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A Thermo-Viscoelastic Fractional Contact
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This study concerns the analysis of a quasistatic frictional contact prob-
lem between a thermo-viscoelastic body and a thermally conductive founda-
tion. The constitutive relation is built by a fractional Kelvin—Voigt model.
The heat conduction is governed by time-fractional of temperature param-
eter 6. The contact is described by the normal compliance condition and
the friction is described by Coulomb’s law. We derive a variational for-
mulation of the problem and prove the existence of a weak solution to the
model by using the theory of monotone operator, Caputo derivative, Clark
subdifferential, Galerkin method and Banach fixed point theorem.
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1. Introduction

General models for contact problems with friction of a viscoelastic body can be
found in [2,3,18]. The mathematical model which describes the quasistatic fric-
tional contact between an electro-viscoelastic body and a deformable conductive
foundation was studied in [11]. A. Amassad et al. considered in [1] the modeling
of quasistatic thermoviscoelastic problem with bilateral contact and with a slip
rate dependent condition, they also proved the existence and uniqueness of the
weak solution and studied the regularized version of the problem.

The foundation of the theory of fractional calculus was initiated by Gottfried
Leibniz, Guillaume de 1’'Hopital and Johann Bernoulli at the end of the 17th
century [9]. After the publications of Joseph Liouville and Bernhard Riemann,
several results on this theory were introduced in the middle of the 19th century,
see [17].

Among the applications of fractional calculation there is the mechanical mod-
elling of rubber-like materials. In this sense, [8, 16] are cited as references for the
models that include specific materials having viscoelastic properties, where the
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fractional constitutive laws of Kelvin—Finger and the fractional model of Maxwell
are taken into account.

In [7], the authors studied a general quasistatic frictionless contact problem for
a viscoelastic body modeled by the fractional Kelvin—Voigt law and the contact
condition described by the Clarke subdifferential of a nonconvex and nonsmooth
functional.

Z. Zeng et al. [20,21] introduced a class of generalized differential hemivaria-
tional inequalities involving the time fractional order derivative operator applied
to a frictional contact problem.

The aim of the present paper is to study the solvability of a new mathematical
model for a frictional contact problem between a thermo-viscoelastic body and
a thermally conductive foundation. The novelty is in using the Kelvin—Voigt
constitutive law with time-fractional as below

o(t) = Ce (§ Dfu(t)) + E=(u(t)) — 6(H)M  in Q x (0,T). (1.1)

Also, we model the Fourier law of heat conduction for a temperature field with a
time-fractional as follows:

§DYO(t) + divg(t) = qo(t) in Q x (0,T), (1.2)

which leads to a new and more sophisticated mathematical model.

The difficulty of solving this type of problem lies in the coupling of viscoelastic
and thermal aspects with time fractional, also in the nonlinearity of the boundary
conditions, which gives us a nonlinear variational and hemivariational inequali-
ties.

We provide the variational analysis of the mechanical problem which leads to
a coupled system of time fractional and we show the existence of a weak solution.

Our main result is based on Theorem 19 from [21], the fractional Caputo
derivative, the Galerkin method and the Banach fixed point theorem.

The rest of the paper is organized as follows. In Section 2, we state the me-
chanical model of a thermo-viscoelastic fractional contact problem with normal
compliance and Coulomb’s friction. In Section 3, we review some basic mathe-
matical notations, definitions and assumptions. We derive the variational formu-
lation and present the main result of our problem. In Section 4, we prove our
main existence result. Finally, in Appendix (Section 5), we recall some results:
the Riemann—Liouville fractional integral, the Caputo derivative of order 0 <
a < 1, the Clarke generalized directional derivative and the generalized gradient,
which are useful in the proof of the main result.

2. Time-fractional contact problem

We consider a body made of a viscoelastic material, which occupies an open
domain Q C R, d = 2,3, with a smooth boundary 992 = I" and a unit outward
normal v. This boundary is divided into three open disjoint parts I'p, I'ny and
I'c such that meas(I'p) > 0. Let 7" > 0 and [0, 7| be the time interval of interest.
The body is submitted to the action of body forces of density fy and a volume
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heat flux of density qg. It is also submitted to mechanical and thermal constants
on the boundary. The body is clamped on I'p. The surface traction of density
fractson I'y x (0,7). On I'c x (0,7T), the body may come in frictional contact
with the so-called foundation which is thermally conductive. We assume that the
thermal potential is maintained fixed of 8r. The normalized gap between I'c X
(0,T) and the conductive foundation is denoted by g.

