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On a Certain Class of ['-Contractions
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The present paper is aimed to study a certain class of pairs of operators
having the symmetrized bidisk as a spectral set. For such pairs, the condi-
tions of I'-contractivity are given and the functional model is constructed.
Some criteria of unitary equivalence are also established.
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1. Introduction and preliminaries

In the following, H is a separable complex Hilbert space, B(#) is the algebra of
all bounded linear operators acting 1111 ‘H with the identity 1. If T is a contraction
in H, we denote by Dy = (I —T*T)2, Dy« = (I —TT*)2 the defect operators of

T and by Dy = Dp(H), Dy = Dp+(H) the corresponding defect subspaces.

Definition 1.1. A contraction T', defined on H, is called completely non
unitary (cnu in the following) if there is no non trivial reducing subspace in
which 7T induces a unitary operator. If the sequence T™*" strongly converges to 0,
then, following [11, Chap. 2, Sect. 4], we say that T is a C.o contraction.

The following results are well known.

Theorem 1.2 ([11, Chap. 1, Sect. 3]). For every contraction T in H, there
exists a unique orthogonal decomposition H = Ho & Hr such that both Hy and
Hr are invariant over T, in Hy the operator T induces a unitary operator and
i Hrp it induces a cnu contraction. Moreover,

Hr =span {T" (Dr+), T*™(Dr), n,m=0,1,2,...}.

Theorem 1.3 ([11, Chap. 2, Sect. 6]). If the contraction T is cnu and the
intersection of its spectrum with the unit circle has a null measure, then
lim 7" (z)= lim T (z) =0 forallzeH,
n—-+00 n—-+o0o
and thus the operator T is in the class Coo of all contractions satisfying the

condition
lim T"h= lim T"h =0 forallheH.

n——+oo n——+oo
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Remark 1.4. The restriction T of T' to the reducing subspace Hr is called
the cnu part of T

If T is a contraction on H, then the analytical operator-valued function O,
defined from the open unit disc D of C into the set B(Dr, Dr+) of all bounded
linear operators from Dr into Dr« by

Or(z) = [—T 4 2Dpe (I — 2T%)" DT] , zeD,

is called the characteristic function of T'. It is well known [11, Chap. 6, Sect. 3]
that O is a unitary invariant of 7T'.

Remark 1.5. Following [11, Chap. 5, Sect. 2], we will suppose every function
O()=VOr(z)U: &= &

to be equal to Op(z) for any separable Hilbert spaces £, £ and any unitary
operators U, V acting from £ into D7 and from D7+ into £ respectively.

If £ is a separable space, design by O(D, £) the class of all £-valued analytic
functions on D and consider the following Hilbert space [4]:

400 o0
H(E) = {f EOM,E): f=) ane" witha, €& and Y |lan|* < +oo} :

n=0 n=0

The space H(E) is given by the reproducing kernel (1 — (z,w))~!I¢, and for £ =
C, this is the usual Hardy space on the unit disk. Moreover [4], H(C) ® £ and
H(&) are isometrically isomorphic via the unitary operator Ug(f ® z) = fx. This
allows us to identify the element f ® z of H(C) ® £ with the element fz of H(E).

Definition 1.6. Let T" be a C'.( contraction in H. The space Hy = H(Dz+) S
Me, (H(Dr)) is called the model space of T. The functional model of T is
the restriction of the operator Py, (M, ® I) to this space, where Py, is the
orthogonal projector of H(Dyp+) onto Hp, M, is the multiplication operator by
the independent variable z € D.

A C.g contraction T, its model space and functional model are linked by the
following fundamental result due to Sz-Nagy and Foias [11, Chap. 6, Sect. 2].

Theorem 1.7. Every C.o contraction T in H is unitarily equivalent to its
functional model. In other words, there exists a unitary operator U from H onto

Hp such that T = U'TU.

In the following, we will suppose that the spectrum o(7T) of T' is concentrated
at the point ¢ = 1 and dim(Dy) = 1. In this case, the operator T is invertible
and dim(Dp-) = 1. Moreover, we have the representation [8]:

(Or(2)(u), ) :exp{/olz+1dt} :exp{z”l}, (1.1)

z—1 z—1
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where u and v are two vectors such that ||u|| = ||v|| < 1, which satisfy

I-T"T=(,uyuand I — TT" = (-,v)v.

