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On a Certain Class of Γ-Contractions
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The present paper is aimed to study a certain class of pairs of operators
having the symmetrized bidisk as a spectral set. For such pairs, the condi-
tions of Γ-contractivity are given and the functional model is constructed.
Some criteria of unitary equivalence are also established.
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1. Introduction and preliminaries

In the following,H is a separable complex Hilbert space, B(H) is the algebra of
all bounded linear operators acting in H with the identity I. If T is a contraction
in H, we denote by DT = (I − T ∗T )

1
2 , DT ∗ = (I − TT ∗)

1
2 the defect operators of

T and by DT = DT (H), DT ∗ = DT ∗(H) the corresponding defect subspaces.

Definition 1.1. A contraction T , defined on H, is called completely non
unitary (cnu in the following) if there is no non trivial reducing subspace in
which T induces a unitary operator. If the sequence T ∗n strongly converges to 0,
then, following [11, Chap. 2, Sect. 4], we say that T is a C.0 contraction.

The following results are well known.

Theorem 1.2 ([11, Chap. 1, Sect. 3]). For every contraction T in H, there
exists a unique orthogonal decomposition H = H0 ⊕ HT such that both H0 and
HT are invariant over T , in H0 the operator T induces a unitary operator and
in HT it induces a cnu contraction. Moreover,

HT = span {Tn (DT ∗) , T ∗m (DT ) , n,m = 0, 1, 2, . . .}.

Theorem 1.3 ([11, Chap. 2, Sect. 6]). If the contraction T is cnu and the
intersection of its spectrum with the unit circle has a null measure, then

lim
n→+∞

Tn (x) = lim
n→+∞

T ∗n (x) = 0 for all x ∈ H,

and thus the operator T is in the class C00 of all contractions satisfying the
condition

lim
n→+∞

Tnh = lim
n→+∞

T ∗nh = 0 for all h ∈ H.
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Remark 1.4. The restriction T1 of T to the reducing subspace HT is called
the cnu part of T .

If T is a contraction on H, then the analytical operator-valued function ΘT ,
defined from the open unit disc D of C into the set B(DT ,DT ∗) of all bounded
linear operators from DT into DT ∗ by

ΘT (z) =
[
−T + zDT ∗ (I − zT ∗)−1DT

]
, z ∈ D,

is called the characteristic function of T . It is well known [11, Chap. 6, Sect. 3]
that ΘT is a unitary invariant of T .

Remark 1.5. Following [11, Chap. 5, Sect. 2], we will suppose every function

Θ(z) = VΘT (z)U : E → E ′

to be equal to ΘT (z) for any separable Hilbert spaces E , E ′ and any unitary
operators U , V acting from E into DT and from DT ∗ into E ′ respectively.

If E is a separable space, design by O(D, E) the class of all E-valued analytic
functions on D and consider the following Hilbert space [4]:

H(E) =

{
f ∈ O(D, E) : f =

+∞∑
n=0

anz
n with an ∈ E and

+∞∑
n=0

‖an‖2 < +∞

}
.

The space H(E) is given by the reproducing kernel (1− 〈z, w〉)−1IE , and for E =
C, this is the usual Hardy space on the unit disk. Moreover [4], H(C) ⊗ E and
H(E) are isometrically isomorphic via the unitary operator UE(f ⊗x) = fx. This
allows us to identify the element f ⊗x of H(C)⊗E with the element fx of H(E).

Definition 1.6. Let T be a C.0 contraction in H. The space HT = H(DT ∗)	
MΘT

(H(DT )) is called the model space of T . The functional model of T is
the restriction of the operator PHT

(Mz ⊗ I) to this space, where PHT
is the

orthogonal projector of H(DT ∗) onto HT , Mz is the multiplication operator by
the independent variable z ∈ D.

A C.0 contraction T , its model space and functional model are linked by the
following fundamental result due to Sz-Nagy and Foias [11, Chap. 6, Sect. 2].

Theorem 1.7. Every C.0 contraction T in H is unitarily equivalent to its
functional model. In other words, there exists a unitary operator U from H onto
HT such that T = U−1TU .

In the following, we will suppose that the spectrum σ(T ) of T is concentrated
at the point a = 1 and dim(DT ) = 1. In this case, the operator T is invertible
and dim(DT ∗) = 1. Moreover, we have the representation [8]:

〈ΘT (z)(u), v〉 = exp

{∫ l

0

z + 1

z − 1
dt

}
= exp

{
l
z + 1

z − 1

}
, (1.1)
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where u and v are two vectors such that ‖u‖ = ‖v‖ ≺ 1, which satisfy

I − T ∗T = 〈·, u〉u and I − TT ∗ = 〈·, v〉v.

Now, in the space L2
[0, l] of square integrable functions consider the operator

T̃ f(x) = f(x)− 2ex
∫ l

x
e−tf(t) dt. (1.2)

In the literature (see, e.g., [8]), the operator T̃ is known as the triangular model
of the class of cnu contractions having one-dimensional defect subspaces and the
spectrum concentrated at a = 1. This finds its justification in the following facts:

(a) Direct calculations give us

T̃ ∗f(x) = f(x)− 2e−x
∫ x

0
etf(t)dt, (1.3)

I − T̃ ∗T̃ = 〈·, g〉g, I − T̃ T̃ ∗ = 〈·, h〉h, (1.4)

where
g (x) =

√
2e−x, h (x) =

√
2ex−l, 0 ≤ x ≤ l. (1.5)

This proves that T̃ is a contraction with one-dimensional defect subspaces.