To simplify the notation, we denote by S% the space of the second-order sym-
metric tensor on R?, “.” and “|-|” represent the inner product and the Euclidean
norm on R?% and S¢ respectively. Thus,

U v = uv;, |v]|Re = (v,v)% for all u = (u;), v = (v;) € RY,
o T = 04jTij, |7||lsa = (T, T)% for all o = (0y5), T = (1;5) € S

We also use the notation u, and u, for the normal and tangential displacements,
that is, u, = v - v and u; = u — u, - v. We denote by o, and o, the normal and
tangential stress tensors given by o, = ov - v, 0 = ov —o,v.

We denote by u : 2x]0,T[— R the displacement field, by o = (o) : Q x
(0,7) — S, the stress tensor, and by ¢ = (¢;) : Q x (0,7) — R?, the heat flux
vector. Also, e(u) = (g45(u)) = %(u” +uji), € = (eijr), M = (myj), C = (cijnl)
and KC = (k;j) are respectively the linearized strain tensor, the elastic tensor, the
thermal expansion tensor, the (fourth-order) viscosity tensor and the thermal
conductivity tensor. Here and below “Div” and “div” denote the divergence
operator for tensor and vector valued functions, i.e., Diveo = (0y5;) and divg =
(qi)-

The classical form of the mechanical fractional contact problem is stated as
follows.

Problem (P): Find a displacement field u : Qx]0, T[— R? and a temperature
field 0 : Qx]0,T[— R such that

o(t) =Ce (ng‘u(t)) + Ee(u(t)) — ()M in x (0,T), (2.1)
q(t) = —=KVO(t) in x (0,7, (2.2)
Divo(t) 4 fo(t) =0 in x (0,7T), (2.3)
§D2O(t) + div q(t) = qo(t) in x (0,T), (2.4)
u(t) =0 on FD x (0,7, (2.5)
o(t)v = fi(t) on Ty x(0,7), (2.6)
6(t)=0 on (CpUTly)x(0,7), (2.7)
u(0,z) = ug, 6(0,z) =09 in €, (2.8)
— oy (t)(u(t) — g) = pu(uu(t) — g) on  Tox(0,T), (2.9)
o (D) < pr(un(t) — g) on T x(0,T), (2.10)
lo7 (@) < pr(un(t) — g) = ur(t) =0 on  Tcx(0,T), (2.11)
)

lor () = pr(un(t) — g)
= IN£0 0 (1) = —Mur(t) on  T¢ x (0,T), (2.12)
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9q(t)
ov

We now describe problem (2.1)—(2.13). First, equations (2.1) and (2.2) are
the time-fractional Kelvin—Voigt thermo-viscoelastic constitutive law of Caputo
type, see [19]. Equations (2.3)—(2.4) represent the equilibrium stress and the
Fourier law of heat conduction with time-fractional. Conditions (2.5)—-(2.7) are
the displacement and thermal boundary conditions. The initial conditions are
represented by equation (2.8). Moreover, equation (2.9) represents the normal
compliance contact condition, where p, is a prescribed function. When it is
positive, u,, — g represents the penetration of the surface asperities into those of
the foundation. The Coulomb law of friction is considered in (2.10)—(2.12), where
pr is a prescribed nonnegative function, the so-called friction bound. Finally, the

= ke(uy(t) — g)pr(0(t) — 0F) on T x(0,T). (2.13)

relation (2.13) represents a regularized thermal contact condition, where 2 is
v

the normal derivative of ¢ such that

—L ifs<—L )
. ke(r)=0 ifr <o
or(s)=1<s if —L<s<L, ] ,
] ke(r) >0 ifr>0
L ifs>1L

where L is a large positive constant, see [11].

3. Variational formulation and the main result

To present the variational formulation of Problem (P), we will use the nota-
tions
H={v=(v)|v; € L*(Q), i=1,....d} = L*(Q)*,
Hi={v=(v)|veHY(Q),i=1,...,d} = HY (),
H={r=(rj) | ij =75 € L*(Q), 4,5 =1,...,d},
Hi={c€eH|Divee H}.

