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In the paper, the general decay of energy solutions for a type III ther-
moelastic coupled system with distributed delay is studied. The coupling is
via the acoustic boundary conditions. Our result is obtained under a class of
generality of the relaxation function g : R+ → R+ satisfying the inequality
g′(t) ≤ −ξ(t)H(t) for all t ≥ 0, where ξ and H are functions satisfying some
specific properties. This work extends previous works with thermoelasticity
of type III and improves earlier results in the literature.
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1. Introduction

Let Ω be a bounded domain of Rn, n ≥ 1, with a smooth boundary Γ = Γ0 ∪
Γ1 such that Γ0 and Γ1 are closed and disjoint and ν = (ν1, . . . , νn) represents
the unit outward normal to Γ. In this setting, we look into u, θ : Ω × R+ → R
and z : Γ1 × R+ → R solutions for the type III thermoelastic coupled system

utt −Au+

∫ t

0
g(t− s)Au(s) ds+ div(σθ) = 0 in Ω× R+ (1.1)

θtt − Bθ − Bθt +

∫ +∞

0
µ(s)θt(t− s) ds

+ (σ∇)utt = 0 in Ω× R+ (1.2)

u = 0 on Γ0 × R+ (1.3)

∂u

∂νA
−
∫ t

0
g(t− s) ∂u

∂νA
(s) ds+ F (ut) = hzt on Γ1 × R+ (1.4)

ut + fzt +mz = 0 on Γ1 × R+ (1.5)
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θ = 0 on Γ× R+ (1.6)

θt(x,−s) = φ(x, s) for x ∈ Ω, s ∈ R+ (1.7)

u(0) = u0, ut(0) = u1, θ(0) = θ0, θt(0) = θ1 in Ω (1.8)

z(0) = z0 in Γ1, (1.9)

where

Au = div(A∇u), A =
(
aij(x)

)
1≤i,j≤n

, B = div(B∇u), B =
(
bij(x)

)
1≤i,j≤n

and
∂u

∂νA
=

n∑
i,j=1

aij(x)
∂u

∂xj
νi.

Here, the function u = u(x, t) describes the velocity, θ = θ(x, t) is the tem-
perature difference and the normal displacement on a part of the boundary is
represented by z = z(x, t). The first integral term is the finite memory responsi-
ble for the viscoelastic damping, where g is called the relaxation function. The
second integral term represents the distributed delay. The function vector σ is
assumed to be C1(Ω,Rn), and u0, u1 : Ω→ R, z0 : Γ1 → R, µ, F and φ are given
functions. The functions h, f,m : Γ1 → R+ are essentially bounded such that
h(x) ≥ h0, f(x) ≥ f0 and m(x) ≥ m0 for a.e. x ∈ Γ1.

The acoustic boundary layer can be used to describe a vibrating impermeable
wall. It is well known that the fluid particles follow the wall motion. Moreover,
the acoustic pressure is combined with the displacement at the actual position in
order to characterize the impenetrability condition, which is obtained from the
continuity of the velocity on the boundary. To the best of our knowledge, the
classical acoustic conditions of the wave equation were introduced by Morse and
Ingard [29] and developed by Beale [5] and Beale–Rosencrans [6]. In [6], it is
shown that each point on the surface Γ1 reacts to the excess pressure of the wave
like a resistive harmonic oscillator. For survey works concerning well-posedness
and asymptotic behavior of smooth, as well as weak solutions of wave equations
with acoustic boundary conditions, we recall to see [4, 7, 17, 36] and references
therein.

Green and Naghdi [18] postulated a new concept in thermoelasticity theories
and proposed three models. They rated the heat conduction of type III as that of
dissipative nature, where the heat flux is a combination of type I and type II as
limiting cases. Many works were devoted to studying the existence, uniqueness
and asymptotic stability of solutions of thermoelastic systems, see [26,31,39] for
examples. Although the majority examples involve only one space dimension,
in [15,38,41], the authors extended the result to higher space dimensions.

The first work bringing an analysis involving Dirichlet, feedback and mixed
boundary conditions system was published by Miranda and Medeiros [28]. More
precisely, Braz e Silva et al. [10] generalized the system given in [28]. They
studied the existence and uniqueness of solutions and asymptotic stabilization of
the energy associated with the nonlinear coupled system of thermoelastic type
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with acoustic boundary conditions:

utt − α∆u+ λ|u|pu+ (a.∇)θ = 0 in Ω× R+ (1.10)

θt − β
(∫

Ω
θ dx

)
∆θ + (a.∇)ut = 0 in Ω× R+ (1.11)

ut + hztt + fzt +mz = 0 on Γ0 × R+ (1.12)

∂u

∂ν
− zt + η(·, ut) = 0 on Γ1 × R+ (1.13)

u = 0 on Γ0 × R+ (1.14)

θ = 0 on Γ× R+, (1.15)

where α and β are given functions, λ and p are positive real constants, a is a
constant known vector of Rn and the feedback function η(., ut) models a frictional
damping on Γ1. In various works, the results on the existence and decay rate of
solutions were obtained by many authors in the presence of internal or boundary
memory and/or linear/nonlinear damping term, see [11,12,23,30,37].

The time delay is still peculiar to many physical, chemical, biological and
thermal phenomena. Often this effect destabilizes a dissipative system, which
can be disastrous in the long term. Recently, a big interest has been directed to
control PDE systems (may be a source of instability and/or ill-posedness due to
the time delay). As a result, Datko et al. [13] proved that for a small delay in the
boundary of wave equation the system becomes unstable. We refer the reader
to [16,21,35] for different stability/instability results.

In the case of a viscoelastic wave equation with time delay, many researchers
were interested in the connection between the weight of the delay and the damping
memory term or the frictional damping term. In [22], Kirane and Said-Houari
established the energy decay result under the condition (µ2 < µ1) for the following
system:

utt −∆u+

∫ t

0
g(s)∆u(t− s) ds

+ µ1ut + µ2ut(t− τ) = 0 in Ω× R+ (1.16)

u = 0 on Γ× R+ (1.17)

ut(x, s) = φ(x, s) for x ∈ Ω, s ∈ (−τ, 0), (1.18)

where τ > 0. For the distributed delay term
(∫ τ2

τ1
µ2(s)ut(t− s) ds

)
, Guesmia

and Tatar [20] obtained the stability result by combining two kernels for abstract
hyperbolic equations with arbitrary decay. Furthermore, Fareh and Messaoudi
[14] proved the exponential stabilization of one-dimension type III thermoelastic
Timoshenko system in the presence/absence of a frictional damping under the
condition of smallness on the weight of delay.

For a larger type of relaxation functions, Mustafa [33] established the optimal
and the general decay results of (1.16)–(1.18), when (µ1 = µ2 = 0), under the
following general latest assumption:

g′(t) ≤ −ξ(t)H(g(t)), t ≥ 0, (1.19)
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where H is an increasing and convex function near the origin and ξ is a posi-
tive nonincreasing differentiable function. This assumption has wildly attracted
considerable attention of a number of researchers in the last few years. For exam-
ple, Al-Gharabli et al. [1] extended and combined the result with the boundary
feedback stabilization.

