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Fractional Derivatives with Respect to Time
for Non-Classical Heat Problem

Fatima Berrabah, Mahdi Boukrouche, and Benaouda Hedia

We consider the non-classical heat equation with Caputo fractional
derivative with respect to the time variable in a bounded domain 2 C Rt x
R4 for which the energy supply depends on the heat flux on a part of
the boundary S = {0} x R9~! with homogeneous Dirichlet boundary condi-
tion on S, the periodicity on the other parts of the boundary and an initial
condition. The problem is motivated by the modeling of the temperature
regulation in the medium. The existence of the solution to the problem is
based on a Volterra integral of second kind in the time variable ¢ with a
parameter in R?~!, its solution is the heat flux (y,7) = V(y,t) = u.(0,y,1t)
on S, which is also an additional unknown of the considered problem. We
establish that a unique local solution exists and can be extended globally in
time.
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1. Introduction

Fractional differential equations have large applications in a variety of fields
such as electrical networks, signal and image processing, viscoelasticity [13], aero-
dynamics, economics, etc. Hence, an increasing attention has been recently
paid to both theoretical and applied points of view [2, 3] (for more details,
see [4,8,10,11,14,16]).

In this paper, we generalize to the factional derivative in time the previous
results for ordinary partial derivative [17], where the initial boundary value prob-
lem for the one-dimensional non-classical heat equation in a slab was considered
and extended in [1] in the semi-space Rt x R*~1.

Let Ly, Lo, -+, Ly be some strictly positive reals, and B = (Lga, -+, Lg) €
R~1. We denote

[[A, B]] = {y € R%! such that 3a € [0,1]: y= A+ a(B - A)}.
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Then we set the domain 2 =]0, L;[x]] — B, B[[C RT x R?"! more precisely,
Q= {(:C,y) eR: x=u €)0,L1], y = (x2,...,24) €]] —B,B[[},

for which the energy supply depends on the heat flux on the part of the boundary
defined by

S = {0} x]] - B, B[[c {0} x R"! = {(x,y) eRL =0, ye Rd”} .
In this paper we study the following non-classical heat problem:

(“Dg: 1) (@.9.) = Au(w,y,t) = fual0,9,0), (2,9) €Q, t>0

U(O,y,t) :0, yEH 7B7BHC Rd_la t>0 (11)
u(z,y,0) = h(z,y), (v,y)€Q,
u is L;-periodic with respect to x; fori =1,...,d,

where CD3+,t7 the Caputo derivative with 0 < a < 1, A = A, ,, denotes the
Laplacian in R?, and ug(z,y,t) = g—z(x, Y, t).

The paper is organized as follows. In Section 2, we provide the basic solution
to the d-dimensional heat problem (1.1), which will be used throughout the paper.
In Section 3, we show that under certain conditions there exists a unique local
solution to problem (1.1), which can be globally extended in time. In section 4,
we prove that there exists a unique solution of the integral representation locally
in time (4.2), which can be extended globally in time. In the first subsection, we
give an existence result by using Schauder’s fixed point theorem combined with
the diagonalization method. In the second subsection, we reduce the existence
of the unique solution to the search for the existence of the unique fixed-point of
an appropriate operator using a nonlinear alternative of Leray—Schauder type for
contraction maps in Fréchet spaces due to Frigon—Granas [7].

2. Preliminaries

We give now some basic solutions for the d-dimensional heat problem. We
begin by recalling the results on the integral representation of solutions to some
classical problems of heat distribution in d-dimensional cases. We set here

Q" =| - Ly, Ls1[x]] = B, B[[.
Consider

<CD8‘+7tu) (z,y,t) — Au(z,y,t) =0, (z,y)€ Q" CRY ¢t>0
u(z,y,0) = h(z,y), (z,y)€Q, (2.1)

u is L;-periodic with respect to x; for i =1,...,d.
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Lemma 2.1. The solution to the d-dimensional heat problem (2.1) is given
on any compact set of R% by the following formula:

u(z,y,1) /G“w—ﬁy n,t)h(&,n) d€ dn

with

o tTa - —o _a
G%(z,y,t) = ¢><2,2+1,—|(:c,y)|t 2)7

oo
z « « a
et _— = —— = —— 1 = — t_i
é(, B,p) = > Fuk,ﬁ k_ 1 5 B 5 TL 2 |(z,y)[t" 2,

where T is the Euler gamma function, |(x,y)| = \/33% + a3 + -+ + 22 denotes the
Euclidean norm of the point (z,y) such that (xr = x1,y = (x2,...,24)).

Proof. Applying the partial Laplace transform to the two sides of (2.1) with
respect to the time variable taking into account the initial condition, we get

s Lg(u)(x,y,8) = ALs(u)(x,y,s) + s> h(z,y). (2.2)

Then, applying the partial Fourier transform to the two sides of (2.2) with respect
to the space variables (z,y), we get

SOF [Ls(w)] (€1, 5) = FIALs(w)] (€, 5) + 7 F [h] (€,7)
s(u

—|(&m)PF [Ls(w)] (&, m,5) +s* 7 F [R] (£,m).
Thus ot
FLs(w)] (&m,8) = mf[h] (&n) (2.3)

[e3

with (¢,7) € R x R¥! and ||5||? = Z] 1772 As for Y(X,s) = 522_16*|X‘5%,

S2 252 a1

Fidl(o.s) = st S e
(8) + o 5Tl

Hence, for o = (£,71), X = (z,y), the relation (2.3) becomes
FlLs(w)] (&, 8) = FYIF[R](&n,8) = Fl+hl (€ m,8),

where *x is the convolution operator. Then, applying the inverse partial Fourier
transform, we get