2

Now, in the space L[o 1 of square integrable functions consider the operator

N !
Tf@) = f(z) - 2ex/ et (1) dt. (1.2)

In the literature (see, e.g., [8]), the operator T is known as the triangular model
of the class of cnu contractions having one-dimensional defect subspaces and the
spectrum concentrated at a = 1. This finds its justification in the following facts:

(a) Direct calculations give us

T f(2) = f(z) — 2¢~° /0 ", (1.3)
I—T*T ={(,g9)g, I—TT*=/{(,h)h, (1.4)

where
g(x)=v2e" h(z)=v2"" 0<az<l (1.5)

This proves that T is a contraction with one-dimensional defect subspaces.

(b) Consider in L[20 ) the Volterra integration operator

_ !
Af(z) = z/ F(t)at.

It is known [6, Chap. 1, Sect. 8.2] that Ais a completely non-self-adjoint
operator with spectrum concentrated at the point p = 0 and one-dimensional

imaginary part. Moreover, one can easily prove that 7= — K(A), where
K(A) = (ﬁ—u) (Zlﬂ'l)_l — T2 (Zlﬂ'l)_l (1.6)
is the Cayley transform of A. So, we have the spectral relation
U(T)z{— ";z peo(A) :{0}}:{1}

which proves that the spectrum of T is concentrated at the point A = 1.

(c) Using (1.6), one obtains

A=il -2 (T+I)_1, (1.7)
A = il + 2i (T + I) - (1.8)
A A

Z_ =2(I+TH I -T"T)I+T)". (1.9)
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A— A*
1

=2(I+T) I -TT*)(I+T"". (1.10)

Using formulas (1.7), (1.8), one can prove that every subspace Hy reducing
T reduces also A. Formulas (1.9) and (1.10) show that if T induces a unitary
operator in Hy, then A induces a self-adjoint operator in Hy. Thus, we have
necessarily Hyp = 0. In other words, the operator T is cnu.

(d) According to [8] (see Theorem 2), every cnu contraction with one-dimen-
sional defect subspaces and spectrum concentrated at a = 1 is unitarily
equivalent to T'.

Definition 1.8. A pair (S,T) of commuting bounded linear operators on H
is called a I'-contraction if it has the symmetrized bidisc

L= {1+ X, M h2) 1 | M| < 1,]hg] <1} c €2

as a spectral set. That is (see [1]), the spectrum o(S,T") of the pair (S,T) is
contained in I' and
IF(S T < max 1f(z1,2)

(21,22)€

for all functions f that are holomorphic on a neighbourhood of T'.

It is known [3] that if (S,T') is a I'-contraction, then the operator T' is a
contraction (||7']| < 1). The study of I'-contractions was introduced and carried
out very successfully over several papers by Agler and Young, (see [1] and the
references therein). From the paper of Agler and Young, we retain the useful
assertion contained in Theorem 1.5.

Theorem 1.9. Let (S,T') be a pair of commuting operators in H. Then T is
a spectral set for (S,T) if and only if p(aS,a?T) > 0 for all « € D and

p(S,T) =2(I —T*T) — S + S*T — S* + T*S.

The key concept in the study of I'-contractions is the so-called fundamental
operator F' which is the unique element of B(Dr) satisfying the fundamental
equation

S —S*T'=DrXDr.

It has a numerical radius w(F) no greater than one and was firstly introduced

in [5]. If (S,T) is a I'-contraction, then so is the pair (S*,7*) with fundamental
operator GG, the unique solution of the operator equation S* — ST = Dp+Y Dyp«.

Definition 1.10. Two pairs of operators (S,T) and (S’,T”), defined on the
Hilbert spaces H1 and Hs respectively, are said to be unitarily equivalent if there
exists a unitary operator U from H; onto Hs such that S’ = U~'SU and T’ =
U-'Tu.

Remark 1.11. Tt is clear that the pairs (S,T) and (S’,7") are unitarily equiv-
alent if and only if the pairs (S*,T*) and (S™*,T"*) are unitarily equivalent.
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Theorem 1.12 ([4]). Every pure I'-contraction (S,T) (that is, T is a C.o—
contraction) is unitarily equivalent to the pair (S, T), defined in the model space
Hr as follows: the operator T is the functional model given in definition 1.6, S is
the restriction to Hp of the operator Pu, (I ® G*) + (M, ® G)). The operators
M, and Py, are also taken from definition 1.6, G is the fundamental operator of
the T'-contraction (S*,T%).