As highlighted by the following papers, there have been encouraging advances
toward obtaining the asymptotic behavior in each case of (1.19).

In the case of H(s) = sp, 1 ≤ p < 2, Messaoudi [27] considered (1.16)–(1.18)
for p = 1. He established a general decay result for the growth of relaxation
function. Otherwise, Mustafa [32] obtained optimal and polynomial decay rates.
Moreover, in the presence of a discrete or time-dependent delay, where the relax-
ation function satisfies (1.19) with nonlinear damping term, see [8, 9].

For ξ(t) = 1, Lasiecka and Tataru [25] used different approaches to establish
the uniform decay of wave equation with frictional damping for some additional
constraints imposed on H, where H is positive, strictly increasing and strictly
C2 convex near the origin with H(0) = H′(0) = 0. We refer to the previous
studies, [2, 19, 24] and [34], where a general decay result was established for H ∈
C1(R), H(0) = 0.

Motivated by the works mentioned above, we are interested in giving optimal
and general decay rates for a type III thermoelastic coupled system with acoustic
boundary conditions in the presence of distributed delay. This paper extends the
results of [32] to problem (1.1)–(1.9) under general assumption on the nonlinear
damping term which was first considered in [25]. Our system (1.1)–(1.9) suggested
here applies the system (1.10)–(1.15) studied in [10] in thermoelasticity of type
III.

The paper is organized as follows. In Section 2, we give some notations and
present some assumptions needed for our work. In Section 3, we state and prove
some technical lemmas in order to get our main results. Finally, the decay rate
is improved explicitly by using the convexity of the relaxation function g and
without imposing any restrictive growth assumption on the damping term. The
proof is based on the construction of a suitable Lyapunov functional.

2. Preliminary

In this section, we present some material we use in order to present our results.
Let

H(A,Ω) = {u ∈ H1(Ω) | Au ∈ L2(Ω)}

be a Hilbert space equipped with the norm

‖u‖H(A,Ω) =
(
‖u‖2H1(Ω) + ‖Au‖22

)1/2
,

where H1(Ω) is the Sobolev space of first order, ‖ · ‖2 is an L2−norm and ‖ · ‖2,Γ1

is an L2−norm on Γ1, and 〈·, ·〉Γ1 is the scalar product in L2(Γ1).
Denoting by γ0 : H1(Ω)→ L2(Γ) and γ1 : H(A,Ω)→ L2(Γ) the trace map of

order 0 and the Neumann trace map on H(A,Ω) respectively, we have γ0(u) = u|Γ
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and γ1(u) =
(
∂u
∂νA

)
Γ

for all u in H(A,Ω). Sometimes to simplify the notations

we write u and ∂u
∂νA

instead of γ0(u) and γ1(u), respectively.
We denote

V =
{
u ∈ H1(Ω) | u = 0 on Γ0

}
equipped with the norm equivalent to the usual norm in H1(Ω). The Poincaré
inequality holds on V, i.e.,

∃C∗ > 0 ∀u ∈ V ‖u(t)‖2 ≤ C∗‖∇u(t)‖2. (2.1)

Moreover,
∃C̄∗ > 0 ∀u ∈ V ‖u(t)‖2,Γ1 ≤ C̄∗‖∇u(t)‖2. (2.2)

In this study, we will need the following assumptions.

(A1) The coefficients aij , bij ∈ C1(Ω) are symmetric and there exist two constants
a0, b0 > 0 such that

n∑
i,j=1

aij(x)ηiηj ≥ a0|η|2 for all x ∈ Ω, η ∈ Rn, (2.3)

n∑
i,j=1

bij(x)ηiηj ≥ b0|η|2, for all x ∈ Ω, η ∈ Rn. (2.4)

Furthermore, we assume that the weight of delay µ : R+ → R+ is a bounded
nonincreasing function satisfying

c1 = b0 − C2
∗

∫ +∞

0
µ(s) ds > 0. (2.5)

(A2) The relaxation function g : R+ → R+ is a bounded C1 nonincreasing func-
tion satisfying

g(0) > 0, 1−
∫ +∞

0
g(s) ds = ` > 0, (2.6)

and there exists a function H : R+ → R+ which is a strictly increasing and
strictly convex C2 function on (0, r], for a positive constant r ≤ g(0), with
H(0) = H′(0) = 0 such that

g′(t) ≤ −ξ(t)H(g(t)) for all t ≥ 0, (2.7)

where ξ is a positive nonincreasing differentiable function.

(A3) F : R → R is an increasing C0 function such that there exists a strictly
increasing function F0 ∈ C1(R+) with F0(0) = 0. Furthermore, there exist
two constants c′1, c

′
2 > 0 such that

c′1|s| ≤ |F (s)| ≤ c′2|s| for all |s| ≥ ε, (2.8)

F0(|s|) ≤ |F (s)| ≤ F−1
0 (|s|) for all |s| ≤ ε. (2.9)
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In addition, we assume that the function G, defined by G(s) =
√
sF0(
√
s), is

a strictly convex C2 function on (0, r1] (r1 > 0). This hypothesis was first
considered in [25].

Let us introduce the following notation:

(g � u)(t) =

∫ t

0
g(t− s)a(u(t)− u(s), u(t)− u(s)) ds,

where

a(u(t), v(t)) =

∫
Ω

A∇u(t)∇v(t) dx =

n∑
i,j=1

∫
Ω
aij(x)

∂u(t)

∂xj

∂v(t)

∂xi
dx.

Then we have

d

dt
(g � u)(t) = (g′ � u)(t)− 2

∫ t

0
g(t− s)a(u(s), ut(t)) ds

+
d

dt

(
a(u(t), u(t))

∫ t

0
g(s) ds

)
− g(t)a(u(t), u(t)). (2.10)

Note that

b(u(t), v(t)) =

∫
Ω

B∇u(t)∇v(t) dx.

It is easy to verify that the bilinear forms a(·, ·) : V×V→ R and b(·, ·) : H1
0(Ω)×

H1
0(Ω)→ R are symmetric, continuous and coercive by using (2.3) and (2.4).

We mention some additional remarks that will be used in arguments and
proofs.

Remark 2.1 ([33]). We should note the following.

1) We can easily deduce from (A2) that there is t0 large enough while g(t0) =
r. Hence, for all t ≤ t0,

0 < g(t0) ≤ g(t) ≤ g(0), 0 < ξ(t0) ≤ ξ(t) ≤ ξ(0),

which implies that there are two positive constants ε1 and ε2 such that

ε1 ≤ ξ(t)H(g(t)) ≤ ε2.

Therefore,

∃ζ1 =
ε1
g(0)

> 0 ∀t ≤ t0 g′(t) ≤ −ζ1g(t). (2.11)

2) If (2.7) holds, then H has an extension H, which is a strictly increasing and
strictly convex C2 function on R+. For example, if we set H(r) = α, H′(r) =
β and H′′(r) = γ, we can define H for all t > r by

H(t) =
γ

2
t2 + (β − γr)t+

(
α+

γ

2
r2 − βr

)
.
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3) Suppose ϕ is a non-negative measurable function satisfying
∫

Ω ϕ(x)dx = 1.
If f is any real-valued measurable function and Ψ is convex over the range
of f , then Jensen’s inequality states that

Ψ

[∫
Ω
f(x)ϕ(x)dx

]
≤
∫

Ω
Ψ[f(x)]ϕ(x) dx.