‘CS(’U“)(xvy7 S) = W * h)(l‘,y, 8). (24)

As the function ¥ can be developed as series entire with infinite radius, we can
write

k
(—|xy>|sz) L e

Y(z,y,s
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using the Euler gamma function defined by

[e.e]
INa) = / t*le~tat,
0
which is well defined for o > 0. Moreover, the formula

+oo
F(;\)\jll) = L,[tY)(s) = / t*e~stdt  for Re(\) > —1,Re(s) > 0,
0

with A = —%k — %, but here the condition A > —1 implies that k < 2a~! — 1.

Notice that & — +oo implies that a — 0. Thus, choosing 0 < a < 2(N —1)"! <«
1, for large enough N € N, we obtain that 0 < k < N. Then we can write (2.5)
as

1 1 (—(@, ) T(=§k -5 +1)
V(@,9,8) = 3 Zk:o T(—Sk—9+1) & s sk 5l
1 o 1 (I, )" /°° st ak—o
— - - eSS dr (2.6)

Now the series of functions, given by its general term ug,

_« k
(~lwie3)
up(z,y,5,1) = D(—5k— 5+ 1)KV

is in the form of that from [12, [p. 54],

o k
Z z
9{)(/”‘7/8’ Z) - P ]-—‘(//Jk: + ﬁ))kj"
which is absolutely convergent for all z € C, as pu = ¢ > —1. On all compact

2
set of R? the convergence of this series is normal then it is uniform. Thus we can

do the following permutation:

o0 (e
Y(x,y,s) = / e st |tz
2 Jo

then with (2.4):

Rn
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where

t2 —a —« a
G*(z,y,t) = — - =3
(r,3:1) = ¢< 1@ ) )
which solves problem (2.1) on any compact set of R%. O

Remark 2.2. This proof leads us to the consideration of the problems in this
paper on any compact set, but not on all R?.

Lemma 2.3. The solution of the problem

(CD8‘+7tu> (z,y,t) = Ay yu(z,y,t), (z,y)€QC Rt >0,

U(O, yat) = 07 Yy GH - B7 BH? t> 07 (27)
u(z,y,0) = h(z,y), (2,y)€Q,
u s L; — periodic with respect to x; fori=1,...,d,

is given on all compact set Q by the formula

u(z, y, /K“m—gy 0. h(E,m) dE dn,

where
Kz —-&y—nt—7)=G"(x—-&y—nt—7)-G*(—v—&y—n,t—7).
Proof. Define h on QU Q~, where Q= =] — Ly,0]x]] — B, B[[, by

’ ~h(=&mn) if (&) eQ.

From Lemma 2.1, the solution of the problem
(CD(O)‘+7tu) (x,y,t) = Apyu(z,y,t), (r,y) eQUQ™, t>0,
u(@,y,0) = h(z,y) (z,y) € QUQ,

u is L; — periodic with respect to x; for i =1, -+ ,d,
is given on all compact set of QU Q™ by
wept) = [ 6o =&y nhen) dedy
QUO-
= /QGa(x — &y —nt)h(& n) dEdn
=, G = Gy =, (= m) dE dn.

By changing the variables £ = —&; in Q7 and £ = £ in (), we get

w(z, y, 1) /Gax—&,y 0, R, ) déy di
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+ /_ Gz + &1,y — n, (€1, m) dérdn

= /Q G2 — &1,y — 0, 1) — GU(x + &1,y — 0, t)] (&1, m) d€1 dn.

Moreover, we have

) T DF ([@+ &)+ Ily —nll?] )
G($+€17y_777t)_ 2 kzor(—;ék_<§é+1) k!
s i (0 ([(e = €)% + ly —nll?] ) ?
2 T (Fh—5+1) k!

= Ga(_l‘ _glay - nat)a

and
Ka($_€7y_777t_7_) :Ga(ﬂ?—g,y—%t—ﬂ—Ga(—x—f»?/—nat—ﬂ =0
for x = 0,
u(0,y,t) =0, and thus w is the solution to problem (2.7). O

Now we give some properties in the Fréchet space. Let X be a Fréchet space
with a family of semi-norms {|| - || }nen. Let Y C X, we say that Y is bounded
if for every n € N there exists M,, > 0 such that

lylln < M, forallyel.

To X, we associate a sequence of Banach spaces {(X™, || ||»)} as follows. For
every n € N, we consider the equivalence relation ~,, defined by : x ~,, y if and
only if ||z — y|l, = 0 for all z,y € X. We denote by X" = (X|~,,| - |ln) the
quotient space, the completion of X™ with respect to || - ||,. To every Y C X, we
associate a sequence {Y"} of subsets Y C X" as follows. For every x € X, we
denote by [z], the equivalence class of z of subset X" and define Y" = {[z], :
r € Y}. We denote by Y, int,(Y™) and 9,Y™, respectively, the closure, the
interior and the boundary of Y with respect to || - || in X™. We assume that the
family of semi-norms {|| - ||,,} verifies

el < Jlalls < flzlls < -+ for every @ € X.

Definition 2.4. [7] A function f: X — X is said to be a contraction if for
each n € N there exists k,, € (0,1) such that

1f (@) = FW)lln < kn llz —ylln for all 2,y € X.