These are real Hilbert spaces endowed with the inner products

(w0 = [ wivida, (1,011, = (1, 0) 7 + (e(u) + £(0))a,
Q
(o, 7))y = / oijTijde, (0,7)py = (0,7) + (Divo + Div )y
Q
with the associated norms || - ||g, || - |my, || - [, and || - |3 -

Also, for every real Hilbert space X, we use the classical notations for the
spaces LP(0,T; X), C(0,T; X) and W*»(0,T;X),1 <p<+4ocand k=1,2,...

Keeping in mind the boundary conditions (2.5) and (2.7), we introduce the
closed subspace of Hy by

V={veH |v=0onTp}, Q={ncH(Q)|n=00onTpuUTly},
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endowed with the inner product and the norm given by

(1,0} = (), () Jolly = (v, )3,

(6.mq = (V6. V1), Inle = (n. 3.

Let V,q be the set of admissible displacements defined by
Vaa={veV]|v—-—g<0onlc}

Since meas(I'p) > 0, Korn’s inequality

el = cxllvlls,,  for all v e V, (3.1)

holds, where cx > 0 is a constant which depends only on I' and I'p.
The following Frierichs—Poincaré inequality holds on Q:

IVlle = cplinllq  for all n € Q. (3.2)

Moreover, by Sobolev’s trace theorem, there exist constants c¢g and c¢;, which
depend only on Q, I'p and I'¢, for all v € V and n € @, such that

[0l 2reye < callvlly and 0l 2 re) < etllnlle- (3-3)

Next, we define the following operators:

a:VxV =R, a(u,v) := (Ee(u),e(v))n,
c:VxV =R, c(u,v) := (Ce(u),e(v))n,
d:Q xQ — R, d0,n) := (KV,Vn)m,
m:Q xV =R, m(6,v) := (M0, e(v))y.

The mappings j: V XV = Rand x: V x @ x @ — R are defined by

J(u(t),v) = / P (t) — g)u, da+ / pe(ur(t) — g)llvsll da,  (3.4)

Pe
x(u(t), 0(t),m) == / ke () — 9)br(0(t) — Op)n da (3.5)

for all v in V and 7 in Q.
Now we assume the following assumptions.

1. a) The operators a, ¢, and d are bilinear and satisfy the usual property of
symmetry

€ijkl = €jikl = €lkij € L(),  cijrl = Cjir = iy € L(Q),
kij = kji € L=(9);

b) the operators ¢, a and d satisfy the property of ellipticity, i.e., there exist
positive constants m., m, and mg such that

c(v,v) = mel[vllyr,  a(v,v) = mallvli;, and  d(n,n) > mallnl-
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2. The operators a, ¢, d and m satisfy the usual property of boundedness

lau, v)] < Ma|lullv[[v]lv, |e(u, v)| < M[[ullv[[v]lv,
|d(0,n)| < Mal|0lllnllQ; (m(6, v)| < Min[|0]lQllv]lv,

where M,, M., My, M,, > 0.
3. The forces, the traction and the heat flux satisfy
foeC(0,T;L%(Q)), fi1€C(0,T;L*(Tn)Y), and go€ C(0,T;L*()).

4. The gap function, the initial conditions and the thermal potential satisfy

9>0,9€L®(T¢c), ug€Vaa, p€Q, and 6Op € L*(0,T;L*T¢)).

5. The coefficient of heat exchange k. : I'c x R — R satisfies the conditions:

a) there exists My, > 0 such that |k.(x,u)| < My, for allu € Rand z € I's,
such that x — k.(x,u) is measurable on I'c for all u € R and vanishes
for all w < 0 and a.a. x € I'g;

b) there exists Ly, > 0 such that
\kc(rc,ul) - kC(CE, U2)| < chlul - UQ‘ for all uy,us € R.

6. The normal compliance function p, and the friction bound p, satisfy the
following hypotheses for § = v, 7:

b
c) =z —ps(x,u)=0foru<0anda.a. xe€lc;
d) there exits Ls > 0 such that

a) ps o X R = Ry;
)

x — ps(z,u) is measurable on I'¢ for all u € R;

]pg(-,u)—p5(~,v)\ SLC;’u_U‘ for all U7U€R+'
7. The functional j satisfies
107 (u(t),v)|lve < mj(1+|ully+|v]v) for allu € V,v € V and a.a. t € (0,T)

with m; > 0.