For completeness, let us take a new variable ϕ first introduced in [40]:

ϕ(x, t) =

∫ t

0
θ(x, s) ds+ Φ(x), forall x ∈ Ω, t ≥ 0, (2.12)

where Φ ∈ H1
0(Ω) solves

BΦ = θ1 − Bθ0 +

∫ +∞

0
µ(s)θ(−s) ds+ (σ∇)u1 in Ω

Φ = 0 on Γ.

As in [35], let us set

ω(x, p, s, t) = ϕt(x, t− sp), (x, p, s) ∈ Q = Ω× (0, 1)× R+, t ≥ 0.

Then our system leads to

utt −Au+

∫ t

0
g(t− s)Au(s) ds+ div(σϕt) = 0 in Ω× R+ (2.13)

ϕtt − Bϕ− Bϕt +

∫ +∞

0
µ(s)ω(x, 1, s, t) ds

+ (σ∇)ut = 0 in Ω× R+ (2.14)

sωt + ωp = 0 in Q× R+ (2.15)

fzt +mz + ut = 0 on Γ1 × R+ (2.16)

u = 0 on Γ0 × R+ (2.17)

∂u

∂νA
−
∫ t

0
g(t− s) ∂u

∂νA
(s) ds+ F (ut) = hzt on Γ1 × R+ (2.18)

ϕ = 0 on Γ× R+ (2.19)

ω(x, p, s, 0) = ω0(x, p, s) for (x, p, s) ∈ Q (2.20)

u(0) = u0, ut(0) = u1, ϕ(0) = Φ, ϕt(0) = θ0 in Ω (2.21)

z(0) = z0 in Γ1. (2.22)

In the following proposition, we state the global existence of solution for system
(2.13)–(2.22) without proof which can be established by means of the Faedo–
Galerkin method. We refer the reader to [7, 11].

Proposition 2.2. Let u0 ∈ H2(Ω) ∩V, u1 ∈ V, Φ ∈ H2(Ω) ∩ H1
0(Ω), θ0 ∈

H1
0(Ω), ω0 ∈ L2(Q) and z0 ∈ L2(Γ1) be given. Assume that (A1), (A3), and (2.6)

hold. Then problem (2.13)–(2.22) has a unique global solution such that

u, ut ∈ L∞(R+;V), utt ∈ L∞(R+; L2(Ω)), u ∈ H(A,Ω);
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ϕ,ϕt ∈ L∞(R+; H1
0(Ω)), ϕtt ∈ L∞(R+; L2(Ω)), ϕ ∈ H(B,Ω);

ω ∈ L∞(R+; L2(Q)); z, zt ∈ L∞(R+; L2(Γ1)).

3. Technical lemmas

In this section, we establish several lemmas needed for our main result.
We define the energy E of system (2.13)–(2.22) for all t ≥ 0 by

E(t) =
1

2
‖ut(t)‖22 +

1

2

(
1−

∫ t

0
g(s) ds

)
a(u(t), u(t)) +

1

2
(g � u)(t)

+
1

2
b(ϕ(t), ϕ(t)) +

1

2
‖ϕt(t)‖22 +

1

2
‖h1/2m1/2z(t)‖22,Γ1

+
1

2

∫
Q
sµ(s)ω2(x, p, s, t) ds dp dx. (3.1)

Lemma 3.1. The energy functional, in view of (2.13)–(2.22), is a nonin-
creasing function and satisfies the estimate

E′(t) ≤ 1

2
(g′ � u)(t)− 1

2
g(t)a(u(t), u(t))− ‖h1/2f1/2zt(t)‖22,Γ1

−
〈
F (ut(t)), ut(t)

〉
Γ1

− c1‖∇ϕt(t)‖22. (3.2)

Proof. Multiplying (2.13) by ut, (2.14) by ϕt and integrating over Ω, then
adding it to the inner product of (2.15) with sµ(s) in L2(Q), by using Green’s
formula, we arrive at

1

2

d

dt

(
‖ut(t)‖22 + a(u(t), u(t)) + b(ϕ(t), ϕ(t)) +

∫
Q
sµ(s)ω2(x, p, s, t) ds dp dx

+ ‖ϕt(t)‖22
)
−
∫ t

0
g(t− s)a(u(s), ut(t)) ds−

〈
h(x)zt(t), ut(t)

〉
Γ1

+ b(ϕt(t), ϕt(t)) +
1

2

∫
Ω

∫ +∞

0
µ(s)

[
ω2(x, 1, s, t)− ω2(x, 0, s, t)

]
ds dx

+
〈
F (ut(t)), ut(t)

〉
Γ1

+

∫
Ω
ϕt(t)

∫ +∞

0
µ(s)ω(x, 1, s, t) ds dx = 0. (3.3)

We notice from (2.16) that

−
〈
h(x)ut(t), zt(t)

〉
Γ1

= ‖h1/2f1/2zt(t)‖22,Γ1
+
〈
h(x)m(x)z(t), zt(t)

〉
Γ1

= ‖h1/2f1/2zt(t)‖22,Γ1
+

1

2

d

dt
‖h1/2m1/2z(t)‖22,Γ1

. (3.4)

The last term of the right-hand side of (3.3) can be estimated as follows:

−
∫

Ω
ϕt(t)

∫ +∞

0
µ(s)ω(x, 1, s, t) ds dx

≤ C2
∗

2

(∫ +∞

0
µ(s) ds

)
‖∇ϕt(t)‖22 +

1

2

∫
Ω

∫ +∞

0
µ(s)ω2(x, 1, s, t) ds dx. (3.5)

Substituting (2.10), (3.4), and (3.5) into (3.3), we get (3.2) from (2.5).
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Now we are going to construct a Lyapunov functional equivalent to the energy
functional by resorting to the following functions (Ki; i = 1, 2, 3, 4), with which
we can show the desired result.