(b) Consider in L2
[0,l] the Volterra integration operator

Ãf(x) = i

∫ l

x
f(t)dt.

It is known [6, Chap. 1, Sect. 8.2] that Ã is a completely non-self-adjoint
operator with spectrum concentrated at the point µ = 0 and one-dimensional
imaginary part. Moreover, one can easily prove that T̃ = − K(Ã), where

K(Ã) =
(
Ã− iI

)(
Ã+ iI

)−1
= I − 2i

(
Ã+ iI

)−1
(1.6)

is the Cayley transform of Ã. So, we have the spectral relation

σ(T̃ ) =

{
− µ− i
µ+ i

: µ ∈ σ
(
Ã
)

= {0}
}

= {1}

which proves that the spectrum of T̃ is concentrated at the point λ = 1.

(c) Using (1.6), one obtains

Ã = iI − 2i
(
T̃ + I

)−1
, (1.7)

Ã∗ = −iI + 2i
(
T̃ ∗ + I

)−1
. (1.8)

A−A∗

i
= 2 (I + T ∗)−1 (I − T ∗T ) (I + T )−1 . (1.9)
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A−A∗

i
= 2 (I + T )−1 (I − TT ∗) (I + T ∗)−1 . (1.10)

Using formulas (1.7), (1.8), one can prove that every subspace H0 reducing
T̃ reduces also Ã. Formulas (1.9) and (1.10) show that if T̃ induces a unitary
operator in H0, then Ã induces a self-adjoint operator in H0. Thus, we have
necessarily H0 = 0. In other words, the operator T̃ is cnu.

(d) According to [8] (see Theorem 2), every cnu contraction with one-dimen-
sional defect subspaces and spectrum concentrated at a = 1 is unitarily
equivalent to T̃ .

Definition 1.8. A pair (S, T ) of commuting bounded linear operators on H
is called a Γ-contraction if it has the symmetrized bidisc

Γ = {(λ1 + λ2, λ1λ2) : |λ1| ≤ 1, |λ2| ≤ 1} ⊂ C2

as a spectral set. That is (see [1]), the spectrum σ(S, T ) of the pair (S, T ) is
contained in Γ and

‖f(S, T )‖ ≤ max
(z1,z2)∈Γ

|f(z1, z2)|

for all functions f that are holomorphic on a neighbourhood of Γ.

It is known [3] that if (S, T ) is a Γ-contraction, then the operator T is a
contraction (‖T‖ ≤ 1). The study of Γ-contractions was introduced and carried
out very successfully over several papers by Agler and Young, (see [1] and the
references therein). From the paper of Agler and Young, we retain the useful
assertion contained in Theorem 1.5.

Theorem 1.9. Let (S, T ) be a pair of commuting operators in H. Then Γ is
a spectral set for (S, T ) if and only if ρ(αS, α2T ) ≥ 0 for all α ∈ D and

ρ(S, T ) = 2(I − T ∗T )− S + S∗T − S∗ + T ∗S.

The key concept in the study of Γ-contractions is the so-called fundamental
operator F which is the unique element of B(DT ) satisfying the fundamental
equation

S − S∗T = DTXDT .

It has a numerical radius w(F ) no greater than one and was firstly introduced
in [5]. If (S, T ) is a Γ-contraction, then so is the pair (S∗, T ∗) with fundamental
operator G, the unique solution of the operator equation S∗−ST ∗ = DT ∗Y DT ∗ .

Definition 1.10. Two pairs of operators (S, T ) and (S′, T ′), defined on the
Hilbert spaces H1 and H2 respectively, are said to be unitarily equivalent if there
exists a unitary operator U from H1 onto H2 such that S′ = U−1SU and T ′ =
U−1TU .

Remark 1.11. It is clear that the pairs (S, T ) and (S′, T ′) are unitarily equiv-
alent if and only if the pairs (S∗, T ∗) and (S′∗, T ′∗) are unitarily equivalent.
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Theorem 1.12 ([4]). Every pure Γ-contraction (S, T ) (that is, T is a C.0−
contraction) is unitarily equivalent to the pair (S,T), defined in the model space
HT as follows: the operator T is the functional model given in definition 1.6, S is
the restriction to HT of the operator PHT

((I ⊗G∗) + (Mz ⊗G)). The operators
Mz and PHT

are also taken from definition 1.6, G is the fundamental operator of
the Γ-contraction (S∗, T ∗).

The main purposes of the present paper are:

1. to characterize a certain class of linear bounded operators S with difference
kernel in the space L2

[0,l] and such that the pairs (S, T̃ ) are Γ-contractions;

2. to construct the corresponding functional models;

3. to give some criteria for unitary equivalence between (S, T̃ ) and a given Γ-
contraction (R,Q) defined on an arbitrary complex separable Hilbert space.

2. Conditions of Γ-contractivity

The aim of the present section is to characterize a certain class of bounded
linear operators S acting in L2

[0,l] and such that the corresponding pairs (S, T̃ )
are Γ-contractions.

