈ T⊥q F 3 which means that q is umbilical point with respect to ξ. By

making additional affine transformation in T⊥q F
3 one can achieve n3 = ξ, and

hence the normal curvature indicatrix parameterization takes the form

ind(X) =

{
B1(X,X)

g(X,X)
,
B2(X,X)

g(X,X)
, 1

}
and degenerates into some compact part of a plane that does not pass through
the origin.

The case of index (2, 3) means that the second fundamental formes are
linearly dependent, and hence

ξ1B1(X,X) + ξ2B2(X,X) + ξ3B3(X,X) = 0

for some ξ ∈ T⊥q F
3 which means that there is a normal such that the second

fundamental form with respect to this normal is zero. By making additional
affine transformation in T⊥q F

3 one can achieve n3 = ξ, and hence the normal
curvature indicatrix parameterization takes the form

ind(X) =

{
B1(X,X)

g(X,X)
,
B2(X,X)

g(X,X)
, 0

}
and degenerates into some compact part of a plane that passes through the origin.

The case of index (2, 2) means that there are two specific normals ξ2, ξ3 ∈
T⊥q F

3 such that Bξ2(X,X) ≡ g(X,X) and Bξ3(X,X) ≡ 0. So, we have

ind(X) =

{
B1(X,X)

g(X,X)
, 1, 0

}
,
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and the indicatrix degenerates into a segment of a line that does not pass trough
the origin.

The case of index (1, 2) means that there are two specific normals ξ2, ξ3 ∈
T⊥q F

3 such that Bξ2(X,X) ≡ 0 and Bξ3(X,X) ≡ 0. So, we have

ind(X) =

{
B1(X,X)

g(X,X)
, 0, 0

}
,

and the indicatrix degenerates into a segment of a line that passes trough the
origin.

The case of index (1, 1) means that there are three specific nor-
mals ξ1, ξ2, ξ3 ∈ T⊥q F

3 such that Bξ1(X,X) ≡ g(X,X) and Bξ2(X,X) ≡
0, Bξ3(X,X) ≡ 0. So, we have

ind(X) = {1, 0, 0} ,

and the indicatrix degenerates into a point that does not coincide with the origin.
Finally, the case of index (1, 1) means that at a given point B1(X,X) ≡

0, B2(X,X) ≡ 0, B3(X,X) ≡ 0. So, we have

ind(X) = {0, 0, 0} ,

and the indicatrix degenerates into the origin. The proof is complete.
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Про проєктивну класифiкацiю точок пiдмноговидiв
у евклiдовому просторi

Alexander Yampolsky

Ми пропонуємо класифiкацiю точок пiдмноговидiв у евклiдовому
просторi за типом iндикатриси нормальної кривини з точнiстю до проє-
ктивного перетворення i даємо необхiдну умову для iснування скiнчен-
ного числа таких класiв. Ми застосовуємо цю умову до випадку триви-
мiрного пiдмноговиду у шестивимiрному евклiдовому просторi та дово-
димо, що iснує 10 типiв проєктивно еквiвалентних точок.

Ключовi слова: iндикатриса нормальної кривини, тип точки пiдмно-
говиду, проєктивне перетворення
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