Lemma 3.2. Let (u, ϕ, ω, z) be a solution of (2.13)–(2.22). Then the func-
tional

K1(t) =

∫
Ω
ut(t)u(t) dx+

〈
hz(t), u(t)

〉
Γ1

+
1

2
‖h1/2f1/2z(t)‖22,Γ1

,

satisfies the estimate, for any 0 < α < 1, for all t ≥ 0,

K ′1(t) ≤ ‖ut(t)‖22 −
`

2
a(u(t), u(t)) +

C1Cα
4a0

(k � u)(t) + C2

∫
Γ1

F 2(ut(t)) dΓ

+ C3‖∇ϕt(t)‖22 + C4‖h1/2f1/2zt(t)‖22,Γ1
− ‖h1/2m1/2z(t)‖22,Γ1

, (3.6)

where

Cα =

∫ ∞
0

g2(s)

αg(s)− g′(s)
ds, C1 =

6a1n

a0`
, C2 =

2C
2
∗

a0`
,

C3 = 2
C4
∗‖div(σ)‖2∞ + C2

∗‖σ‖2

a0`
, C4 =

6C
2
∗‖h‖∞‖f‖∞
a0`f2

0

,

a1 =
n

max
j=1

(
n∑
i=1

‖aij‖2∞

)
, k(t) = αg(t)− g′(t), ‖σ‖ = sup

x∈Ω
sup

i=1,...,n
|σi(x)|, (3.7)

Proof. Direct computations, by using (2.13) and (2.17), gives

K ′1(t) = ‖ut(t)‖22 − a(u(t), u(t)) +

∫ t

0
g(t− s)a(u(s), u(t)) ds

−
〈
F (ut(t)), u(t)

〉
Γ1
− ‖h1/2m1/2z(t)‖22,Γ1

+ 2
〈
h(x)zt(t), u(t)

〉
Γ1
−
∫

Ω
div(σ(x)ϕt(t))u(t) dx. (3.8)

Now, by using Cauchy–Schwarz’s inequality, we get∫
Ω

(∫ t

0
g(t− s)(∇u(s)−∇u(t)) ds

)2

dx

=

∫
Ω

(∫ t

0

g(t− s)√
k(t− s)

√
k(t− s)(∇u(s)−∇u(t)) ds

)2

dx ≤ Cα
a0

(k � u)(t).

Using Young’s inequality, (2.3) and (2.6), we obtain, for some constant δ > 0,∫ t

0
g(t− s)a(u(s), u(t)) ds

=

∫ t

0
g(t− s)

∫
Ω

A (∇u(s)−∇u(t))∇u(t) dx ds+

(∫ t

0
g(s) ds

)
a(u(t), u(t)),
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≤
[
(1− `) + δ

a1

a0

]
a(u(t), u(t)) +

nCα
4a0δ

(k � u)(t), (3.9)

By using Cauchy–Schwarz’s, Young’s inequalities and (2.2), we get, for δ1 > 0,∣∣∣〈h(x)zt(t), u(t)
〉

Γ1

∣∣∣ ≤ ‖h‖1/2∞ ‖f‖1/2∞
f0

‖h1/2f1/2zt(t)‖2,Γ1‖u(t)‖2,Γ1

≤ δ1
C

2
∗

a0
a(u(t), u(t)) +

‖h‖∞‖f‖∞
4δ1f2

0

‖h1/2f1/2zt(t)‖22,Γ1
, (3.10)

for δ2 > 0,∣∣∣∣∫
Ω

div(σ(x)ϕt(t))u(t) dx

∣∣∣∣ ≤ C2
∗‖div(σ)‖2∞ + ‖σ‖2

4δ2
‖∇ϕt(t)‖22

+
δ2C

2
∗

a0
a(u(t), u(t)), (3.11)

and for δ3 > 0,

−
〈
F (ut(t)), u(t)

〉
Γ1
≤ 1

4δ3

∫
Γ1

F 2(ut(t)) dΓ +
δ3C

2
∗

a0
a(u(t), u(t)). (3.12)

Substituting (3.9)–(3.12) into (3.8), we find that

K ′1(t) ≤ ‖ut(t)‖22 +

[
−`+ δ

a1

a0
+ 2δ1

C
2
∗

a0
+
δ2C

2
∗

a0
+
δ3C

2
∗

a0

]
a(u(t), u(t))

+
nCα
4a0δ

(k � u)(t) +
C2
∗‖div(σ)‖2 + ‖σ‖2

4δ2
‖∇ϕt(t)‖22 − ‖h1/2m1/2z(t)‖22,Γ1

+
‖h‖∞‖f‖∞

2δ1f2
0

‖h1/2f1/2zt(t)‖22,Γ1
+

1

4δ3

∫
Γ1

F 2(ut(t)) dΓ.

Let us choose

δ =
a0`

8a1
, δ1 =

a0`

16C
2
∗
, δ2 =

a0`

8C2
∗

and δ3 =
a0`

8C
2
∗
.

Then we obtain (3.6).

Lemma 3.3. Let (u, ϕ, ω, z) be a solution of (2.13)–(2.22). Then the func-
tional

K2(t) =

∫
Ω
ϕt(t)ϕ(t) dx+

1

2
b(ϕ,ϕ) +

∫
Ω

(σ(x).∇)u(t)ϕ(t) dx

satisfies the estimate, for all t ≥ 0,

K ′2(t) ≤ C2
∗

2a0
a(u(t), u(t)) + C5‖∇ϕt‖22 −

1

2
b(ϕ(t), ϕ(t))

+ C6

∫
Ω

∫ +∞

0
µ(s)ω2(x, 1, s, t) ds dx, (3.13)

where 2C5 = 2C2
∗ + ‖σ‖2 and C6 = C2

∗
2b0

(∫ +∞
0 µ(s) ds

)
.
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Proof. By exploiting (2.14) and using Green’s formula, we have

K ′2(t) = ‖ϕt(t)‖22 − b(ϕ(t), ϕ(t))−
∫

Ω
(σ(x).∇)ϕt(t)u(t) dx

−
∫

Ω
ϕ(t)

∫ +∞

0
µ(s)ω(x, 1, s, t) ds dx. (3.14)

We can estimate the last two terms above for similar calculations in (3.9) in the
following:

−
∫

Ω
(σ(x)∇)ϕt(t)u(t) dx ≤ ‖σ‖

2

2
‖∇ϕt‖22 +

C2
∗

2a0
a(u(t), u(t)), (3.15)

and for δ > 0,

−
∫

Ω
ϕ(t)

∫ +∞

0
µ(s)ω(x, 1, s, t) ds dx

≤ C2
∗

4δb0
b(ϕ(t), ϕ(t)) + δ

(∫ +∞

0
µ(s) ds

)∫
Ω

∫ +∞

0
µ(s)ω2(x, 1, s, t) ds dx. (3.16)

Let us choose δ = C2
∗

2b0
. Inserting (3.15) and (3.16) into (3.14), we get (3.13).

Lemma 3.4. Let (u, ϕ, ω, z) be a solution of (2.13)–(2.22). Then the func-
tional

K3(t) =

∫
Q
se−spµ(s)ω2(x, p, s, t) dp ds dx

satisfies the estimate, for all t ≥ 0,

K ′3(t) ≤ C7‖∇ϕt(t)‖22 −
∫

Ω

∫ +∞

0
µ(s)ω2(x, 1, s, t) ds dx

−
∫

Q
sµ(s)ω2(x, p, s, t) dp ds dx, (3.17)

where C7 = C2
∗
∫ +∞

0 µ(s) ds.