Proposition 2.1 ([9]). Every bounded linear operator S on L2
[0,l] admits the

representation

Sf(x) =
d

dx

(∫ l

0
s(x, t)f(t) dt

)
, (2.1)

where the function s(x, t) is an element of L2
[0,l] for every fixed x in [0, l].

Remark 2.2. As mentioned in [9], the kernel s(x, t) can be chosen such that
s(l, t) = 0 for all t ∈ [0, l] and∫ l

0
|s(x+ h, t)− s(x, t)|2 dt ≤ ‖S‖2 |h| .

Moreover, the operator S and its adjoint S∗ are linked by the relation S∗ = USU
where, U is the involution Uf(x) = f(l − x).

In the following, we will suppose that the operator S has a difference kernel
s(x, t) = s(x− t) satisfying the conditions of Remark 2.2.

Proposition 2.3. A bounded linear operator S in L2
[0, l], having a difference

kernel s(x, t) = s(x − t), commutes with the operator T̃ if and only if for every
f ∈ L2

[0, l] and x ∈ [0, l],

s(x)

∫ l

O
e−tf(t) dt =

∫ l

x
ex−t

∫ l

0
s(t− y)f(y) dy dt−

∫ l

0
s(x− t)

∫ l

t
et−yf(y) dy dt.
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Proof. First calculations give us that for every f ∈ L2
[0,l],

[T̃ S − ST̃ ]f(x) = 2

∫ l

0
s(x− t)f(t) dt− 2

∫ l

x
ex−t

∫ l

0
s(t− y)f(y) dy dt

+ 2
d

dx

(∫ l

0
ets(x− t)

∫ l

t
e−zf(z) dz

)
dt.

Setting x− t = y, we get

d

dx

(∫ l

0
ets(x− t)

∫ l

t
e−zf(z) dz

)
dt =

d

dx

(∫ l

0
e−zf(z)

∫ z

0
ets(x− t) dt

)
dz

=
d

dx

(∫ l

0
e−zf(z)

∫ x

x−z
ex−ys(y) dy

)
dz

=

∫ l

0
e−zf(z)

d

dx

(∫ x

x−z
ex−ys(y) dy

)
dz.

On the other hand,

d

dx

(∫ x

x−z
ex−ys(y) dy

)
=

∫ x

x−z
ex−ys(y) dy + s(x)− ezs(x− z).

So,

d

dx

(∫ l

0
ets(x− t)

∫ l

t
e−zf(z) dz

)
dt =

∫ l

0
e−zf(z)

∫ x

x−z
ex−ys(y) dy dz

+

∫ l

0
e−zf(z)s(x) dz −

∫ l

0
f(z)s(x− z) dz.

Replacing, we get

[T̃ S − ST̃ ]f(x) = 2

∫ l

0
e−tf(t)s(x) dt− 2

∫ l

x
ex−t

∫ l

0
s(t− y)f(y) dy dt

+ 2

∫ l

0
e−zf(z)

∫ x

x−z
ex−ys(y) dy dz

= 2

∫ l

0
e−tf(t)s(x) dt− 2

∫ l

x
ex−t

∫ l

0
s(t− y)f(y) dy dt

+ 2

∫ l

0
e−zf(z)

∫ t

0
ets(x− t) dt dz

= 2

∫ l

0
e−tf(t)s(x) dt− 2

∫ l

x
ex−t

∫ l

0
s(t− y)f(y) dy dt

+ 2

∫ l

0
ets(x− t)

∫ l

t
e−yf(y) dy dt.

This leads us to the desired result.
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We will now seek the conditions of positivity for the operator ρ(αS, α2T̃ ),
|α| < 1. For the reasons of density, it suffices to find these conditions of positivity
for derivable functions f such that f(0) = f(l) = 0. We have

〈ρ(αS, α2T̃ )f, f〉 = 2(1− |α|4) ‖f‖2 + 2 |α|4 〈(I − T̃ ∗T̃ )f, f〉

− 2< (α〈Sf, f〉) + 2 |α|2<
(
α〈T̃ f, Sf〉

)
.

Integrating by parts, we get

〈Sf, f〉 = −
∫ l

0
f ′(x)

∫ l

0
s(x− t)f(t) dt dx. (2.2)

On the other hand,

〈T̃ f, Sf〉 =

∫ l

0

[
f(x)− 2ex

∫ l

x
e−tf(t) dt

]
d

dx

(∫ l

0
s(x− y)f(y) dy

)
dx

=

∫ l

0
f(x)

d

dx

(∫ l

0
s(x− y)f(y) dy

)
dx

− 2

∫ l

0
ex
∫ l

x
e−tf(t) dt

d

dx

(∫ l

0
s(x− y)f(y) dy

)
dx

= −
∫ l

0
f ′(x)

∫ l

0
s(x− y)f(y) dy dx+ 2

∫ l

0
e−tf(t) dt

∫ l

0
s(−y)f(y) dy

+ 2

∫ l

0

[
ex
∫ l

x
e−tf(t)dt− f(x)

] ∫ l

0
s(x− y)f(y) dy dx

= −
∫ l

0

(
f ′(x) + 2f(x)