Theorem 2.5 (Nonlinear alternative of Frigon and Granas, [7]). Let X be a
Fréchet space, Y C X be a closed subset in'Y and let N :' Y — X be a contraction
such that N(Y') is bounded. Then one of the following statements holds:

(S1) N has a unique fixed point,
(S2) there exists A € [0,1), n € N and z € 0,Y" such that ||t — A N (z)]|, = 0.
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3. The first existence result

In this section, we give first the integral representation of the solution of prob-
lem (1.1). We should remark that it depends on the heat flow on the boundary
S, which is satisfied by a Volterra integral equation that will be specified later.

Theorem 3.1. The integral representation of the solution of problem (1.1)
1s given by the expression

(,9,1) = 2003 (1" /t<t ) I, k) dr, (3.1)
u\zr,vy, — uO Xz ya 04 T 1T, Y, T, .
kZOk!F Sk—%4+1) Jo

©|Q

where

L2,y k) = /H oy VO 7D )

k
2

L k
b(x,y,n,k):UO (@— &7 +lly—nlP)? — (@ + 6+ ly—nlP)? de|,

o(z,y,t) /Kax—fy n,t)h(§,n) d§ dn,

and the function V', (heat flux on the surface x = 0) defined by V (y,t) = uy(0,y,t)
for y €]] — B,B[[C R, and t > 0, satisfies the following Volterra integral
equation:

s (—1)F t ak
V(00 = Valont) = 3 G ak_a+1)/(t—T)Qfs(y,n,k)dﬂ (3.2)

where
I3(y,n, k) = [/ F(V(n,m) ([L2+ by —nl?]* — lly - 77!“1) dn]
I1-B,B[[
in the variable t > 0, with y €]] — B, B[[C R being a parameter where

Proof. As the boundary condition in problem (1.1) is homogeneous, then,
following [5] for fractional derivative and [6] for non-fractional derivative, we
have the integral representation of its solution given on all compact set Q by the
expression

u(z,y,t) /K“m—€y n,t)h(§,n) d€ dn

—/ /K“(x—f,y—n,t—T)f(V(n,T))dﬁdndT-
0 JO



Fractional Derivatives with Respect to Time for Non-Classical Heat Problem 37

Thus,
walsy, ) = /Q K% (@ — €.y — 0, )h(E,n) d di

+/0 /QK3<$ — &y —mt—7) [ f(V(n,7))] dE dndr

with
ettt =0T [o (5 e ) (G ers)]
where
e ===+ ly—nl?]? (¢ - )3
o=@+ + Iy —nl’]? (¢ - 7).
Let

0
Kg(x_&y—ﬂat—ﬂ:%Ka@_fay—?%t—ﬂ

—«

+(t_27)2 [% (—%,—% + 1;2,) — ¢z (—%»—% 1éz+)] )

[e3

-t —1)2 o
o _g’_9+1;z_ = (l' o\ —5, —a+lz-),
(2 2 ) [(z =)+ [ly —nl?]2 2 )
d’x _ga_g+1az = - (x+§)(t_7—)§ 1¢) _g7_a+172
) e )
Then
Kg(x—&y—ﬁat—ﬂ:— (m_g) 1¢<_ga_a+1;z7)
2[(z —&)2+ |y -z * 2
. (x4 &) M(—%’—O‘H;@)v
2[(x + &2+ [ly —nl*]2
& «
K?(O—fay—%t—ﬂ: 1¢ _*7_a+1;z—,m=0
2[€ + lly —nll*)? ( 2 )
13 Q
1¢ ——,—a+1;z =0 | »
2[€2 + ly — mlP)? (2 )
where
tamo = — [+ Jy —nll’]? (t - 75,
Zpa—o=—[E€+ly—nl?]> t—7)2.
Hence,
¢ «
Kg(O—&y—ﬁ,t—T): 1¢ _*a_a_‘_l;zx:() ) (33)
(€2 + |ly — nll*]2 ( 2 )
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temo = — [+ |ly — n]2]2 (£ — )%

Using (3.3), we obtain

/Q K20 — &y —mt— 1) f(V(n,r)de d

e & CVH[@rly-npie-n3)
-/ - F(Vn.7) de d

e+ ly—nll2? = KT (-§k—a+1)

N

ak

=S mrCae e /5 €+ Ly —al?) T SV () ey

o (DR -7 1 P
=2 T (—%k—a+1) /] fVin,7)) {2/ 26 [¢2 + ly — nll?] df}

|=-B,B[[

/Q K0~ &y — .t — 1) f(V(n7)) de di

> VE(t — 1) el
Z (—2k—a )I(y,mk)-

k’zO

We have V(y, ) = uz(0, y, ¢) and
Aot = [ K@=y —nobEndsds
—/ | Ko =&y —nt =0V ) dednar,
(090 = [ K20 =€y —n0h(&ndsan

- / / K20 — &y — .t —7)f(V (7)) d dn dr.
0 Q

Suppose
0= [ K50~ &y = n.0h(€n)ds dn
then
0 (_1)k t ok
\%4 =W — ) —7)2 [ k)d
(yat) 0(y7t) ;) (k‘—|— 1)'F (—%/{? —a+ 1) /0 (t T) 3<y777a ) T,

where we recall that

O N [ R R T T



Fractional Derivatives with Respect to Time for Non-Classical Heat Problem 39

By setting
-0 —o
Qba(Z) = ¢ (27 7 + 172> )
we have

/Q K%z — &y — .t — 1) f(V(n,7)) dé dn
B (t—T)