Proof. By differentiating K3 with respect to t, we obtain

K ′3(t) = −2

∫
Ω

∫ +∞

0
µ(s)

∫ 1

0
e−spω(p, s, t)ωp(p, s, t) dp ds dx,

= −
∫

Ω

∫ +∞

0
µ(s)

(
e−sω2(1, s, t)− ω2(0, t) + s

∫ 1

0
e−spω(p, s, t)dp

)
ds dx,

≤ C7‖∇ϕt(t)‖22 −
∫

Ω

∫ +∞

0
µ(s)ω2(1, s, t) ds dx

−
∫

Q
sµ(s)ω2(p, s, t) dp ds dx.
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Lemma 3.5. Let (u, ϕ, ω, z) be a solution of (2.13)–(2.22). Then the func-
tional

K4(t) = −
∫

Ω
ut(t)

∫ t

0
g(t− s)(u(t)− u(s)) ds dx

satisfies the estimate, for δ > 0, for all t ≥ 0,

K ′4(t) ≤ −
(∫ t

0
g(s) ds− δ

)
‖ut(t)‖22 + C8(δ)a(u(t), u(t))

+

(
CαC9(δ) + C10(δ)

4a0

)
(k � u)(t) + C11‖∇ϕt(t)‖22

+ C12‖h1/2f1/2zt(t)‖22,Γ1
+ C13

∫
Γ1

F 2(ut(t)) dΓ, (3.18)

where

C8(δ) = δ
a1

a0
, C9(δ) = 1 + 4

√
na1 +

2α2C2
∗ + n

δ
, C10(δ) =

2k1C
2
∗

δ
,

C11 = 3C2
∗‖σ‖2, C12 =

3C̄2
∗‖h‖∞‖f‖∞

f2
0

, C13 = 3C̄2
∗ , k1 =

∫ ∞
0

k(s) ds.

Proof. By exploiting (1.1) and using Green’s formula, we have

K ′4(t) =

(
1−

∫ t

0
g(s) ds

)∫
Ω

A∇u(t)

∫ t

0
g(t− s)(∇u(t)−∇u(s)) ds dx

+

∫
Ω

∫ t

0
g(t− s)A(∇u(t)−∇u(s)) ds

∫ t

0
g(t− s)(∇u(t)−∇u(s)) ds dx

−
〈
hzt(t),

∫ t

0
g(t− s)(u(t)− u(s)) ds

〉
Γ1

−
(∫ t

0
g(s) ds

)
‖ut(t)‖22

−
∫

Ω
ut(t)

∫ t

0
g′(t− s)(u(t)− u(s)) ds dx

−
∫

Ω
σ(x)ϕt(t)

∫ t

0
g(t− s)(∇u(t)−∇u(s)) ds dx

+
〈
F (ut(t)),

∫ t

0
g(t− s)(u(t)− u(s)) ds

〉
Γ1
. (3.19)

Using the similar calculations in (3.9), we obtain∫
Ω

A∇u(t)

∫ t

0
g(t− s)(∇u(t)−∇u(s)) ds dx

≤ δ a1

a0
a(u(t), u(t)) +

nCα
4a0δ

(k � u)(t) (3.20)

for δ > 0 and

−
∫

Ω
σ(x)ϕt(t)

∫ t

0
g(t− s)(∇u(t)−∇u(s)) ds dx
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≤ δ1C
2
∗‖σ‖2‖∇ϕt(t)‖22 +

Cα
4a0δ1

(k � u)(t) (3.21)

for δ1 > 0. By repeating the same arguments of (3.9)–(3.10), we get

−
〈
hzt(t),

∫ t

0
g(t− s)(u(t)− u(s)) ds

〉
Γ1

≤ C̄2
∗Cα

4δ2a0
(k � u)(t) +

δ2‖h‖∞‖f‖∞
f2

0

‖h1/2f1/2zt(t)‖22,Γ1
(3.22)

for δ2 > 0. We arrive to the estimate∫
Ω

∫ t

0
g(t− s)A(∇u(t)−∇u(s)) ds

∫ t

0
g(t− s)(∇u(t)−∇u(s)) ds dx

≤
√
a1nCα
a0

(k � u)(t). (3.23)

Using (3.2), Cauchy–Schwarz’s and Young’s inequalities, we obtain

−
∫

Ω
ut(t)

∫ t

0
g′(t− s)(u(t)− u(s)) ds dx

≤ δ3‖ut(t)‖22 +
α2[Cα + k1]C2

∗
2δ3a0

(k � u)(t) (3.24)

for δ3 > 0 and〈
F (ut(t)),

∫ t

0
g(t− s)(u(t)− u(s)) ds

〉
Γ1

≤ δ4

∫
Γ1

F 2(ut(t))dΓ +
C̄2
∗Cα

4δ4a0
(k � u)(t) (3.25)

for δ4 > 0. Inserting (3.20)–(3.25) into (3.19), we obtain

K ′4(t) ≤ −
(∫ t

0
g(s) ds− δ4

)
‖ut(t)‖22 + δ

a1

a0
a(u(t), u(t)) +

2k1C
2
∗

4δ3a0
(k � u)(t)

+
Cα
4a0

[
n

δ
+

1

δ1
+
C̄2
∗
δ2

+ 4
√
a1n+

2α2C2
∗

δ3
+
C̄2
∗
δ4

]
(k � u)(t)

+ δ1C
2
∗‖σ‖2‖∇ϕt(t)‖22 + δ4

∫
Γ1

F 2(ut(t)) dΓ

+ δ2
‖h‖∞‖f‖∞

f2
0

‖h1/2f1/2zt(t)‖22,Γ1
.

If we choose δ1 = 3 and δ2 = δ4 = 3C̄2
∗ , then we get (3.18).

Next, we use the functional

K5(t) =

∫ t

0
p(t− s)a(u(s), u(s)) ds,

where p(t) =
∫∞
t g(s) ds.
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Lemma 3.6. Assume that (2.3) and (2.6) hold. In view of (2.13)–(2.22),
the functional K5 satisfies the estimate

K ′5(t) ≤ −1

2
(g � u)(t) + ρ(1− `)a(u(t), u(t)), (3.26)

where ρ = 2a1n
a20

+ 1.

Proof. By Young’s inequality and the fact that p′(t) = −g(t), we see that

K ′5(t) = p(0)a(u(t), u(t))−
∫ t

0
g(t− s)a(u(s), u(s)) ds

= −(g � u)(t) + 2

∫ t

0
g(t− s)a(u(t)− u(s), u(t)) ds+ p(t)a(u(t), u(t)).

But ∫ t

0
g(t− s)a(u(t)− u(s), u(t)) ds ≤ a1n

a2
0

(1− `)a(u(t), u(t))

+
1

4(1− `)

∫ t

0
g(s) ds (g � u)(t).

Then, as p(t) ≤ p(0) = (1− `) and
∫ t

0 g(s) ds ≤ (1− `), we get (3.26).

We define a Lyapunov functional L as follows:

L(t) = NE(t) +N1K1(t) +N2K2(t) +N3K3(t) +N4K4(t), (3.27)

where Ni, i = 1, 2, 3, 4, are positive constants to be fixed later. We choose N so
large that L is equivalent to E.