) ∫ l

0
s(x− y)f(y) dy dx

+ 2

∫ l

0
e−tf(t) dt

∫ l

0
s(−y)f(y) dy

+ 2

∫ l

0
ex
∫ l

x
e−tf(t)dt

∫ l

0
s(x− y)f(y) dy dx

= −
∫ l

0

(
f ′(x) + 2f(x)

) ∫ l

0
s(x− y)f(y) dy dx

+ 2

∫ l

0
e−tf(t) dt

∫ l

0
s(−y)f(y) dy

+ 2

∫ l

0
ex
[
e−xf(x) +

∫ l

x
e−tf ′(t) dt

] ∫ l

0
s(x− y)f(y) dy dx

=

∫ l

0

[
−f ′(x) + 2ex

∫ l

x
e−tf ′(t) dt

] ∫ l

0
s(x− y)f(y) dy dx

+ 2

∫ l

0
e−tf(t) dt

∫ l

0
s(−y)f(y) dy.

Replacing 〈Sf, f〉 and 〈T̃ f, Sf〉 by their found expressions, we obtain the final
result.
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Proposition 2.4. An operator ρ(αS, α2T̃ ) is positive if and only if for every
derivable function f such that f(0) = f(l) = 0 the quantity

A(α, T̃ , S, f) = (1− |α|4) ‖f‖2 + 2 |α|4
∣∣∣∣∫ l

0
e−tf(t) dt

∣∣∣∣2
+ <

(
α

∫ l

0
f ′(x)

∫ l

0
s(x− t)f(t) dt

)
+ |α|2<

(
α

∫ l

0

[
−f ′(x) + 2ex

∫ l

x
e−tf(t) dt

]
×
∫ l

0
s(x− y)f(y) dy dx

)
+ |α|2<

(
α

∫ l

0
e−tf(t) dt

∫ l

0
s(−y)f(y) dy

)
is also positive. Here the symbol < designs the real part.

Summarizing, we get

Theorem 2.5. If S is an operator of the form (2.1) with a difference kernel
s(x, t) satisfying the conditions of Remark 2.2, the conclusions of Propositions
2.3 and 2.4, then (S, T̃ ) is a Γ-contraction in the space L2

[0,l].

We end this section by giving the method for obtaining a certain class of
operators commuting with T̃ . Since the interval [0, l] is finite, the space L2

[0,l] is
contained in L[0,l]. Equipped with the Duhamel convolution product

(f, g) 7→ f ∗ g(x) =

∫ x

0
f(x− t)g(t) dt =

∫ x

0
f(t)g(x− t) dt

as a multiplication, L[0,l] becomes a Duhamel convolution algebra [7, Chap. 1,

Sect. 1.1]. If Â is the Volterra integration operator in L[0,l], then L2
[0,l] is invariant

for Â and the restriction to L2
[0,l] of Â coincides with Ã (the Volterra integration

operator in L2
[0,l]). Let now Ŝ be any bounded linear operator acting in L[0,l] and

commuting with Â. According to [7, Chap. 1, Sect. 1.3, Theorem 1.1.2], Ŝ is a
multiplier of the Duhamel convolution algebra L[0,l]. That is,

S(f ∗ g) = S(f) ∗ g, f, g ∈ L[0,l]. (2.3)

Clearly, formula (2.3) remains true if f, g ∈ L2
[0,l]. Suppose now that L2

[0,l] is

invariant for Ŝ and let S be the restriction of Ŝ to L2
[0,l]. Since the operator T̃ is

the Cayley transform (up to a sign) of Ã, it is not difficult to see that acting in
L2

[0,l] the operators T̃ and S commute.
Summarizing, we get

Proposition 2.6. Every multiplier of the Duhamel convolution algebra L[0,l]

having L2
[0,l] as an invariant subspace generates by restriction to L2

[0,l] an operator

commuting with T̃ .
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Proposition 2.6 admits the following converse.

Proposition 2.7. Let Ŝ be a bounded linear operator on L[0,l] having L2
[0,l]

as invariant for Ŝ. Assume that

1. The operators Ŝ and Â commute on the orthogonal of L2
[0,l].

2. The restriction to L2
[0,l] of Ŝ has the form (2.1) with a difference kernel s(x, t)

satisfying the conditions of Remark 2.2 and the conclusion of Proposition 2.3.

Then the operator Ŝ is a multiplier of the Duhamel convolution algebra L[0, l].

Proof. Conditions 1 and 2 mean that the operators Ŝ and Â commute in
the whole space L[0, l]. To conclude, it suffices to apply [7, Chap. 1, Sect. 1.3,
Theorem 1.1.2].