Using Riesz’s representation theorem, we conclude that there exist the ele-
ments f € V and ¢; € Q given by

(f(t),v)y = /ﬂfo(t) ~vdr + g fi(t) -vda for all v € V, (3.6)

@lt)mo = [ w®)-nds forallneQ.  (37)

From all these assumptions and notations, we obtain the following variational
formulation of Problem (P).
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Problem (PV): Find a displacement field u : Qx]0,T[— R? and a temper-
ature field 0 : Qx]0,T[— R such that for a.a. t €]0,T[,veV,ne€Q, and a €
10, 1[, we have

c (OCDtO‘u(t), v —u(t)) + a(u(t),v —u(t)) —m(d(t),v — u(t))
+j(u(t), v) = j(u(t), u(t)) = (f(t), v — u(t)), (3.8)

(§Dgo(t),n)q +d(O(t),n) + x(u(t),0(t),n) = (¢:(t),n), (3.9)
u(O) = ug, 9(0) = 90. (3.10)

In the following theorem, we state the solvability of Problem (PV).

Theorem 3.1. Let (3.4)—(3.5), Assumptions 1-7 and the conditions
mq > c5(L, +L,) and mg > My,c? (3.11)
hold. Then Problem (PV) has at least one solution

(u,0) € WH2(0,T;V) x WH2(0,T; Q). (3.12)

4. Existence of the weak solution

The proof of Theorem 3.1 will be carried out in several steps and it is based
on the argument for the monotone operator, the Caputo derivative, the Clarke
subdifferential, the Galerkin method and the Banach fixed point theorem.

First, let 5 € L2(0,T;V) be given by

(B(t), v —up(t)) = m (6s(t),v — us(t)) (4.1)
and we consider the following problem.

Problem (PV1): Find a displacement field ug : Qx]0, T[— R? such that for
a.a. t €]0,T[, v €V, and a €]0, 1], we have

¢ (§ Dftup(t), v — up(t)) + alus(t), v —us(t)) — (B(t),v — up(t))
+i(up(t),v) = j(up(t), us(t)) = (F(t),v —us(t)), (4.2)
’LLg(O) = Uug.

We have the following result.

Lemma 4.1. For allv € V and a.a. t €]0,T[, Problem (PV1) has at least
one solution ug € W12(0,T; V).

Proof. Using Riesz’s representation theorem, we define the functional
(F5(t),0)y = (F(£),0) + (B(t),v) forall v e V. (4.4)

Problem (PV1) can be written as follows:

¢ (6 Dffup(t), v — ug(t)) + alus(t),v — us(t)) + j(us(t),v)
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—j(us(t), up(t)) = (fs(t),v —ug(t)),  (4.5)
ug(0) = up.

It is easy to see that under Assumption 1 the operator ¢ is bilinear continuous
and coercive.

By Assumptions la) and 2, the operator a is bilinear and continuous.

From Assumption 3, (3.6), (4.4), and the regularity of 3, we have that f3 €
L*0,T; V).

It is clear from Assumption 6d) that j is a locally Lipschitz function.

We combine these results of the operators ¢, a, j and the function fz with
Assumption 7 and using the result provided by Theorem 19 in [21], we find that
Problem (PV1) has at least one solution ug € W12(0,7; V). O

Here and below ¢, c2 and cs; denote positive generic constants whose values
may change from line to line.

In the second step, we use the displacement field ug obtained in Lemma 4.1 to
prove the existence result for the temperature field 63 of the following problem.

Problem (PV2): Find a temperature field 65 : 2x]0,T[— R such that for
a.a. t €]0,T[, n € Q, and « €]0, 1], we have

(§Df0s(t),n) + d(05(t),m) + x (us(t),05(t),m) = (a:(t),m) , (4.7)
05(0) = .

Lemma 4.2. For alln € Q and a.a. t €]0,T[ Problem (PV2) has at least
one solution 03 € WH2(0,T; Q).

Proof. We will implement the Galerkin approximation method. For k =
1,2,..., let (wg) be a K** mode consisting of the eigenfunctions of —A such that
(wy)g>1 forms a Hilbertian basis of H().

We are to find a function g, :]0, T[— H(Q) of the form

05, (t) == D xh(Dwi. (4.9)
=1

We denote by F;, the vector space generated by wi, wa, ..., w,.

Whence 0g, € F;, and 05, — 03 in Q.