Lemma 3.7. For each i = 1, 2, 3, 4, Ni is large enough while N is so large
that the functional L defined by (3.27) satisfies

L′(t) ≤ −‖ut(t)‖22 − (ρ+ 1)(1− `)a(u(t), u(t)) +
1

4
(g � u)(t)− N2

2
b(ϕ(t), ϕ(t))

− Nc1

2C2
∗
‖ϕt(t)‖22 + (C2N1 + C13N4)

∫
Γ1

F 2(ut(t)) dΓ

−N1‖h1/2m1/2z(t)‖22,Γ1
−N3

∫
Q
sµ(s)ω2(x, p, s, t) dp ds dx (3.28)

for all t ≥ 0.

Proof. Let

g1 =

∫ t0

0
g(s) ds > 0.

By combining (3.28), (3.6), (3.13), (3.17)-(3.18), taking δ = `a0/(4a1N4) and
N2 = `a0/(2C

2
∗ ), we obtain

L′(t) ≤ −
(
g1N4 −

`a0

4a1
−N1

)
‖ut(t)‖22 −

(
`

2
N1 −

`

2

)
a(u(t), u(t))
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− `a0

4C2
∗
b(ϕ(t), ϕ(t))−

(
N

2
− Cα

4a0
(C1N1 + C9N4)− C10N4

4a0

)
(k � u)(t)

−N3

∫
Q
sµ(s)ω2(x, p, s, t) dp ds dx+ (C2N1 + C13N4)

∫
Γ1

F 2(ut(t)) dΓ

− (N − C4N1 − C12N4) ‖h1/2f1/2zt(t)‖22,Γ1
− Nc1

2C2
∗
‖ϕt(t)‖22

−
(
N3 −

C6`a0

2C2
∗

)∫
Ω

∫ +∞

0
µ(s)ω2(x, 1, s, t) ds dx−N1‖h1/2m1/2z(t)‖22,Γ1

−
(
c1N

2
− C3N1 −

C5la0

2C2
∗
− C7N3 − C11N4

)
‖∇ϕt(t)‖22 +

αN

2
(g � u)(t).

At this point, we choose N1 large enough such that

`

2
N1 −

`

2
> (ρ+ 1)(1− `),

and therefore N4 large enough such that

g1N4 −
`a0

4a1
−N1 > 1.

By choosing N3 >
C6`a0
2C2
∗

, we are to choose N so large that N > N0, where

N0 = max

{
C10N4

2a0
, C4N1 + C12N4,

2

c1

(
C3N1 +

C5`a0

2C2
∗

+ C7N3 + C11N4

)}
.

As
αg2(s)

αg(s)− g′(s)
< g(s),

it is easy to show, using the Lebesgue dominated convergence theorem, that

αCα =

∫ ∞
0

αg2(s)

αg(s)− g′(s)
ds→ 0 as α→ 0.

Hence, there is 0 < α0 < 1 such that if α < α0, then

αCα <
1

4(C1N1 + C9N4)
and α =

1

2N
< α0,

which means
N

2
− Cα

4a0
[C1N1 + C9N4]− C10N4

4a0
> 0.

Thus (3.28) is proven.

4. General decay

In this section, we give an optimal and general decay rates of the energy.
These theorems are consequently divided according to the nature of the function
F0 defined on (A3). In Subsection 4.1, we give the general decay theorem when
F0 is linear. In the case of F0 being nonlinear, the general stability result is given
in Subsection 4.2.
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4.1. First general theorem

Theorem 4.1. Assume that (A1)–(A3) hold and F0 is linear. Then there
exist two constants k1, k2 > 0 such that for all t ≥ t0,

E(t) ≤ k1H−1
1

(
k2

∫ t

t0

ξ(s) ds

)
, (4.1)

where H1(t) =
∫ r
t

ds
sH′(s) , and H1 is strictly decreasing and convex on (0, r] with

limt→0H1(t) = +∞.

Proof. We start using (2.11) and (3.2) to obtain∫ t0

0
g(s)a(u(t)− u(t− s), u(t)− u(t− s)) ds ≤ − 1

ζ1
(g′ � u)(t) ≤ −c2E

′(t), (4.2)

where c2 is a positive constant. Inserting (4.2) into (3.28), for all t ≥ t0, we get

F ′(t) ≤ −β1E(t) + β2

∫ t

t0

g(s)a(u(t)− u(t− s), u(t)− u(t− s)) ds

+

∫
Γ1

β3F
2(ut(t)) dΓ, (4.3)

where βi, i = 1, 2, 3, are positive constants and F = (L+ c2E) ∼ E.
Now we study the stability under a suitable assumption of H.
Case 1: H is linear. Multiplying (4.3) by ξ(t), using (2.7), and (3.2) for

some t0 small enough, we have

ξ(t)F ′(t) ≤ −β1ξ(t)E(t) + β2

∫ t

t0

ξ(s)g(s)a(u(t)− u(t− s), u(t)− u(t− s)) ds

+ β3ξ(t)

∫
Γ1

F 2(ut(t)) dΓ

≤ −β1ξ(t)E(t)− β2(g′ � u)(t) + β3c
′
2ξ(t)

〈
F (ut(t)), ut(t)

〉
Γ1

≤ −β1ξ(t)E(t)− β4E
′(t),

where β4 = (β2 − β3c
′
2ξ(0)). Since ξ is a positive nonincreasing function, then

(ξF + β4E)′(t) ≤ −β1ξ(t)E(t). (4.4)

Using the fact that (ξF + β4E) ∼ E, we conclude, for all t ≥ t0, that

E(t) ≤ k1e
−k2

∫ t
t0
ξ(s) ds

.

Case 2: H is nonlinear. First, we consider

L1(t) = L(t) +K5(t)

to be nonnegative, and it follows from (3.2), (3.26), and (3.28) that

L′1(t) ≤ −c2E(t) + γ2c
′
2

〈
F (ut(t)), ut(t)

〉
Γ1
≤ −c2E(t)− γ2c

′
2E
′(t),
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where c2 is a positive constant. Therefore, for all t ≥ t0,

c2

∫ t

t0

E(s) ds ≤ L2(t0)− L2(t) ≤ L2(t0) <∞,

where L2 = (L1 + γ2c
′
2E) ∼ E.

Next, we define the function

I(t) = c3

∫ t

t0

a(u(t)− u(t− s), u(t)− u(t− s)) ds.