/ [6a(z-) — dalze)] F(V (0, 7)) dE di

ik [/¢ Vinm)dsdn = [ balz)f(Vin. ) dedy
_(t—T
2
I=1, — I,

[e.e]

Z t—T)Ta
R ( “k 2 4+1)

2

r &
X/H o AV [/0 (=& +ly—nl2)% d ]dn
= t—T) ke
2: —ﬁk—g+m

k=0

o k
XALRBWNVWJM[A [(+ &>+ ly—nl*]>d ]dn
Thus,
= (-DRE-n)E
= V(n,7)Is(z,y,n, k) dn,
IcZO k'l (—%k’— % + 1) /]]B,B[[f( (n, 7)) 14(x,y,n, k) dn
with

k E
2 2

L
Li(e.yon k) = /0 (&2 +ly—nl?)% — [+ +ly—nl?)* d

Then
/Q K@ — &y — .t — 1) f(V(n,7)) dé dn
00 1 t )a(k—l)
2
2:, ar / fV(n, ) Ia(z,y,m, k) dn
KID (=5k— 5 +1) Jp-pa
and

a(k 1)

e[Sy -

Ji_g.y F(V(n, 7)1y dndr
HF@%k—%+Q :

u(x,y,t) = 0(x7y?t) - Z

k=0
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where

o(2,y,1) /Ko‘:rf—«iy 0, h(E,m) dE di. O

Lemma 3.2. The simplified form of the Volterra integral equation (3.2) is

V(y,t) = P(y,t) —i—/o Qly,t,7,V(y,7),a)dr (3.4)
with

N (-5 2 21
P(y,t)—kzzok!r(gka+l)/95[§ +lly = nllI*] > k(g ) dgdn

:/Q§|2¢ <_2a,—oz+1;—[£2+Ily—nll2]étg> h(€,m) € dn

&+ ly —nl
and
> k+1t—7)213(y7k‘)
4TV (y, ALY
QU b Viy7 Z% (k+DIC (—2k —a+1)
Proof. From (3.3), if 7 = 0, we get
k 7&
Koty = & (1) €2+ ly — i) 1%
T 9 ) 1 a
[52+Hy—n||2r ol (mgk ot )
:5§: - £2+Hy al?]= ¢
=0 —§ —a+1)
Then (3.2) becomes
Viy,t) = Voly,t) i (-1)* /t(t )5 I3(y, 7, k) d
Yy,t) = Vvoly,t) — - T 3\Y, T, T,
— (k+1I0 (~5k —a+1)

= (-DRT =
V0 =Y prrar ey S ) T e dean

2

- (=1)*
_kzo(k+1)!1“(—3‘k—a+l

¢
/(t—T)azkfg(y,T,k)dT,
) Jo
where we recall
Bk = [ o) |4 = al2) =yl an
B]-B,B(]

and thus V(y,t) is given by (3.4). O
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Now we prove, under some assumption on the data, that there exists a unique
solution of problem (1.1) locally in time which can be extended globally in time.

Theorem 3.3. Assume that h € C(R¥1 x RT), f € C(R) and there exists
A > 0 such that

’f(X)—f(X)‘ <\ANX —X| foreach X, X €BCR

holds. Then there exists a unique solution of problem (1.1) locally in time, which
can be extended globally in time.

Proof. Theorem 3.1 yields that to prove the existence and uniqueness of the
solution (3.1) of problem (1.1), it is enough to solve the Volterra integral equation
(3.4). We have to check the conditions (H1)—(H4) in Theorem 1.1, p. 87, (H5)—
(H6) in Theorem 1.2, p. 91, and Theorem 2.3, p. 97 in [15].

e The function P is defined and continuous for all (y,t) € R4~! x RT since h €
C(R¥1 x R*), and thus (H1) holds.

e The function @ is measurable in (y,¢,7, X,a) forall0 < a < 1,0 <7<t <
00, X € R, y € R ! and continuous in X for all (y,t,7,a) in R4~ x RT x Rt x
(0,1), Q(y,t, 7, X, ) = 0 if 7 > ¢, and thus (H2) holds.

e For each real number 7" > 0 and each bounded set 6 in R, we have

o _1k+1t_7' %k_[ ,T,k}
Q.tm V)l = > ((k zr 1)!(1“ (—%k —Sier 1))

k=0
1
14 1 elm- i
S/H—B,Bu V)l 190 = 640 dn
where
et :¢<;’;+1;i<f—7>3 (L2 + ly =l )2>
Thus,

Qy,t, 7, V(y,7), )| < sup |f(X )I2\¢|
Xe®

/ BB]]

< sup |f(X)[2[¢|———=p([[-B, Bl)
XeB (t— )2

u([[~B, B]]) measure of [[—B, B]]. So, there exists a measurable function m given
by

w\s:

m(t,7) = sup [f(X)[2[¢] ——=p([[-B, Bl])
XeB

(t— )%
such that
Qy,t, 7, V(y,7),a)| <m(t, 7)
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and satisfies

t
sup /mde—sup FCORI6l(-B, B]) sup/o =

i te[0,7)
= sup [f(X)[2|¢|u([[-B, Sup [2 +1] =
XeB tE[OT

Moreover, we also have

t

lim m(t,7)dr
t—0* Jo

— sup |£(X)[2l6|u([~B, BI) lim [2 -
XenB

t—0t —

tf“]zm (3.5)

and as

v+t
/ m(t, ) dr

= sup ORIl BI) tim |5 (v E = =) E )