For each integer n > 1, consider the following approximate problem: Find
05, € L?(0,T; F,) such that § D§0g € L%*(0,T; F,) and

(§ D03, (), wr) + d (0, (£), wr) + x (us(t), 05, (t), wr) = (q:(t),wy),  (4.10)
05, (0) = 6p. (4.11)

Using (4.9), we have

(6 DF 03, (t), wi) o = § Dia(b), (4.12)
d (85, (1), w) = Kz, (1), (4.13)
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X (us(t),0p,(t), w) = x (U,B(t)a inz(t)whwk) : (4.14)

(q:(£), wr) = gf (1) (4.15)

Then (4.10)—(4.11) can be written as follows:

§ Dt (t) = h(t, 24 (1)), (4.16)
2;,(0) = (0, w:), (4.17)
where
h(t, 2l (1) = qf (t) — Kai,(t) — x (%(t), Z ap, (Hwg, wk> : (4.18)
=1

Due to Assumption 2, we find

| Ky, (8) = Ka,, (8)| < My |2, (t) — @3, (1)

n2

: (4.19)

and by (3.5), Assumptions 5 and 6, we have that

X (ug(t), inl(t)wi, wk> - X <u5(t), fom (t)wi,wk.>
i=1 =1

< My, Li, meas(T'c) |2, (t) — b, (t)] . (4.20)

n2

Combining this inequality with (4.18)-(4.19), we see that there exists a positive
constant ¢ such that

|h (t, @), (8) = b (t 2, (8)] < es|ah, (t) — i, ()] . (4.21)

Then, by a standard method for fractional calculus (see Proposition 4.6
in [12]), there exists a unique absolutely continuous function z,(t) =
(zL(t),2%(t),...,2n(t)) on [0,T%) that satisfies the system of fractional ordinary

differential equation (4.16)-(4.17).

Estimates: Multiply (4.10) by z?,(t), sum for i = 1,...,n and the fact that

1
05, — 5 163, HQQ is a convex functional to obtain

(6% 1 (6%
§0t (5010513 < (6D05,.05.) + 405,05,
+x (ug, 08,,08,) = (a1 05,) - (4.22)

After some calculus, for all € > 0, we have

ma |85, (t)ll5 < 1d (95, 65,)] . (4.23)
2M2 2
k L t 2
< < — 4.24
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1 2 | € 2
[(qt,08,)| < % gl + 3 108,115 - (4.25)

So,

1
C na 2 9 9
o D (2 <”"6n!cz> + 1 1108, 18 < e2 llael3 (4.26)

Applying Proposition 5.3(ii) to inequality (4.26), we obtain

201

2

t
[ = 10 0l s < e (lally + 1001) . (420)

Consequently, we find that T, = +oc.
Let n € Q, with ||n]|g < 1, and write n = 1 + 12, where 0y € spam {wy}j_,
are orthogonal in @,

Imlle <lnllq <1. (4.28)

Using (4.10), we conclude that

(§ D05, m) +d(0,,m) + x (ug, 05,,m) = (g, m) - (4.29)

Similarly to (4.23)—(4.25), we have

|d (0, m)| < Ma |03, ()l (4.30)
X (ug, 0p,,m)| < My, Mpey, (4.31)
(e, m)| < llatllg - (4.32)
Thus,
16 D205, [l - < e1+ 21105, + lallg - (4.33)

By inequality (4.27), there exists a positive constant cg such that

16 D205, | 120 700y < ©s- (4.34)

Passage to the limit: Let {7,,} be a sequence such that 7,, — 0, as n — 0.

Using the previous estimates and applying the compactness result (see The-
orem 4.2 in [13]) for the Caputo derivative, there exists a subsequence 65 and
05 € L*(0,T;Q) such that

0, — tp strongly in L*(0,T;Q), (4.35)

and
gD?%m — §D®0s  weakly in L*(0,T;Q"). (4.36)
Then

d(0g,,,m) = d(0s,m) inR, (4.37)
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(§Dg0s, ,m) — (§D6g,m) inR. (4.38)
By (3.5) and Assumption 5, we obtain

Ix (ug, 08, M| < My, L, |1l L2(rg)- (4.39)

Since {x (ug,03,,m)},-, is bounded in R, we may pass to a subsequence if it is
necessary. For n = 6g — 0, _, by using (3.5), we have

X (ug 95,05 — 03,,) = x (5,05, 05 — 03, )| < & My, L, ||65 = 05, ||, (4.40)

By the compactness of trace v : Q — L?(I'¢), it follows from the weak conver-
gence of f5_ that

05, — 05 strongly in L*(0,T; L*(Q)). (4.41)

Then
% (u5, Hgm,n) — X (ug,05,m) inR. (4.42)
The lemma is proved. O

In the last step, for the function 3 € L?(0,T;V) and the function t)g obtained
in Lemma 4.2, we consider the operator A : L2(0,T;V) — L?(0,T;V) defined by

(AB(t),v)y, :=m(0p(t),v) forallveV andt€|0,T]. (4.43)

We have the following lemma.