The main purposes of the present paper are:

1. to characterize a certain class of linear bounded operators S with difference
kernel in the space L[20 ] and such that the pairs (5,7 are I'-contractions;

2. to construct the corresponding functional models;

3. to give some criteria for unitary equivalence between (.5, f) and a given I'-
contraction (R, Q) defined on an arbitrary complex separable Hilbert space.
2. Conditions of I'-contractivity

The aim of the present section is to characterize a certain class of bounded
linear operators S acting in L[QOJ] and such that the corresponding pairs (5, 7)
are I'-contractions.

Proposition 2.1 ([9]). Every bounded linear operator S on L[20 I admits the
representation

d l
st = g ([ stwosoa). (2.1)
dx 0
where the function s(x,t) is an element of L[20,l] for every fixed x in [0,1].
Remark 2.2. As mentioned in [9], the kernel s(x,t) can be chosen such that
s(l,t) =0 for all t € [0, I] and

[
/ ls(@ + b t) — s(z, )2 dt < S]]
0

Moreover, the operator S and its adjoint S* are linked by the relation S* = USU
where, U is the involution U f(z) = f(l — x).

In the following, we will suppose that the operator S has a difference kernel
s(x,t) = s(x — t) satisfying the conditions of Remark 2.2.

Proposition 2.3. A bounded linear operator S in L[20 L having a difference

kernel s(xz,t) = s(xz —t), commutes with the operator T if and only if for every
fe L[207 g ond x € [0, 1],

5(2) /Ol i = [ oo / st — ) f ) dy it - / e / () dy .

t
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Proof. First calculations give us that for every f € L[Q0 I

(TS — ST|f(z) = 2/ s(x—1t)f dt—2/ “/ (t —y)f(y)dydt

+2% (/lets(x—t)/t “f(x )dz)d.

Setting x — t = y, we get

4 ( /0 Cels(z—1) / e H2) dz) dt =

On the other hand,

% (/x: e s(y) dy> = /x: e Ys(y) dy + s(z) — e*s(z — z).

So,

% </Olets(x—t)/tle_zf(z)dz> dt = /Ol e “f(z )/I e Ys(y)dy dz

/ e “f(z dz—/f (x — z)dz.
Replacing, we get

s~ sTls =2 [ o' dt—2/ = [ stt- s ayar
= ‘Zf()/ e+ s(y) dy dz
S S SOy S
r2fe Zf()/ s(a — 1) de dz
Y S Sy S

+2/0l (:U—t)/t eV f(y) dy dt.

This leads us to the desired result. O
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We will now seek the conditions of positivity for the operator p(a.S, an),
|a| < 1. For the reasons of density, it suffices to find these conditions of positivity
for derivable functions f such that f(0) = f(I) = 0. We have

(p(aS,@*T)f, ) =2(1 — o) [ £ + 2|af* (I = T*T)f, f)
2R (alSS, )+ 2|aP R <a<ff, 5f>) :

Integrating by parts, we get

l !
(Sf. ) :—/0 f’(m)/o s(z — 1) f () dt da. (2.2)

On the other hand,

@150 = [ [r0-20 [ toa] & [Se=amma) w
= [ ([ e T i)
—2 OlefC/e—tft dt</ s(:n—y)f(y)dy)dm

l [ l
1@ / @ = 9)f(y) dyda +2 / L / S0 dy

/Ol o [ tiva- 5] [ e i

l i
--f (f’(:c)+2f(a:)) / s(@— ) () dyde
0 0

l [
o /0 U f(t) di /0 ST dy

l l l
+2 ; e$/z e_tf(t)dt/o s(z —y)f(y) dy dx

l i
:_/ (f’(x)+2f(w))/ s(z—y)f(y) dydx
0

0

l l
+2/0 e—tm)dt/o S0 dy
+2/Olem [emf(x)—f-/xletf’(t)dt] /Ols(ac—y)f(y)dydx

= Ol [—f’(m)+2er / le‘tf’(ﬂdt] /0 lmdydw

l l
1 /0 et (1) dt /0 0w dy.