3. Functional model

We begin this section by giving the explicit form of the elements of the model
space H

T̃
. For this, consider once again the functions

g(x) =
√

2e−x, h(x) =
√

2ex−l, x ∈ [0, l]

which are linked with the operator T̃ by formula (1.4). We have

D2
T̃

= I − T̃ ∗T̃ = 〈·, g〉g → D
T̃

=
〈·, g〉
‖g‖

g. (3.1)

Similarly,

D2
T̃ ∗ = I − T̃ T̃ ∗ = 〈·, h〉h→ D

T̃ ∗ =
〈·, h〉
‖h‖

h. (3.2)

Note also that according to (1.1) and taking in account the equality ‖g‖ = ‖h‖ =√
1− e−2l, we get

[Θ
T̂

(z)](g) = el
z+1
z−1h, z ∈ D. (3.3)

Consider now the linear operator J : L2
[0,l] → H(D

T̃ ∗) defined by

ζ ∈ H
T̃
7→ J(ζ)(z) =

+∞∑
n=0

D
T̃ ∗ T̃

∗n(ζ)zn = D
T̃ ∗(I − zT̃ ∗)−1(ζ). (3.4)

It is known (see proofs of Theorem 3.7. in [2] and Theorem 3.1. in [4]) that since
T̃ ∈ C.0, then J is an isometry and the model space H

T̃
coincides with the range

of J . This leads to the following result.

Proposition 3.1. A function f̃ belongs to the model space H
T̃

if and only if

there exists a function f ∈ L2
[0,l] such that f̃(z) = 〈f, H(z)〉L2 . h

‖h‖ , where z ∈ D
and

[H(z)](x) = [(I − zT̃ )−1(h)](x) =

√
2

1− z
e

1+z
1−z

(x−l).
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Proof. Since the functional model space H
T̃

coincides with the range of J ,
then

H
T̃

= ran(J) =
{
f̃ = J(f) : f ∈ L2

[0,l]

}
.

Consequently, if f̃ = J(f), then, using (3.2), we get

D
T̃ ∗(I − zT̃ ∗)−1(f) = 〈(I − zT̃ ∗)−1(f), h〉L2

h

‖h‖
= 〈f, (I − zT̃ )−1(h)〉L2

h

‖h‖
.

Let us now find (I − zT̃ )−1(h). We have

(I − zT̃ )−1(h) = h1 ⇔ h1(x) =
h(x)

1− z
− 2zex

1− z

∫ l

x
e−th1(t) dt, x ∈ [0, l] . (3.5)

So, we need to find the expression of the function

H1(x) =

∫ l

x
e−th1(t)dt, x ∈ [0, l] .

Using the relation H ′1(x) = −e−xh1(x), it is not difficult to see that H1 satisfies
the Cauchy problem

H ′1(x) =
2z

1− z
H1(x)−

√
2e−l

1− z
, H1(l) = 0,

which admits a unique solution

H1(x) =

√
2e−l

1− z

{
e

2z
1−z

(x−l) − 1
}
.

Substituting H1 in (3.5), we get

h1(x) = [(I − zT̃ )−1(h)](x) =

√
2

1− z
e

1+z
1−z

(x−l).

This completes the proof of the proposition.

Let (S, T̃ ) be a Γ-contraction in the space L2
[0,l] as defined in Theorem 2.5.

The fundamental operator F of (S, T̃ ) satisfies the equality S − S∗T̃ = D
T̃
FD

T̃
.

Since dim(D
T̃

) = 1, there exists a complex constant λ such that F (f) = λf for
all f ∈ D

T̃
. So,

S − S∗T̃ = D
T̃
FD

T̃
= λD2

T̃
= λ〈·, g〉g. (3.6)

Similarly, for the fundamental operator G of (S∗, T̃ ∗) there exists a complex
constant λ∗ such that G(f) = λ∗f for all f ∈ D

T̃ ∗ . Hence,

S∗ − ST̃ ∗ = D
T̃ ∗GDT̃ ∗ = λ∗D

2
T̃ ∗ = λ∗〈·, h〉h. (3.7)

Taking in account the equalities

T̃ (g) = e−lh, T̃ ∗ (h) = e−lg, ‖g‖2 = ‖h‖2 = 1− e−2l,
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we obtain that the constants λ and λ∗ satisfy the relations

S (g)− e−lS∗ (h) = λ
(

1− e−2l
)
g and S∗ (h)− e−lS (g) = λ∗

(
1− e−2l

)
h.

Finally,

λ =
〈S (g) , g〉 − e−l〈S∗ (h) , g〉

(1− e−2l)
2 and λ∗ =

〈S∗ (h) , h〉 − e−l〈S (g) , h〉
(1− e−2l)

2 . (3.8)

Theorem 3.2. Let (S, T̃ ) be a Γ-contraction in the space L2
[0,l] as defined

in Theorem 2.5. Then the corresponding functional model (S, T̃) is given in the
model space H

T̃
by

T̃
(
〈f,H(·)〉L2

h

‖h‖

)
= P̃

(
Mz (〈f,H(·)〉L2)

h

‖h‖

)
,

S̃
(
〈f,H(·)〉L2

h

‖h‖

)
= P̃

((
λ∗ + λ∗Mz

)
(〈f,H(·)〉L2)

h

‖h‖

)
,

where P̃ is the orthogonal projection of H
(
D

T̃ ∗

)
onto H

T̃
, f ∈ L2

[0,l], H(·) is the
function of complex argument, defined in Proposition 3.1, and λ∗ is the complex
constant given by (3.8).