2 —«

then
v+t
lim m(t,7)dr = 0. (3.6)

t—0t J,

Thus (H3) holds.

e Tor each compact subinterval J of RT, each bounded set 8 in R and each
to € RT, let

Qt.yV(y). o) = /J Q7. V(. 7),0) — Qys to, 7, V (5, 7), )] dr

P—(t) — o4 (t)  o—(to) — ¢+(to)> d
(t—7)2 (to—7)%

n|dr,

1o

[[-B;B]]

as the function 7 — V(n,7) is continuous and is in the compact B C R for all

€ [[-B, B]]. So, by the continuity of f, we have f(V(n,7)) C f(8). Then
there exists a constant M > 0 such that |f(V(n, 7)) < M (n,7) € [[-B, B]] x
R*. Suppose

2(tr, Lyn) = —(t —7)F (L2 + [ly —nll”)?.
’UT%WZ—U )2 ly —nll,
Q(t,y, V(y), @)

<M//
([-B,B]]

, L) — ¢+(t 0) ¢—(to,L)—¢Jg(t070) dn dr.

t—T) (to—7)2
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As the right-hand side of the above inequality tends to zero for ¢ — tg, then

im  sup / Q. t, 7. Vg, 7)0) — Qys to, 7, V(. 7), )] dr = 0.
t=%0 v (y)eC(J,B)

Thus (H4) holds.

e For each compact interval I C R, each continuous function ¢ : I — R and
all tg > 0,

/J Q. t. 7 (1), 0) — Qy.to, 7 p(r), )] dr

[(Z)(Z: Lvt) — ¢(Z> O?ﬂ [¢(Z7 L,to) — ¢(§707t0]
oy | ARl BB = SE00 iyar),

([=B.Bl]

where
—-a —o

¢(Z7Lat) = ¢ <2) 7 + 1; Z(tuTvayvn)> .

f € CR) and ¢ € C(I,R), then there exists a real M > 0 such that
(1))| < M for all 7 € I. Then

/rcxy,t (7)) — QUy.to, 7 p(r), )| dr
Z L t) (E,O,t] - [¢(27L7t0) _¢(2707t0]
<M//[ B,B]|

As the right-hand side of the above inequality tends to zero for ¢ — tg, then

| (¢

dndr.

t—T)% (tO—T)E

i [ 1Q(0.1.7.0(1).0) ~ QUusto. 7o p(r). )| dr = .

t—to J
Thus (H5) holds.

e For each constant 7" > 0 and each bounded set B8 C R, there exists a mea-
surable function k(¢, 7, &) such that

‘Q(y,t,T,X,oz) — Q(y,t,T,X,oz)’ <k(t,1a)|X - X]|,

whenever 0 < 7 <t < T and both X and X are in B. Then we have

/ [f(X) — F(X)][ gz) ?(2)] i
(-B.B]] t—7)2
(

’Q(y7t7TaXaa) - Q(y,t,’ﬂX,O[)’ =

(
[f(X) = f(X)][¢
S/M—B,BM (t—7)

Since f is locally Lipschitz function in R, then

I\

)|+ 18]

wlR

}Q(y’ta T, Xv a) - Q(y,t,T,X7O£)‘ < (15_17_)3¢2|¢’M([[_B7BH))‘|X - X|a
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and thus
_ A2|u(([=B, B]])

(t—7)%
We also have for each ¢ € [0, T] the function k € L'(0,7) as a function of 7, and

k(t, 7, @)

[ me v ar = xpu-nm) [
UV, T, = — S —
] 5 T T H 9 ] (t—f—l/—'r)f T
_ Aplu(l=B,B]) =41
- 2 _« (V) + )
then
i [ ket vr ) dr — i BB o
v—0 J4 v—0 2 —«

Thus (H6) holds. Consequently, all the conditions from (H1) to (H6) are satisfied
with (3.5) and (3.6).

From [15] (see Theorem 1.1, p. 87, Theorem 1.2, p. 91 and Theorem 2.3,
p. 97), it follows that there exists a unique local-in-time solution of the Volterra
integral equation (3.2) which can be extended globally in time. Then the proof
of this theorem is complete. ]

4. The second existence result

We consider the following problem:

<0D8‘+7tu) (z,y,t) = Apyu(z,y,t) — f (tu(z,y,t), (z,y) €Q, t>0

u(0,y,6) =0; ye€]l-B,B[CR", >0 (4.1)
u(z,y,0) = h(z,y), (z,y) €,
u is L; — periodic with respect to x; for i =1,--- ,d.

As the boundary condition in problem (4.1) is homogeneous, so, following [5]
for fractional derivative, and [6] for non-fractional derivative, we have the integral
representation of its solution given on all compact set €2 by the expression

wt) = [ K= 6y = n (e ey

t
- / / Ka(x - 57 Yy—= 77775 - T)f(Tv U(&aﬁﬁ)) dé d77 dT? (42)
0 JR+xRd-1
where
Ka(x_fay_nat_T)
B (t—7)= a o a o
= (g5 i) —e (5 g i)
z=—[@=+ly—nl’]? t-7)%,
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== [@+ & +ly -l ¢ - )%,

with || - || being the norm of R~!. This integral representation (4.2) is also an
integral equation. So we can also prove that there exists a unique solution of
the integral representation (4.2) locally in time which can be extended globally
in time by using Theorem 1.1, page 87 and Theorem 1.2, page 91 in [15]. In
the first subsection, we prove the existence result using Schauder’s fixed point
theorem [9] and then, in the second subsection, we prove the uniqueness of its
solution using a consequence of the nonlinear alternative theorem [7].