Replacing (Sf, f) and <Tv f,Sf) by their found expressions, we obtain the final
result.
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Proposition 2.4. An operator p(a.sS, oz?f) is positive if and only if for every
derivable function f such that f(0) = f(I) = 0 the quantity

2

A, T, 8, f) = (@ — [ [IF1?+ 2| | [ ef(t)dt

0
bR <a /Ol () /Ol s(z — ) f(#) dt>
+ |af* R (a /Ol [—f’(az) + 2e” /l e tf(t) dt}
s
></0 s(z —y)f(y) dydw)

tiaf (o [t a [ ST w)

is also positive. Here the symbol R designs the real part.

Summarizing, we get

Theorem 2.5. If S is an operator of the form (2.1) with a difference kernel
s(x,t) satisfying the conditions of Remark 2.2, the conclusions of Propositions

2.3 and 2.4, then (S,T) is a I'-contraction in the space L[0 0

We end this section by giving the method for obtaining a certain class of
operators commuting with 7. Since the interval [0,!] is finite, the space L[Q0 1 is
contained in Lo ;. Equipped with the Duhamel convolution product

(f.9) 5 f #g(a /fx—t t)dt:/oxf@)g(x_t)dt

as a multiplication, Lyy; becomes a Duhamel convolution algebra [7, Chap. 1,
Sect. 1.1]. If A is the Volterra integration operator in L[o ], then L[0 1 is invariant

for A and the restriction to L2 ] of A coincides with A (the Volterra integration

[0,
operator in L[0 l])' Let now S be any bounded linear operator acting in Ljg; and

commuting with A. According to [7, Chap. 1, Sect. 1.3, Theorem 1.1.2], Sis a
multiplier of the Duhamel convolution algebra Ly ;. That is,

S(fxg)=S(f)xg, f.g€ Lpy- (2.3)
Clearly, formula (2.3) remains true if f,g € L[0 e Suppose now that L[o ] is
invariant for S and let S be the restriction of S to L[0 - Since the operator T is

the Cayley transform (up to a sign) of A, it is not difficult to see that acting in
L[20 ;i the operators T and S commute.
éummarizing, we get

Proposition 2.6. Every multiplier of the Duhamel convolution algebra Ly
having L[Q0 g as an mvariant subspace generates by restriction to L[20 g an operator

commuting with T .
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Proposition 2.6 admits the following converse.

Proposition 2.7. Let S be a bounded linear operator on Loy having L[0 I
as invariant for S. Assume that

1. The operators S and A commute on the orthogonal of L[QOJ].

2. The restriction to L[ 0.1 of S has the form (2.1) with a difference kernel s(x,t)
satisfying the conditions of Remark 2.2 and the conclusion of Proposition 2.3.

Then the operator Sisa multiplier of the Duhamel convolution algebra Ly, .

Proof. Conditions 1 and 2 mean that the operators S and A commute in
the whole space Ly ;. To conclude, it suffices to apply [7, Chap. 1, Sect. 1.3,
Theorem 1.1.2]. O

3. Functional model

We begin this section by giving the explicit form of the elements of the model
space Hz. For this, consider once again the functions

g(x) =V2e7,  h(z) =2, z€]0,]]
which are linked with the operator T by formula (1.4). We have

{ g>
lll

2 N*N_
DL=1-T"T= (99— Dy = (3.1)

Similarly,

D% =1-TT*=(,h)h— Dz, = <|’|h}|1|> h. (3.2)

Note also that according to (1.1) and taking in account the equality | g|| = ||h] =
m, we get
z+1
[©7(2)](9) =€'*Th, zeD. (3.3)

Consider now the linear operator J : L[20,l] — H(Ds.) defined by
CeHz— J(C ZDT*T*” =D (12770, (34)

It is known (see proofs of Theorem 3.7. in [2] and Theorem 3.1. in [4]) that since
T € C.p, then J is an isometry and the model space Hz coincides with the range
of J. This leads to the following result.

Proposition 3.1. A function ]? belongs to the model space Hz if and only if
there exists a function f € L[QUJ} such that f(z) = (f, H(z))2 where z € D

and
V2 1

—el-
1—-72

_h_
“inll

vl

(z=0)

M

[H(2)](z) = [(I = 21) "' (W)(x) =
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Proof. Since the functional model space Hz coincides with the range of J,
then

H = ran(J) = {f: J(f): fe L[QOJ]} .
Consequently, if fv: J(f), then, using (3.2), we get

h h

DT*(I . ZT*)—l(f) _ <(I N Zf*)_l(f)ah>L2W — <f7 (I —Zf)_l(h,))[gw.