Lemma 4.3. For 8 € L*(0,T;V), the function AB :)0,T[— Q is continuous.
Moreover, there exists a unique element 3* € L?(0,T;V) such that AB* = 5*.

Proof. Let 8 € L?(0,T;V) and t1,ts €]0,T[. Using (4.1) and Assumption 2,
we deduce that

[AB(#1) = AB(E2) [l < s [10p(81) — Op(t2)ll, - (4.44)

Since 05 € L*(0,T;Q), we conclude that A3 € C(0,T;V).
Let now 31, B2 € L?(0,T;V). Similarly to (4.44), we get

IABL(E) = ABa(t)lly < s (105, (8) = O3, (D)l - (4.45)

Therefore, from (4.2), we obtain

c (OCD?uﬁl(t) -0 Dt ’LL52(7§),U51( ) - uﬁ2(t))

(uﬂl (t) — UBy (t), up, (t) — Ugy ()
(uﬁl (), Up, ) —J (uﬂl (t), U,y ()
(u52 (t), UBy () —J (uﬁz (t), Upy (t) <0. (4.46)
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From (3.5) and Assumption 6, we have

‘.7 (uﬂl (t),Um (t)) —J (uﬁ1 (t)? UBy (t)) +J (uﬁz( ) Ugy (t))
—j (ug, (t), ug, (1) < CA(Lr + Ly) [[ug, (1) = ug, ()5, - (4.47)
By Definition 5.2, we deduce
11—«
I Dfun (0~ §DFun Ol < Toos lin® - in®ly . (@48)

Combining (4.46)—(4.48), integrating from 0 to ¢ and using the Gronwall inequal-
ity, we conclude that there exists c; > 0 such that

[ug, (£) = ugy (W)l 20 707y < €5 181(E) = B2(D)ll L2 0,11 (4.49)
with the condition m, > ¢%(L, + L.). Using (4.7), we have
(ngeﬁl (t) - OCD?952 (t), 951 (t) - 052 (t)) +d (951 (t) - 952 (t), 051 (t) - 652 (t))
X (uﬁl (t)a H,Bl (t)a 051 (t) - eﬁz (t)) - X (uﬁz (t)7 952 (t>7 051 (t) - 6,32 (t)> =0. (4'50)
By (3.5) and Assumption 5, we conclude
‘X(uﬁl (t)v 951 (t)’eﬂl (t) - 9,32 (t)) - X (u52 (t)v 952 (t)’ 951 (t) - ‘952 (t)) ‘
< MchtZ ||651 (t) - 952 (t)”é
+ Ly Leeq (|0, (8) — 05, ()l g lus, (8) — ug, (D)l - - (4.51)

In the same way as above, after some calculations we get that there exists c¢s >
0 such that

105, () = 05, (D) 2010 < 5 s () = usy Ol ooy (452)

with the condition mg > My, c?.
Combining (4.45), (4.49) and (4.52), we obtain

[ABL(E) = AB2(t) | 20,mv) < s 181(8) = Ba (D)l 20,750 - (4.53)
Reiterating this inequality n times leads to
< (o) )

[A"B1(t) = A" B2 ()| 20,71y 181(8) = B2(O)ll 20,73 » (4.54)

which implies that for n sufficiently large the power A™ of A is a contraction in
L?(0,T;V). Therefore, there exists a unique element 5* € L?(0,7;V) such that
AB* = B*. O

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let 8* € L?(0,T;V) be a fixed point of the operator A.
Denote by ug« a solution of Problem (PV1) and let §g+ be a solution of Problem
(PV2) for § = p*. Using the definition of A, (4.1)—(4.3) and (4.7)—(4.8), we find
that (ug-,60p+) is a solution of Problem (PV). O
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5. Appendix

In this section, we recall some known definitions and properties on nonlinear
analysis and fractional calculus, which can be found in [4,10, 14, 15].