Proof. Using the identification of the element 〈f,H(z)〉L2
h
‖h‖ of H

(
D

T̃ ∗

)
with

the element 〈f,H(z)〉L2 ⊗ h
‖h‖ of H(C)⊗D

T̃ ∗ and according to the theory [3,10],

the functional model of the Γ-contraction (S, T̃ ) is given in H
T̃

by

T̃
(
〈f,H(·)〉L2

h

‖h‖

)
= T̃

(
〈f,H(·)〉L2 ⊗

h

‖h‖

)
= P̃

(
(Mz ⊗ I)

(
〈f,H(·)〉L2 ⊗

h

‖h‖

))
= P̃

(
Mz (〈f,H(·)〉L2)⊗ h

‖h‖

)
= P̃

(
Mz(〈f,H(·)〉L2)

h

‖h‖

)
and

S̃
(
〈f,H(·)〉L2 .

h

‖h‖

)
= S̃

(
〈f,H(·)〉L2 ⊗

h

‖h‖

)
= P̃

(
(I ⊗G∗ +Mz ⊗G)

(
〈f,H(·)〉L2 ⊗

h

‖h‖

))
= P̃

(
〈f,H(·)〉L2 ⊗

λ∗h

‖h‖
+Mz(〈f,H(·)〉L2)⊗ λ∗h

‖h‖

)
= P̃

(
λ∗〈f,H(·)〉L2 ⊗

h

‖h‖
+ λ∗Mz(〈f,H(·)〉L2)⊗ h

‖h‖

)
= P̃

(
( λ∗ + λ∗Mz) (〈f,H(·)〉L2)⊗ h

‖h‖

)
.
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Theorem 3.3. Let T be a cnu contraction in H with a spectrum concentrated
at a = 1 and one-dimensional defect spaces. Then there exists a unitary operator
U from H onto L2

[0,l] such that for every operator S satisfying the conditions of

Theorem 2.5, the pair (U∗SU, T ) is a Γ-contraction which is unitarily equivalent
to the pair (S̃, T̃) of Theorem 3.2.

Proof. Under the assumptions of the theorem, the operators T and T̃ have
the same characteristic function and thus are unitarily equivalent. Therefore,
there exists a unitary operator U from H onto L2

[0,l] such that T = U∗T̃U . If S

is any operator in L2
[0,l] satisfying the conditions of Theorem 2.5, then (S, T̃ ) is a

Γ-contraction. Consequently, we have the commuting relations

(U∗SU)T = (U∗SU)(U∗T̃U) = U∗ST̃U = U∗T̃ SU

= (U∗T̃U)(U∗SU) = T (U∗SU),

and for every α ∈ D,

ρ(αU∗SU, α2T ) = ρ(αU∗SU, α2U∗T̃U) = 2(I − |α|4U∗T̃ ∗UU∗T̃U)− αU∗SU

+ αα2U∗S∗UU∗T̃U − αU∗S∗U + αα2U∗T̃ ∗UU∗SU

= U∗
{

2(I − |α|4T̃ ∗T̃ )− αS + αα2S∗T̃ − αS∗ + αα2T̃ ∗S
}
U

= U∗ρ(αS, α2T̃ )U ≥ 0.

Thus, the pair (U∗SU, T ) is a Γ-contraction. By the construction, (U∗SU, T )
is unitarily equivalent to the pair (S, T̃ ) which itself is unitarily equivalent to
the pair (S, T̃). We can hence conclude that (U∗SU, T ) is unitarily equivalent to
(S̃, T̃).

4. Some unitary equivalence results

Let now S be a fixed on the space L2
[0,l] bounded linear operator of the form

(2.1) with a difference kernel s(x, t) = s(x−t) satisfying the properties of Remark
2.2. We will suppose that the pair (S, T̃ ) is a pure Γ-contraction on L2

[0,l].

Theorem 4.1. If a Γ-contraction (R,Q) defined on H is unitarily equivalent
to (S, T̃ ), then (R,Q) is pure. Moreover, there exist in H two non null vectors
q1 and q2 such that:

I −Q∗Q = 〈·, q1〉q1 and I −QQ∗ = 〈·, q2〉q2, (4.1)

〈(R−R∗Q) (q1) , q1〉 = 〈S (g) , g〉 − e−l〈S∗ (h) , g〉 (4.2)

and

〈(R∗ −RQ∗) (q2) , q2〉 = 〈S∗ (h) , h〉 − e−l〈S (g) , h〉, (4.3)

where the functions g and h are given by the representations (1.4) and (1.5).
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Proof. Let (R,Q) be a Γ-contraction on H and F∗ be its fundamental opera-
tor. As we know, the pair (R∗, Q∗) is also a Γ-contraction on H with fundamental
operator G∗. Suppose now that (R,Q) is unitarily equivalent to (S, T̃ ). There
exists then a unitary operator W : H → L2

[0,l] such that R = W ∗SW and Q =

W ∗T̃W . Since the contractions T̃ and T̃ ∗ are in the class C.0, it follows imme-
diately that both operators Q = W ∗T̃W , Q∗ = W ∗T̃ ∗W are also in C.0 and
Γ-contractions (R,Q), (R∗, Q∗) are pure. We have also that (R∗, Q∗) is unitarily
equivalent to (S∗, T̃ ∗) by the same unitary operator W . Setting q1 = W ∗(g) and
q2 = W ∗(h), we get

I −Q∗Q = W ∗W −W ∗T̃ ∗WW ∗T̃W = W ∗
(
I − T̃ ∗T̃

)
W

= 〈W (·), g〉W ∗(g) = 〈·,W ∗(g)〉W ∗(g) = 〈·, q1〉q1

and similarly,

I −QQ∗ = W ∗W −W ∗T̃WW ∗T̃ ∗W = W ∗
(
I − T̃ T̃ ∗

)
W

= 〈W (·), h〉W ∗(h) = 〈·,W ∗(h)〉W ∗(h) = 〈·, q2〉q2.