4.1. The existence result obtained by using the diagonalization
method. Let J = [0,00) and J, = [0,n], n € N. We will need the following

hypotheses which are assumed hereafter :

(H7) f:J x RY — R? is a Carathéodory function such that for any positive
constant C' > 0 we have

t
fulen0) < gz [ o)l ds

where ”u(S)HOO = SUP(z,4)e0 |U(SL‘, Y, S)|
(H8) Let h € L(Q).
Theorem 4.1. Assume that (H7), (H8) and the condition
[8llec < C, (4.3)

where ||@lloo = supqy s |d(x,t)|, hold. Then problem (4.1) has at least one solu-
tion.

Proof. Fix n € N and recall problem (4.1) for ¢t € J,, :

(DG 1) (@,9,6) = Ag e, y,t) = [ (rulw,y, ), (2,y) €Q, tE Ty,

u(0,y,t) =0; ye€]l-B,B[[, te, (4.4)
u(z,y,0) = h(z,y), (2,y) €,
u is L; — periodic with respect to x; for i =1,...,d.

The proof will be given in two parts. In the first part we show that problem
(4.4) has a solution u, € Cn(Q x J,,,R?). We define the operator N : C, (€ x
Ty RY) — Cr(Q x Jp, RY) by

N(u)(z,y,t) /K“m—€y n,t)h(&,n) d€ dn

—/ /K“(x—&y—n,t—T)f(ﬂU(f,n,T))dfdndr
0 JO
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Step 1. N maps B, = {u € Cp(Q x J;,RY) : ||ulls <7y} into itself. Con-

sider the norm e
fulle = - [ttt

For u in B,, from conditions (H7), (H8) we get

t3

5210l llhll 1 ()

[N (u)(z,y,t)] <

t—m)72
2ol [ P [ el dedn

< 7| @lloo[1hll 1 (0

n —a 1 T
ol [ 0-1F (gu [ Tute) s ) ar.
by the Fubini theorem,

[0 (5o [ Mutolwas) ar
:%C/o |w(8)]| oo (/0 (t—T)z“dT> ds.

Moreover, for 0 < a < 1, we obtain

n 1-g s 1-g i — =3
/(t_T)sz—IL g—( f)g g?_a—l-’ f’g <2n
0 2 2 2 2
and also
n nl—%
/ tTrdt = —— <2n
0 1-3
Thus,
1
IIN ()0 dt < 2n[|@llo) 2]l 1) + I 9lloo 5 72l ull-
then
o [ IO o e < 261 bl1100) + Bl e
So,

1
IV ()l < 2llglloo 12l 1) + &l @llsollulls-

Under condition (4.3), we deduce that there exists r,, > 0 such that || Nul[, <
T, With
2||¢]lo ||
. [l ”Ll(Q)7
1—|¢lle/C
which means that N(B,,) C B,.
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Step 2. N is continuous. let {ux}ren be a sequence such that uy — u in B, as
k — oo. Then

t
I(Nuk—NU)(fv,y,t)lS/O/QIK”‘(I—S,y—n,t—T)Ilf(ﬂwc)—f(ﬂU)Id&dndT

S/t (t=r)+
0

2
f(Ta uk) - f(T7 U) = f(Ta uk(ga 7777-)) - f(T,U(g,’I’],T))

(67

¢—¢+:¢<_2,—‘;‘+1;z> —¢(_2“,—j+1;2+>.

Bearing in the mind (H7), we have by the Lebesgue dominated convergence
theorem that |(Nug)(z,y,t) — (Nu)(z,y,t)| — 0, as k — oo, for all (z,y,t) € 2 x
Jpn. Consequently, limy_,~ [[Nur — Nul|co = 0, which implies that

‘/ka - ¢+’ |f(7_7uk) - f(T,U)|dfd77dT,

where

1 n
|INug — Nu|l, = n/ |Nug(t) — Nu(t)| oo dt < |[|[Nug — Ntt||oo-
0

So, klim |INug — Null, =0, and thus N is continuous for || - ||..
— 00

Step 3. N(B,) is equicontinuous. Indeed, let (z1,y1,t1), (z2,y2,t2) € Q X
Jn with z1 < x2, y1 < yo, t1 < tg and let u € B,,. Then

(N(u)(z2,y2,t2) — (Nu)(z1,y1,t1) = /Q (K5 (t2) — K (t1)] (&, m) dE dn
- / 2 / KS(ty — ) (r,u(€,n,7)) dé dn dr
0 Q
+ /0 /Q K¢ (ty — ) f(r, u(€,n, 7)) d€ dn dr,
where K (t;) = K*(x; — &,y — . t;) for i = 1,2, so
(N () @2,y t2) — (Nu) (1,31, £1) = /Q (K (1) — K§(0)] h(é, ) dé dn
~ [ [ K8 02— 1)~ Ke (0 = )] f(ru(€on, 7)) de dndr
0 Q
+ /t /Q K3ty — 1) (r.u(€.m, 7)) dé dn dr.
Thus,