Let us now find (I —z7)~'(h). We have

h(z)  2ze®

(I =2T) 7' (h) = b1 & ha(2) = T

l
/ () dt, we[0,1]. (3.5)
So, we need to find the expression of the function
!
Hi(z) = / eth®dt, ze o, 1.

Using the relation Hf(x) = —e~"hy(x), it is not difficult to see that H; satisfies
the Cauchy problem

Substituting H; in (3.5), we get

hi(z) = [(I —20) 7 (h)](x) eT

This completes the proof of the proposition. O

Let (S,T) be a I-contraction in the space L[20 j as defined in Theorem 2.5.

The fundamental operator F' of (S, T) satisfies the equality S — ST = DzF Dz.
Since dim(Dz) = 1, there exists a complex constant A such that F(f) = Af for
all f € Dz. So,

S —S*T = DFF Dz = AD% = A(,9)g. (3.6)

Similarly, for the fundamental operator G of (S*,T *) there exists a complex
constant \. such that G(f) = Af for all f € Dz,. Hence,

S* — ST* = D7.GDg. = \D%, = A, h)h. (3.7)

Taking in account the equalities

T(g9)=e'n, T(h)=eg, |gl>=|nl*=1-¢"",
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we obtain that the constants A and A, satisfy the relations

S(g) —elS* (h) = A (1 - e_2l> g and S*(h)—e7'S(g) = A\ (1 - e_2l> h.

Finally,
_ ol * _ !
(1 —e2) (1 —e2)
Theorem 3.2. Let (S5, T) be a T'-contraction in the space L% , as defined

[0,7]
in Theorem 2.5. Then the corresponding functional model (S,T) is given in the
model space Hz by

T (O ) =B (M (L HOW) ).

(4 O ) =B (O +A0) (G HO) )

where P is the orthogonal projection of H(Df*) onto Hz, f € L[20 ]’ H(-) is the
function of complex argument, defined in Proposition 3.1, and A, is the complex
constant given by (3.8).

Proof. Using the identification of the element (f, H(z)) 2 ﬁ of H(Dz,) with
the element (f, H(z))r2 ® ﬁ of H(C) ® Dz, and according to the theory [3,10],
the functional model of the I'-contraction (S, T) is given in Hz by

T (1 HOe ) =T (GO o o)
F(oL e < H())p @ ))

(« @
(MZ ) i)
(e

h
M. ({
Drz) ||h|r>

Il
=R

=P

h
(FHO) e 5 )

(196 +M.56) (O o )

N HO) o +A*Mz<<f,H<->>L2>®h)

7] 7]

(
“Fusens

ﬁEu,H(»p@Ahh MU O] ﬂhﬁ)
(

h
=B (4 D) (L HOD) @ )
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Theorem 3.3. Let T be a cnu contraction in H with a spectrum concentrated
at a = 1 and one-dimensional defect spaces. Then there exists a unitary operator
U from H onto L[207l} such that for every operator S satisfying the conditions of

Theorem 2.5, the pair (U*SU,T) is a T'-contraction which is unitarily equivalent
to the pair (S, T) of Theorem 3.2.

Proof. Under the assumptions of the theorem, the operators 7" and T have
the same characteristic function and thus are unitarily equivalent. Therefore,
there exists a unitary operator U from H onto L[Q0 1 such that T'=U*TU. If S

is any operator in L[Q0 1 satisfying the conditions of Theorem 2.5, then (S, f) is a
I’-contraction. Consequently, we have the commuting relations
(U*SUT = (U*SU)(U*TU) = U*STU = U*TSU
= (U*TU)(U*SU) = T(U*SU),
and for every a € D,
p(aU*SU, o*T) = p(aU*SU, o*U*TU) = 2(I — |o|*U*T*UU*TU) — aU*SU
+@a’U*S*UU*TU — aU*S*U + a@®U*T*UU*SU
=U" {2([ —a|*T*T) — aS + @’ S*T — asS* + a@Qf*S} U
= U*p(aS,a*T)U > 0.