Thus, relations (4.1) are satisfied. On the other hand, according to [4] (see the
proof of Proposition 4.2.), V = W |DT

defines a unitary operator from DT onto
D

T̃
such that F∗ = V ∗FV , where F is the fundamental operator of the pair

(S, T̃ ). Since F is a homothety with ratio

λ =
〈S (g) , g〉 − e−l〈S∗ (h) , g〉

(1− e−2l)
2 ,

then the operator F∗ is also a homothety with the same ratio λ. Consequently,
from the relations

R−R∗Q = W ∗DTF∗DTW = λW ∗D2
TW = λ〈·, q1〉q1,

and

‖q1‖4 = ‖W ∗(g)‖4 =
(√

1− e−2l
)4

=
(

1− e−2l
)2
,

it follows that

〈R (q1) , q1〉 − 〈Q (q1) , R (q1)〉 = λ ‖q1‖4 =
〈S (g) , g〉 − e−l〈S∗ (h) , g〉

(1− e−2l)
2 ‖q1‖4

= 〈S (g) , g〉 − e−l〈S∗ (h) , g〉.

Thus, relation (4.2) is also satisfied. Reasoning similarly with unitarily equivalent
Γ-contractions (R∗, Q∗) and (S∗, T̃ ∗), one can establish relation (4.3).

Theorem 4.1 admits the following partial converse.
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Theorem 4.2. Let (R,Q) be a pure Γ-contraction on H and ΘQ(·) be the
characteristic function of Q. Suppose that there exists a unitary operator U from
DQ onto D

T̃
and there exists a unitary operator V from D

T̃ ∗ onto DQ∗ such that
ΘQ(z) = VΘ

T̃
(z)U for all z ∈ D. Suppose also that

I −QQ∗ = 〈·, V (h)〉V (h)

and

〈(R∗ −RQ∗)V (h) , V (h)〉 =
{
〈S∗ (h) , h〉 − e−l〈S (g) , h〉

}
.

Then (R,Q) and (S, T̃ ) are unitarily equivalent.

Proof. Note first that the condition

ΘQ(z) = VΘ
T̃

(z)U, z ∈ D,

implies that the characteristic functions ΘQ(·) and Θ
T̃

(·) coincide in the sense of

Remark 1.5 and thus the operators Q and T̃ are unitarily equivalent. We already
know (see formulas (3.7) and (3.8)) that the fundamental operator F∗ of the pair
(S∗, T̃ ∗) is the homothety with ratio

λ∗ =
〈S∗ (h) , h〉 − e−l〈S (g) , h〉

‖h‖4
.

It follows from the relation

I −QQ∗ = 〈·, V (h)〉V (h)

that dim
(
D2

Q∗

)
= 1 and thus the fundamental operator G∗ of the pair (R∗, Q∗)

is a homothety with ratio η∗. According to [4] (see Proposition 4.3.), to prove
the theorem, it suffices to prove that η∗ = λ∗. The relations

I −QQ∗ = 〈·, V (h)〉V (h)

and

R∗ −RQ∗ = η∗D
2
Q∗ = η∗〈·, V (h)〉V (h)

imply that

〈(R∗ −RQ∗)V (h) , V (h)〉 = η∗ ‖V (h)‖4 = η∗ ‖h‖4 .

Finally,

η∗ =
〈(R∗ −RQ∗)V (h) , V (h)〉

‖h‖4
=
〈S∗ (h) , h〉 − e−l〈S (g) , h〉

‖h‖4
= λ∗.

The following result also can be regarded as a partial converse of Theorem 4.1.
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Theorem 4.3. Let (R,Q) be a pure Γ-contraction on H and ΘQ(·) be the
characteristic function of Q. Suppose that there exists a unitary operator U from
DQ into D

T̃
and there exists a unitary operator V from D

T̃ ∗ into DQ∗ such that
ΘQ(z) = VΘ

T̃
(z)U for all z ∈ D. Suppose also that

I −Q∗Q = 〈·, U∗ (g)〉U∗ (g)

and

〈(R−R∗Q)U∗ (g) , U∗ (g)〉 =
{
〈S (g) , g〉 − e−l〈S∗ (h) , g〈

}
.

Then (R,Q) and (S, T̃ ) are unitarily equivalent.

Proof. This is a direct application of the previous theorem to the pure Γ-
contractions (R∗, Q∗) and (S∗, T̃ ∗) with taking in account Remark 1.11 and the
identity

ΘQ(z) = VΘ
T̃

(z)U ⇔ ΘQ∗(z) = U∗Θ
T̃ ∗(z)V ∗, z ∈ D.