Note that for c3 > 0 and for all t ≥ t0, I(t) > 0. Otherwise, an exponential decay
is concluded. After that, for a constant C > 0, for all t ≥ t0, we have∫ t

t0

a(u(t)− u(t− s), u(t)− u(t− s)) ds ≤ 2C

∫ t

t0

(
‖∇u(t)‖22 + ‖∇u(t− s)‖22

)
ds

≤ 8C

a0(1− `)

∫ t

t0

E(t) ds <∞,

and therefore for a constant 0 < c3 < 1 chosen so that

0 < I(t) < 1. (4.5)

We also define the functional

λ(t) = −
∫ t

t0

g′(s)a(u(t)− u(t− s), u(t)− u(t− s)) ds,

for each t0 small enough. By using (3.2), we observe that for a constant c4 > 0,

λ(t) ≤ −c4E
′(t). (4.6)

Since H is strictly convex on (0, r] and H(0) = 0, then

H(ϑx) ≤ ϑH(x), ϑ ∈ [0, 1], x ∈ (0, r]. (4.7)

From the hypothesis (A2), the using of (4.5), (4.7) and Jensen’s inequality leads
to

λ(t) =
1

c3I(t)

∫ t

t0

I(t)[−g′(s)]c3a(u(t)− u(t− s), u(t)− u(t− s)) ds

≥ 1

c3I(t)

∫ t

t0

I(t)ξ(s)H(g(s))c3a(u(t)− u(t− s), u(t)− u(t− s)) ds

≥ ξ(t)

c3I(t)

∫ t

t0

H(I(t)g(s))c3a(u(t)− u(t− s), u(t)− u(t− s)) ds

≥ ξ(t)

c3
H
(
c3

∫ t

t0

g(s)a(u(t)− u(t− s), u(t)− u(t− s)) ds
)
, (4.8)
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where H is an extension of H such that H is a strictly increasing and strictly
convex C2 function on R+. This implies that∫ t

t0

g(s)a(u(t)− u(t− s), u(t)− u(t− s)) ds ≤ 1

c3
H−1

(
c3λ(t)

ξ(t)

)
.

Thus, (4.3) becomes

F ′1(t) ≤ −β1E(t) +
β2

c3
H−1

(
c3λ(t)

ξ(t)

)
, (4.9)

where F1 = (F − β3c
′
2ξ(0)E) ∼ E.

Now, for ε0 > 0 and β5 > 0, we define the functional

F2(t) = H′
(
ε0
E(t)

E(0)

)
F1(t) + β5E(t).

Using (4.9) and the fact that E′ < 0, H′ > 0, H′′ > 0, we conclude that F2 ∼ E,
and

F ′2(t) = ε0
E′(t)

E(0)
H′′
(
ε0
E(t)

E(0)

)
F1(t) +H′

(
ε0
E(t)

E(0)

)
F ′1(t) + β5E

′(t)

≤ −β1E(t)H′
(
ε0
E(t)

E(0)

)
+
β2

c3
H′
(
ε0
E(t)

E(0)

)
H−1

(
c3λ(t)

ξ(t)

)
+ β5E

′(t). (4.10)

On the other hand, dew to the argument given in [3, pages 61-64], we have

H∗(s) = s(H′)−1(s)−H[(H′)−1(s)] ≤ s(H′)−1(s) for all s > 0, (4.11)

where H∗ is the convex conjugate of H such that

H∗(s) = sup
t∈R+

{st−H(t)},

and H∗ satisfies the following Young’s inequality:

AB ≤ H∗(A) +H(B). (4.12)

In view of (4.11) and (4.12) with A = H′
(
ε0

E(t)
E(0)

)
and B = H−1

(
c3λ(t)
ξ(t)

)
, (4.10)

gives

F ′2(t) ≤ −(β1E(0)− ε0)
E(t)

E(0)
H′
(
ε0
E(t)

E(0)

)
+ β2

λ(t)

ξ(t)
+ β5E

′(t).

So, multiplying by ξ(t), using (4.6) and the fact that, as

ε0
E(t)

E(0)
< r, H′

(
ε0
E(t)

E(0)

)
= H′

(
ε0
E(t)

E(0)

)
,
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we find that

F ′3(t) ≤ ξ(t)F ′2(t) ≤ −(β1E(0)−ε0)ξ(t)
E(t)

E(0)
H′
(
ε0
E(t)

E(0)

)
−(β2c4−β5ξ(0))E′(t),

where F3 = (ξF2). Let us choose ε0 and β5 small enough such that

β6 = β1E(0)− ε0 > 0 and β2c4 − β5ξ(0) > 0.

Then, for some constants α1, α2 > 0,

α1F3(t) ≤ E(t) ≤ α2F3(t)

and

F ′3(t) ≤ −β6ξ(t)
E(t)

E(0)
H′
(
ε0
E(t)

E(0)

)
= −β6ξ(t)H2

(
E(t)

E(0)

)
, (4.13)

where H2(t) = tH′(ε0t). Since H′2(t) = H′(ε0t) + ε0tH′′(ε0t), then, by using the
strict convexity of H on (0, r], we find that H2,H′2 > 0 on (0, 1]. Let

R(t) =
α1F3(t)

E(0)
.

From the fact that R ∼ E, equation (4.13) yields

R′(t) ≤ −β6ξ(t)H2(R(t)).

A simple integration over (t0, t), taking into consideration that ε0R(t0) < r, gives

H1(ε0R(t)) ≥
∫ ε0R(t0)

ε0R(t)

ds

sH′(s)
≥ β6

∫ t

t0

ξ(s) ds.

Using the fact that H1 is a strictly decreasing function on (0, r] and

lim
t→0
H1(t) = +∞,

we get (4.1).

4.2. Second general theorem

Theorem 4.2. Assume that (A1)–(A3) hold and F0 is nonlinear. There exist
two constants k1, k2 > 0 such that for all t ≥ t0,

E(t) ≤ k1G−1
1

(
k2

∫ t

t0

ξ(s) ds

)
(4.14)

if H is linear, where G1(t) =
∫ r1
t

ds
sG′(s) . Moreover, if H is nonlinear, then there

exist other two constants k3, k4 > 0 such that for all t > t0,

E(t) ≤ k3[t− t0]W−1
1

(
k4

[t− t0]
∫ t
t0
ξ(s) ds

)
, (4.15)

where W1(s) = sW′(ε1s) and W =
(

G
−1

+H−1
)−1

.
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Proof. First, we assume that max{r1, F0(r1)} < ε; otherwise r1 is small
enough. Let ε1 = min{r1, F0(r1)}. From (A3), we have

F0(|s|) ≤ |F (s)| ≤ F−1
0 (|s|) for all |s| < ε1

c′1|s| ≤ |F (s)| ≤ c′2|s| for all |s| ≥ ε1.

Then, for all |s| ≤ ε1,

G(F 2(s)) = |F (s)|F0(|F (s)|) ≤ sF (s),

which gives
F 2(s) ≤ G−1(sF (s)) for all |s| ≤ ε1. (4.16)

The following partition was first introduced by Komornik [23]:

Γ11 = {x ∈ Γ1 | |ut(t)| ≥ ε1}, Γ12 = {x ∈ Γ1 | |ut(t)| ≤ ε1}. (4.17)

Note that for a constant c5 > 0,

J(t) =
1

|Γ12|

∫
Γ12

ut(t)F (ut(t)) dΓ ≤ −c5E
′(t). (4.18)

Then, by using (3.2), (4.16), (4.17) and Jensen’s inequality, we get∫
Γ1

F 2(ut(t)) dΓ ≤ G−1 (J(t))− c′2E′(t). (4.19)

Case 1: H is linear. Multiplying (4.3) by ξ(t) and using (4.19), we have

F ′4(t) ≤ −β1ξ(t)E(t) + β3ξ(t)G
−1 (J(t)) , (4.20)

where F4 = (ξF + (c′2 + β4)E) ∼ E.
Now, for 0 < ε1 < r1 and β7 > 0, by using (4.20) and the fact that E′ ≤ 0,