Thus, the pair (U*SU,T) is a [-contraction. By the construction, (U*SU,T)
is unitarily equivalent to the pair (S,7") which itself is unitarily equivalent to
the pair (S, T). We can hence conclude that (U*SU,T)) is unitarily equivalent to
(S,T). O

4. Some unitary equivalence results

Let now S be a fixed on the space L[20 1 bounded linear operator of the form
(2.1) with a difference kernel s(z,t) = s(x —t) satisfying the properties of Remark
2.2. We will suppose that the pair (S,7) is a pure I'-contraction on L[20 I

Theorem 4.1. If a I'-contraction (R, Q) defined on H is unitarily equivalent
to (S,T), then (R,Q) is pure. Moreover, there exist in H two non null vectors
q1 and qo such that:

I-QQ={(,q)q1 and I-QQ" = (-, q)q, (4.1)
(R=RQ)(q1),q1) =(S(g),9) — e (5" (h),9) (4.2)

and
(R* = RQ") (q2) , q2) = (S* () ,h) — 7S (9) , 1), (4.3)

where the functions g and h are given by the representations (1.4) and (1.5).
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Proof. Let (R, Q) be a I'-contraction on H and F} be its fundamental opera-
tor. As we know, the pair (R*, Q*) is also a I'-contraction on H with fundamental
operator G,. Suppose now that (R, Q) is unitarily equivalent to (S,T"). There
exists then a unitary operator W : H — L[onl] such that R = W*SW and Q =

W*TW. Since the contractions T and T* are in the class C.o, it follows imme-
diately that both operators QQ = W*fW, Qf = W*T*W are also in C.o and
I-contractions (R, @), (R*,Q*) are pure. We have also that (R*, Q) is unitarily
equivalent to (S*, T*) by the same unitary operator W. Setting ¢ = W*(g) and
g2 = W*(h), we get

[—Q"Q=W*W — WT*WW*TW = W* (I - TT) W
= W), 9W*(g) = (W (9)W*(g) = (-, q1)a
and similarly,
[—QQ" = W'W — WTWW*T*W = W* (I - TT) W
= W), MW*(h) = (-, W (h))W*(h) = (-, q2)q2.

Thus, relations (4.1) are satisfied. On the other hand, according to [4] (see the
proof of Proposition 4.2.), V' = W |p, defines a unitary operator from Dr onto
Dgz such that Fi. = V*FV, where F is the fundamental operator of the pair

(S,T). Since F is a homothety with ratio

\_ (5(9),9) —e7(5"(h),9)
(1—e20)?

)

then the operator Fy is also a homothety with the same ratio A. Consequently,
from the relations

R — R*Q = W*DpF,DrW = A\W*D2W = -, q1)q1,

and . )
lall = W@l = (Vi—e?) = (1-e?),

it follows that

(R(@).a1) - (Q (@) Bla)) = Mlar|[* = 519 g(i:li‘)g WIL)

=(S(9),9) — e (5" (h),9).

4
llq1]]

Thus, relation (4.2) is also satisfied. Reasoning similarly with unitarily equivalent
I-contractions (R*,Q*) and (S*,T*), one can establish relation (4.3). O

Theorem 4.1 admits the following partial converse.
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Theorem 4.2. Let (R,Q) be a pure I'-contraction on H and ©¢g(-) be the
characteristic function of Q). Suppose that there exists a unitary operator U from
Dq onto Dz and there exists a unitary operator V- from Dz, onto Dg« such that

Oq(2) = VOz(2)U for all z € D. Suppose also that
I-QQ" =,V (h)V(h)

and

(R = RQ)V (1), V () = {(8" (h) ,h) = (S (9) ) } .
Then (R, Q) and (S,T) are unitarily equivalent.
Proof. Note first that the condition
Oq(z) =VOz(2)U, =z€D,

implies that the characteristic functions ©¢(-) and ©4(-) coincide in the sense of

Remark 1.5 and thus the operators ) and T are unitarily equivalent. We already
know (see formulas (3.7) and (3.8)) that the fundamental operator Fi of the pair
(8*,T*) is the homothety with ratio

(S* (h) ,h) — (S (9) . 1)

A =
IA*

It follows from the relation
I-QQ" = (,V(h)V(h)

that dim (D%) = 1 and thus the fundamental operator G, of the pair (R*, Q*)

is a homothety with ratio 7.. According to [4] (see Proposition 4.3.), to prove
the theorem, it suffices to prove that 7, = A.. The relations

I=QQ" = (-, V(h)V (h)

and
R* — RQ* = D3« = n.(-, V (R))V (h)
imply that
(R*=RQ")V (h),V (h)) = n [V(R)II* = ne |[p]* .
Finally,
* * * o C_l
e — (R RQHLTF*(M’V(IZ» _ (s (h),h>Hh‘4 CAC R

The following result also can be regarded as a partial converse of Theorem 4.1.
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Theorem 4.3. Let (R,Q) be a pure I'-contraction on H and ©¢g(-) be the
characteristic function of Q. Suppose that there exists a unitary operator U from

Dq into Dz and there exists a unitary operator V' from Dz, into Do+ such that
Oq(2) = VOz(2)U for all z € D. Suppose also that

I-Q'Q=(,U"(9)U"(9)

and

(R—R'QU" (9).U" (9)) = {(S(9) .9) — 75" () 9}
Then (R, Q) and (S, T) are unitarily equivalent.