Notice that the proof of Theorem 4.2 reduces to show that in addition to
the given condition ΘQ(z) = VΘ

T̃
(z)U , the fundamental operator G∗ of the pair

(R∗, Q∗) is the homothety with ratio

λ∗(S
∗) =

〈S∗ (h) , h〉 − e−l〈S (g) , h〉
‖h‖4

. (4.4)

By the same way, in Theorem 4.3, it consists to show that the fundamental
operator G of the pair (R,Q) is the homothety with ratio

λ(S) =
〈S (g) , g〉 − e−l〈S∗ (h) , g〉

‖g‖4
. (4.5)

This leads to the following result.

Theorem 4.4. Let (R,Q) be a pure Γ-contraction on H. Then the following
assertions are equivalent:

1. (R,Q) is unitarily equivalent to (S, T̃ ).

2. The characteristic functions of operators Q and T̃ coincide in the sense of
Remark 1.5, moreover, the fundamental operators of (R∗, Q∗) and (S∗, T̃ ∗)
are homothecies with the same ratio λ(S∗) given by formula (4.4).

3. The characteristic functions of operators Q and T̃ coincide in the sense of
Remark 1.5, moreover, the fundamental operators of (R,Q) and (S, T̃ ) are
homothecies with the same ratio λ(S) given by formula (4.5).

Finally, the main result of the present section is

Theorem 4.5. Let (R1, Q1) and (R2, Q2) be pure Γ-contractions on H and
H′. Assume that
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1. The operators Q1 and Q2 have the same spectrum concentrated at the point
a = 1 and one-dimensional defect spaces.

2. The characteristic functions of operators Q1 and Q2 coincide in the sense
of Remark 1.5.

3. There exists in L2
[0,l] a linear operator S satisfying the conditions of Theo-

rem 2.5 such that the fundamental operators of (R∗1, Q
∗
1) and (R∗2, Q

∗
2) are

homothecies with the same ratio λ(S∗) given by formula (4.4).

Then (R1, Q1) and (R2, Q2) are pure and unitarily equivalent.

Proof. Conditions 1 and 2 imply that Q1 and Q2 are C00 and unitarily equiv-
alent to the same T̃ . According to Theorem 2.5, the pair (S, T̃ ) is a pure Γ-
contraction. By the second point of Theorem 4.4 and condition 3, each of (R1, Q1)
and (R2, Q2) is unitarily equivalent to (S, T̃ ). This completes the proof.

Remark 4.6. According to the third point of Theorem 4.4, condition 3. can
be replaced by the following:

3′. There exists in L2
[0,l] a linear operator S satisfying the conditions of Theo-

rem 2.5 such that the fundamental operators of (R1, Q1) and (R2, Q2) are
homothecies with the same ratio λ(S) given by formula (4.5).

Acknowledgment. The author would like to thank the referee for her/his
valuable remarks and suggestions aimed to improve the manuscript.

References

[1] J. Agler and N.J. Young, Operators having the symmetrized bidisc as a spectral set,
Proc. Edinb. Math. Soc. 43 (2000), 195–210.

[2] T. Bhattacharyya, J. Eschmeier, and J. Sarkar, Characteristic function of a pure
commuting contracting tuple, Integr. Eqn. Oper. Theory, 53 (2005), 23–32.

[3] T. Bhattacharyya, S. Lata, and H. Sau, Admissible fundamental operators, J. Math.
Anal. Appl. 425 (2015), No. 2, 983–1003.

[4] T. Bhattacharyya and S. Pal, A functional model for pure Γ-contractions, J. Oper-
ator Theory 71 (2014), No. 2, 327–339.

[5] T. Bhattachryya, S. Pal, and S. Shyam Roy, Dilations of Γ-contractions by solving
operator equations, Adv. Math. 230 (2012), 577–606.

[6] M.S. Brodskii, Triangular and Jordan Representations of Linear Operators, Trans-
lations of Mathematical Monographs, 32, Amer. Math. Soc., Providence, R.I., 1971.

[7] I.H. Dimovski, Convolutional Calculus, Kluwer, Dordrecht, 1990.

[8] V.T. Polyatskii, On the reduction of quasiunitary operators to triangular form, Dokl.
Acad. Nauk SSSR, 113 (1957), No. 4, 756–759.

[9] L.A. Sahnovich, Equations with difference kernels on a finite interval, Russian Math.
Surveys, 35 (1980), No. 4, 81–152.



162 Berrabah Bendoukha

[10] J. Sarkar, Operator theory on the symmetrized bidisc, Indiana Univ. Math. J. 64
(2015), 847–873.

[11] B.Sz. Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North
Holland, Amsterdam, 1970.

Received March 27, 2020, revised July 16, 2020.

Berrabah Bendoukha,

University of Mostaganem, Route Nationale 11, Mostaganem, 27000, Algeria,

E-mail: bbendoukha@gmail.com

Щодо певного класу Γ-стискань
Berrabah Bendoukha

Метою роботи є вивчення певного класу пар операторiв, для яких
спектральним набором є симетризований бiдиск. Для таких пар нада-
но умови Γ-стискання, а функцiональна модель побудована в просто-
рi квадратично iнтегровних функцiй. Також встановлено деякi критерiї
унiтарної еквiвалентностi.

Ключовi слова: функцiональна модель, фундаментальний оператор,
чисте стискання, спектральний набiр, симетризований бiдиск
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