!N(U)(@’y%tz)—(NU)(xhyl,tl)!</Q\K?(b)—K?(h)!lh(é,n)!dédn

t1
n / / K (1 — ) — K2 (11— 7)||£(r, ulEn,7)| dé di dr
0 Q
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t2
—l—/tl /Q’Kg(t?_T))f(ﬂ“(fﬂ?ﬂ')ﬂd&dndr
< sup |K§(t2) = K7 (t)[[1Rl2 o)

(&meQ
bnsup [KS(t =)~ Ko=) [ 17ru(én vl dedy
(&meN Q
+(t2—t) sup K3 (ta—7)| [ 1£(ru(€n7))|ded
(&meQ Q
< sup |K3(t2) — K7 (0[Pl o1 (o)
(&meQ
+n sup |K§(te—7)— K{'(t1 —7) /||u )| oo ds,
(&men
Flto—t) swp |KS(tr—7)l5 /nu ) o ds,
(&men
< sup |K3(t2) — KY tl)H‘hHLl(Q)
ISy

” H (07 (6%
n sup |Ky(to—7)— K{(t1 — 7
s | s, K3t = 1)~ Ki (0= )

+(ta —t1) sup |K5(t2 — 7')])
(&men

< sup [K3(t2) — KY(t)[[IRll Lo
(&men

+% n sup |Ky(ta —7)— K{'(t1 — 7)|
(&me

+(to —t1) sup |K5(ta — T)]) . (4.5)
(&men

The right-hand side of the above inequality tends to zero as (x1,y1,t1) —
(z2,Y2,t2). Thus N(B,) is equicontinuous.

As a consequence of steps 1 - 3, together with the Arzela—Ascoli theorem, we
can conclude that the operator NV is completely continuous. Therefore, we deduce
from Schauder’s fixed point theorem that N has a fixed point u,, € B, which is
a solution of problem (4.4).

In the second part we use the following diagonalization process. For k € N,

let
uk(wayvt)? te (Ovnk]
uk(:l:?y)t) =
ug(z,y,nk), t € [ng,00).

Here {ny} is a sequence of nj € N* satisfying

0<n1<n2<-~<nk<-~Too.
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Let § = {u}2,. For k € N*, s <t with s and t € (0,n1], we have
Uny, (2,9, 1) /K“x—iy n,t)h(€, ) d€ dn

+/o /QK (@ =&y —ns = 7)f (T, un (&, 7)) dE dn dr.

Then we get
[uny (@, y,8) = uny (2,1, 8)| < /Q K5 (t) — KT'(s)|l1(€, m)| d€ dny
+ ASA ‘Kg(t — T) - K%(S — T)“f(T,unk(é"n’T)’dé-dnd,r

+ / /Q (K8 (t — 7)) F (7, i (6,17, 7)) dE iy i

As for (4.5), using (H7) and using the Arzela-Ascoli theorem which guarantees
that there is a subsequence N* of N and a function v; € C(Q X Jny, RY) with
Up, — v1 i C(Q X Jpy,RY) as k — oo through Ni. Let Ny = Ni\{1}. Notice
that

[ungll« < 7Tny  fort e (0,n9], keN.

Also, for k € N and t,s € (0,n2], we can use the Arzela—Ascoli theorem which
guarantees that there is a subsequence N* of Ny and a function vy € C(Q x
Jny, RY) with u,, — v2 in C’(Q X JnZ,R ) as k — oo through N* Notice that
vy = vy on (0,ny] since Nj C Nj. Let Ng = NQ\{Q} Proceed by induction to
obtain for m € {3,4,...} a subsequence N, of N,,,_; and a function v,, € C ’(Q %
Jnm,Rd) with w,, — vp in C(Q x J,,,,R?) as k — oo through N¥,. Let N, =

Ne\{m).

Define a function w as follows. Fix t € (0,00) and let m € N with s < n,.
Subsequently define w(x,y,t) = vm(z,y,t), then w € C(Q x Joo, RY). Again fix

t € (0,00) and let m € N with s < n,,. Then, for n € N,,, we have
Un, (2, Y, 1) /K‘“x—Sy n,)h(&,m) d€ dn
[ ] K= &yt =) o) i
Let nyp — oo through Nm to obtain
@nt) = [ Ko =€y =m0l n)dsdn
[ [ K==t =) st ) de dnr
Thus,

w(z, y, 1) /K“x—fy 0, )h(E, ) de di
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t
_/ /KQ(QU_fvy—Uat—T)f(va(f,ﬁvT))dfdﬁdT-
0 JQ

This method can be used for each s € (0,n,,] and for each m € N. Thus the
constructed function w is a solution of (4.1). This completes the proof of the
theorem. O

4.2. The existence and uniqueness in the Fréchet space. Let
M,,M; € N and M, € N1 Then Cp((0, M;)x]] — M, My[[x (0, M;); R?)
is the Fréchet space equipped with the family of seminorms

My
lulles = /O sup {Ju(e v ldt - (2,y) € (0, My)x]] — My, My}

Further, we present the conditions for the existence and uniqueness of a global so-
lution of problem (4.1). We will need the following hypotheses which are assumed
hereafter:

(H9) h:Q — R?is a continuous function with

h* = |[hllec =t sup |h(z,y)| < oo.
(z,y)EQ

(H10) f: R* x R? — R? is continuous and for each M € N there exists I in
C((0, My], RT) such that for each (z,y,t) € (0, My)x]]—M,, My[[x(0, M),

[f(tulz, y, 1) = f(E ulz, y, )] < I (Bllu —alley,  w,u € Cu,

and [}, = sup |y (t)]-
te(0,M;]
Theorem 4.2. Let hypotheses (H9) and (H10) hold, and for M; > 0,
2 -«
> M2 P[00 (4.6)
40%, ¢

Then there exists a unique solution for problem (4.1) on Q x R*.