Proof. This is a direct application of the previous theorem to the pure I'-
contractions (R*, Q*) and (S*,T*) with taking in account Remark 1.11 and the
identity

Oq(2) = VOz(2)U & B¢+ (2) = U 0z, (2)V*, zcD. O

Notice that the proof of Theorem 4.2 reduces to show that in addition to
the given condition ©¢(z) = VOz#(2)U, the fundamental operator G of the pair
(R*, Q%) is the homothety with ratio

(8" (h),h) —e™(S(9) . 1)

A(S%) =
=) A

(4.4)

By the same way, in Theorem 4.3, it consists to show that the fundamental
operator G of the pair (R, Q) is the homothety with ratio

S(9),9) — e (S" (h),9)
lgl*

AS) = (4.5)

This leads to the following result.

Theorem 4.4. Let (R, Q) be a pure I'-contraction on H. Then the following
assertions are equivalent:

1. (R,Q) is unitarily equivalent to (S, T).
2. The characteristic functions of operators QQ and T coincide in the sense of

Remark 1.5, moreover, the fundamental operators of (R*,Q*) and (S*,T*)
are homothecies with the same ratio A\(S*) given by formula (4.4).

3. The characteristic functions of operators @@ and T coincide in the sense of
Remark 1.5, moreover, the fundamental operators of (R,Q) and (S,T') are
homothecies with the same ratio A(S) given by formula (4.5).

Finally, the main result of the present section is

Theorem 4.5. Let (R1,Q1) and (Rg,Q2) be pure I'-contractions on H and
H'. Assume that
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1. The operators Q1 and Q2 have the same spectrum concentrated at the point
a =1 and one-dimensional defect spaces.

2. The characteristic functions of operators ()1 and Q2 coincide in the sense
of Remark 1.5.

3. There exists in L[20 g @ linear operator S satisfying the conditions of Theo-
rem 2.5 such that the fundamental operators of (R, Q7) and (R%, Q%) are
homothecies with the same ratio A(S*) given by formula (4.4).

Then (R1,Q1) and (Ra,Q2) are pure and unitarily equivalent.

Proof. Conditions 1 and 2 imply that Q1 and Q5 are Cyy and unitarily equiv-
alent to the same 7. According to Theorem 2.5, the pair (S, TV) is a pure I'-
contraction. By the second point of Theorem 4.4 and condition 3, each of (R1,Q1)
and (Rg,Q2) is unitarily equivalent to (S, 7). This completes the proof. O

Remark 4.6. According to the third point of Theorem 4.4, condition 3. can
be replaced by the following:

3’.  There exists in L[20 g @ linear operator S satisfying the conditions of Theo-

rem 2.5 such that the fundamental operators of (Ry, Q1) and (Rg,Q2) are
homothecies with the same ratio A(S) given by formula (4.5).
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IIloao meBHOrO KJacy ['-ctruckannb
Berrabah Bendoukha

Metoto pobOTH € BUBUEHHS MEBHOTO KJIACY IIAp OMEPATOPIB, [T SKUX
CITEKTPAJILHIM HAOOPOM € cuMeTpu3oBanmii O6iamck. g Takux map Hamga-
Ho yMoBu I'-cTmCKaHHs, a (PYHKIIOHAJBHA MOJIEJbh MOOYI0BaHa B IIPOCTO-
pi KBaJipaTHIHO iHTerpoBHUX (MyHKIIINH. TaKkoK BCTAHOBJIEHO JIesIKi KpUTEpil
YHITapHOI €eKBiBaJEHTHOCTI.

KirrouoBi ciioBa: dpyHKIioHaIbHA MOAETDH, PYHIAMEHTAJILHAN OIIEpaTop,
YUCTEe CTUCKAHHS, CIIEKTPAJbHUN Habip, cuMeTpu30Banuii OiTucK
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