G′ > 0, G′′ > 0 on (0, r1], we find that the functional F5, defined by

F5(t) = G′
(
ε1
E(t)

E(0)

)
F4(t) + β7E(t),

satisfies
α3F5(t) ≤ E(t) ≤ α4F5(t)

for some α3, α4 > 0.
Using the convex conjugate of G in the sense of Young, as in (4.12), with A =

G′
(
ε1

E(t)
E(0)

)
and B = G−1 (J(t)), by using (4.18) and again the fact that E′ ≤ 0,

G′ > 0, G′′ > 0, we obtain

F ′5(t) = ε1
E′(t)

E(0)
G′′
(
ε1
E(t)

E(0)

)
F4(t) + G′

(
ε1
E(t)

E(0)

)
F ′4(t) + β7E

′(t)

≤ −β1ξ(t)E(t)G′
(
ε1
E(t)

E(0)

)
+ β3ξ(t)G

′
(
ε1
E(t)

E(0)

)
G−1 (J(t)) + β7E

′(t)
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≤ −(β1E(0)− ε1)ξ(t)
E(t)

E(0)
G′
(
ε1
E(t)

E(0)

)
+ (β7 − c5)E′(t).

Consequently, with a suitable choice of ε1 and β7 we obtain

F ′5(t) ≤ −β8ξ(t)
E(t)

E(0)
G′
(
ε1
E(t)

E(0)

)
= −β8ξ(t)G2

(
E(t)

E(0)

)
for all t ≥ t0, where β8 = β1E(0) − ε1 > 0 and G2(t) = tG′(ε1t). Since G′2(t) =
G′(ε1t) + ε1tG

′′(ε1t) , then, using the strict convexity of G on (0, r1], we find
that G2,G

′
2 > 0 on (0, 1]. Let

R1(t) = α3
F5(t)

E(0)
.

Using the fact that R1 ∼ E, we have

R′1(t) ≤ −β8ξ(t)G2(R1(t)), for allt ≥ t0.

This concludes (4.14).
Case 2: H is nonlinear: First, we define the functional

I1(t) =
c6

(t− t0)

∫ t

t0

a(u(t)− u(t− s), u(t)− u(t− s)) ds,

and choose 0 < c6 < 1 small enough such that

0 < I1(t) < 1

for all t > t0. In the same way as in (4.8), we obtain∫ t

t0

g(s)a(u(t)− u(t− s), u(t)− u(t− s)) ds ≤ (t− t0)

c6
H−1

(
c6λ(t)

(t− t0)ξ(t)

)
.

Hence, we can write (4.3) as follows:

F ′(t) ≤ −β1E(t) +
(t− t0)

c6
H−1

(
c6λ(t)

(t− t0)ξ(t)

)
+ G−1 (J(t))− β4E

′(t).

Since
lim
t→∞

c6

t− t0
= 0,

there exists t1 ≥ t0 such that c6
t−t0 < 1 for all t > t1. Combining this with the

strictly increasing and strictly convex properties of G, using (4.7), for all t ≥ t1,
we obtain

F ′6(t) ≤ −β1E(t) +
(t− t0)

c6
H−1

(
c6λ(t)

(t− t0)ξ(t)

)
+

(t− t0)

c6
G
−1
(
c6J(t)

(t− t0)

)
,

where F6 = (F + β4E) ∼ E.
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Let r0 = min{r, r1} and χ(t) = c6 max
{

λ(t)
(t−t0)ξ(t) ,

J(t)
(t−t0)

}
. Thus,

F ′6(t) ≤ −β1E(t) +
(t− t0)

c6
W−1 (χ(t)) . (4.21)

Now, for 0 < ε2 < r0, using (4.21) and the fact that E′ ≤ 0, W′ > 0, W′′ > 0
on (0, r0], we find that the functional F7, defined by

F7(t) = W′
(

ε2

(t− t0)

E(t)

E(0)

)
F6(t),

satisfies
α5F7(t) ≤ E(t) ≤ α6F7(t)

for some α5, α6 > 0.
As above, using the convex conjugate of W, we get

F ′7(t) =

(
−ε2

(t− t0)2
+

ε2

(t− t0)

E′(t)

E(0)

)
W′′

(
ε2

(t− t0)

E(t)

E(0)

)
F6(t)

+ W′
(

ε2

(t− t0)

E(t)

E(0)

)
F ′6(t)

≤ −β1E(t)W′
(

ε2

(t− t0)

E(t)

E(0)

)
+

(t− t0)

c6
W′
(

ε2

(t− t0)

E(t)

E(0)

)
W−1 (χ(t))

≤ −(β1E(0)− ε2)
E(t)

E(0)
W′
(

ε2

(t− t0)

E(t)

E(0)

)
+

(t− t0)

c6
χ(t). (4.22)

From (4.6) and (4.18), we observe that for c7 > 0,

(t− t0)

c6
ξ(t)χ(t) ≤ −c7E

′(t).

After multiplying (4.22) by ξ(t), from the fact that ε2
E(t)
E(0) ≤ r0, it follows that

F ′8(t) ≤ −(β1E(0)− ε2)ξ(t)
E(t)

E(0)
W′
(

ε2

(t− t0)

E(t)

E(0)

)
,

where F8 = (ξF7 + c7E) ∼ E. Let us choose ε2 small enough such that

β9 = β1E(0)− ε2 > 0.

Therefore, for all t ≥ t1,

β9ξ(t)
E(t)

E(0)
W′
(

ε2

(t− t0)

E(t)

E(0)

)
≤ −F ′8(t). (4.23)

Integrating (4.23) and multiplying the result by 1
(t−t0) , by using the fact that

W′,W′′ > 0 and taking into consideration the nonincreasing property of E, we
deduce that for all t ≥ t1,

β9W1

(
1

(t− t0)

E(t)

E(0)

)∫ t

t1

ξ(s) ds ≤
∫ t

t1

β9W1

(
1

(s− t0)

E(s)

E(0)

)
ξ(s) ds ≤ F8(t1)

(t− t0)
.
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Consequently, (4.15) is derived as follows:

E(t) ≤ E(0)(t− t0)W−1
1

(
F8(t1)

β9(t− t0)
∫ t
t1
ξ(s) ds

)
.
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Результат загального згасання для зв’язаної системи
термопружностi третього типу з акустичними
граничними умовами за наявностi розподiленої

затримки
Abdelaziz Limam, Yamna Boukhatem, and Benyattou Benabderrahmane

У статтi вивчаються розв’язки загального згасання енергiї для тер-
мопружної зв’язаної системи третього типу з розподiленою затримкою
часу. Зв’язування вiдбувається завдяки акустичним граничним умовам.
Наш результат одержано в класi загальностi функцiї релаксацiї i тому
ця робота суттєво покращує попереднi результати в термопружностi.

Ключовi слова: ефект термопружностi, акустичнi граничнi умови,
в’язкопружне демпфiрування, загальне згасання
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