Proof. We transform problem (4.1) into a fixed point problem considering
the operator

N:Cuy ((O,Mx)x]] — M, M,[[x(0, Mt);]Rd)
— Oy ((0, M) x]] = My, My[[x (0, My); R?)
defined by

N(u)(zy.t) = /Q K®(z — €,y — n.t)h(&,n) dé dn

t
- / / K®(e— &y — .t — ) f(r,ul€,n, 7)) dedy dr.
0 Q
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Clearly, the fixed points of the operator N are solutions of problem (4.1). We
have

Nw)(@y.1) /K“w—éy 0, th(E, 1) dE dn
_/O /QKO‘(-Z'_fvy_77,t—T)f(7'7u<€7n77-))d§dnd7_’

A priori estimate. We should start by showing the existence of a priori esti-
mate of the solution of the equation u = AN (u) with A € (0,1). Thus,

[u(z,y,t)| = [AN (u)(z,y,t)] < /Q |K*(x — &y —n, )] |h(&n)| dE dn
t
[ [ 1K@ =t = DI n.) - F7.0)]+ (7.0} dédndr.
0 Q
From conditions (H9) and (H10) we obtain
sup IN(u)(z,y, s)|

(0,Mz)x]]—My,My][

=2 . M 2
2[[@llooh” + 2Ml¢lloc Unslluller + f7) 57—

\)

By integration in times for 7 € (0, M;), we have

oM, 7 . 2M, ?
5o 19lloch” + 2l Slloo (Lasllullers + F7) 57—

HUHCM >

where f* = supie(o,ar,) [ /(£ 0)]- Let [lully, < R,

2M. 2M
R e [[Plloch™ + 2[| @l oo f* =57
M = d—a
1 _ AlloeM, ® 1,
2—a

Set

Cr = {u € Car((0, M) X]] = My, My[[x(0, M R?), |l < Rag +1} .

We will show that N : Cr — C)y is a contraction map. Indeed, consider u, @ in
Cgr. Then, for each (z,y,t) € (0, My)x]] — My, M,[[x(0, M;), we have

|N(u)(:n,y,t) - N(ﬂ)(xa yvt)|
< /0 /Q K2 |f(ryu(€m, 7)) — F(roa(€,m, )| dé ddr

2—a
PRE
< APl My * Ty lu
2 —«

- 17’”0M7
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where K¢ = K%(x — &,y —n,t — 7). Thus,

2—«
. 4)|dlloodM; * 13 .
IN@ = N@lg,, < =2y — g,

Hence, by (4.6), N : Cr — C)y is a contraction. By our choice of Cg, there is no
u € Oy CM such that u = AN (u) for A € (0,1). As a consequence of the nonlinear
alternative Theorem (2.5) [7], we deduce that N has a unique fixed point u in

Cr

the

which is a solution to problem (4.1). O
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JIpoboBi moxiaHi 3a 4acoM JIjisT HEKJIACUYIHOI 3a1advi
TeNJIONMPOBiJHOCTI

Fatima Berrabah, Mahdi Boukrouche, and Benaouda Hedia

Posrnsgnaerbesa mekracutne piBHIHHSA TEIIOMPOBIIHOCTI 3 APOOOBOIO TT0-
xizHoro KamyTo 3a 1acoBoio 3MiHHOIO B 0OMezkeHiit obmacti @ C RT x R4~
JIJIST STKOT'O IIOCTAYaHHST €Hepril 3aj1eXKUTh BiJ TEILJIOBOIO MTOTOKY Ha YaCTUHI
mexi S = {0} x R¥~! 3 ommopianoto rpammanoo ymosoio [lipixme wa S,
MIEPIOINIHICTIO HA 1HIMNX YACTUHAX T'PAHUII Ta MOYATKOBOIO YMOBOIO. 3aia-
Ya MOTHBOBAHA MOJIEJIIOBAHHSIM DPEryJIIOBAHHS TEMIIEPATYPU B CEPEIOBUIIL.
IcuyBanns po3s’si3Ky 3ajati 6a3yeThbcs Ha iHTerpaJi Bosibreppa apyroro po-
Ny 32 9acoBOIO 3MiHHOWO t 3 mapamerpoM B R4~ i1 po3p’si3koM € TerioBmit
notik (y,7) — V(y,t) = uzy(0,y,t) Ha S, M0 TAKOXK € JOJATKOBUM HEBIJIO-
MHM 331841, IO PO3IVISIIAEThCS. YCTAHOBIIEHO, O ICHY€E €TMHUN JTOKATHHUH
PO3B’SI30K, SIKUit MOXKHA MPOJOBKUTH TJTOOATHLHO y Faci.

KirouoBi cjioBa: HeKjacu4dHe d-BUMIpHE PIBHSIHHSI TeIJIONPOBIIHOCTI,
npobosa moxinua KamyTo, inTerpasibhe piBHsHHS BoJsibTeppa, iCHyBaHHS Ta
€IHICTDb PO3B’SA3KYy 3a/1adi, iHTerpajbHe 300pakeHHsT PO3B’ 3Ky
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