Definition 5.1 (The Riemann-Liouville fractional integral). Let X be a Ba-
nach space and (0,7 be a finite time interval. The Riemann-Liouville fractional
integral of order o > 0 for a given function f € L*(0,T; X) is defined by

oI% F(t) = F(la) /O (t— )21 f(s)ds forall ¢ € (0,T),

where I'(+) stands for the Gamma function defined by I'(o) = [;°t* e~ dt.

To complement the definition, we set oI = I, where I is the identity operator,
which means that oI? f(t) = f(t) for a.a. t € (0,T).

Definition 5.2 (The Caputo derivative of order, 0 < a < 1). Let X be a
Banach space, 0 < a < 1 and (0,7) be a finite time interval. For a given function
f e AC(0,T; W), the Caputo fractional derivative of f is defined by

CDOF(t) = oI O F(t) = —— )/t(t—s)af’(s)ds for all ¢ € (0, 7).
0

Nl -«

The notation AC(0,T; X) refers to the space of all absolutely continuous func-
tions from (0,7) into X.

It is obvious that if & = 1, then the Caputo derivative reduces to the classical
first-order derivative, that is, we have

SDLHf(t) =I1f'(t) = f'(t) fora.a.te (0,T).

Proposition 5.3. Let X be a Banach space and o, 3 > 0. Then the following
statements hold:

(i) forye LY(0,T;X), we have
oIf oI y(t) = oI Py(t)  for a.a. t € (0,7);
(ii) fory e AC(0,T;X) and a € (0, ], we have
off § Dfy(t) = y(t) = y(0) for a.a. t € (0,T);
(iii) fory € L'(0,T; X), we have
§D oIfy(t) = y(t) for a.a. t € (0,T).

Definition 5.4 (The Clarke generalized directional derivative and the gen-
eralized gradient). Let J : X — R be a locally Lipschitz function. We denote by
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JO(u,v) the Clarke generalized directional derivative of J at the point # € X in

the

direction y € X defined by

JO(z,y) = limsup T+ M) = J(Z).

A0t A
Z—T

The generalized gradient of J : X — R at x € X is defined by

[1]

0J(z) ={¢e X" |Vye X J%z,y) > (&, y)x+x}-
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3agadya TepMOB’SI3KOIIPY2KHOTO KOHTAKTY 3 TEPTAM i3
HOPMAJIbHUM Ta KYJIOHIBCBKUM TE€PTAM

Mustapha Bouallala and EL-Hassan Essoufi

JocTiizKenHst CTOCYeThbCd aHasi3y 3a/ladi KBa3iCTATUIHOIO KOHTAKTY 3
TEPTAM MiXK T€PMOB’sI3KOIPYKHUM TiJIOM i TEPMOIIPOBITHOIO OCHOBOIO. PiB-
HAHHS CTaHy mo0ymoBame 3 Bukopuctanusam mogeri Kenbsina—@oiirra 3 gpo-
60BoOI0 TIOXi/THOT0. TemIoNMPOBIIHICTE MOJIETIOETHCST IPOOOBOIO TTOXiTHOIO BijT-
HOCHO 4Yacy TemiieparypHoro mapamerpy 6. KoHrakT ommcyerbest 3a Inpu-
IIyIIEHHSAMI HOPMAJIBHOI I IJATIUBOCTI Ta KYJIOHIBChKOro TepTs. Mu oTpu-
MyeMO Bapiariiitie (popMysIOBaHHS 3a/1a4i 1 JOBOAMMO iCHYBaHHS CJIa0KOTO
PO3B’S3KY JJIs MOJIeJi, BUKOPUCTOBYIOYN TEOPII0 MOHOTOHHOI'O OIIEPATOPA,
noxigay KamyTo, cyoaudepenmian Knapka, meron [anpopkina Ta Teopemy
Banaxa 1po HepyXoMy TOYKY.

KitogoBi cjioBa: TepMOB’sI3KOIIPYKHUI KOHTAKT, HOPMAJIbHA, ITi /1A T/I0-

BiCTB, KyJIOHIBChKE TepTs, moximHa KamyTo, ciaabkuit po3s’s30k, meTon [a-
JIbOPKiHa, TeopeMa Banaxa mpo HEPYXOMY TOUKY
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