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In the paper, a deformation (in the vertical bundle) of the Cheeger–
Gromoll metric on the cotangent bundle T ∗M over an m-dimensional Rie-
mannian manifold (M, g), called the vertical rescaled Cheeger–Gromoll met-
ric, is considered. The para-Nordenian properties of the vertical rescaled
Cheeger–Gromoll metric are studied.
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1. Introduction

The geometry of the cotangent bundle T ∗M has been studied by many au-
thors: A.A. Salimov and F. Agca [18,19], K. Yano and S. Ishihara [24], F. Agca [1],
F. Ocak and S. Kazimova [16], F. Ocak [15], A. Gezer and M. Altunbas [9] and
others.

The notion of almost para-complex structure (or almost product structure)
on a smooth manifold was introduced in [12], and a survey of further results on
para-complex geometry (including para-Hermitian and para-Kähler geometry)
can be found, for instance, in [3, 5]. Also, other further significant developments
are to be found in [2, 22]. Some aspects concerning the geometry of tangent and
cotangent bundles are presented in [8–10,15,17,18].

In this paper, we introduce the vertical rescaled Cheeger–Gromoll metric on
the cotangent bundle T ∗M as a new natural metric with respect to the metric g.
First we study the geometry of the vertical rescaled Cheeger–Gromoll metric. We
construct almost para-complex Norden structures on a cotangent bundle equipped
with the vertical rescaled Cheeger–Gromoll metric and investigate conditions for
these structures to be para-Kähler–Norden, quasi-para-Kähler–Norden. Finally,
we describe some properties of almost para-complex Norden structures in the
context of almost product Riemannian manifolds.
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2. Cotangent bundles T ∗M

Let (Mm, g) be an m-dimensional Riemannian manifold, T ∗M be its cotan-
gent bundle and π : T ∗M → M be the natural projection. A local chart
(U, xi)i=1,m on M induces a local chart (π−1(U), xi, xī = pi)i=1,m,̄i=m+i on T ∗M ,
where pi is the component of covector p in each cotangent space T ∗xM , x ∈ U ,
with respect to the natural coframe dxi. Let C∞(M) (respectively, C∞(T ∗M))
be the ring of real-valued C∞ functions on M(respectively, T ∗M) and =rs(M)
(respectively, =rs(T ∗M)) be the module over C∞(M) (respectively, C∞(T ∗M))
of C∞ tensor fields of type (r, s).

Denote by Γkij the Christoffel symbols of g and by ∇, the Levi-Civita connec-
tion of g.

We have two complementary distributions on T ∗M , the vertical distribution
V T ∗M = Ker(dπ) and the horizontal distribution HT ∗M that define a direct
sum decomposition

TT ∗M = V T ∗M ⊕HT ∗M. (2.1)

Let X = Xi ∂
∂xi

and ω = ωidx
i be local expressions in U ⊂M of a vector and

covector fields X ∈ =1
0(M) and ω ∈ =0

1(M), respectively. Then the horizontal
and the vertical lifts of X and ω are defined respectively by

XH = Xi ∂

∂xi
+ phΓhijX

j ∂

∂pi
, (2.2)

ωV = ωi
∂

∂pi
(2.3)

with respect to the natural frame { ∂
∂xi
, ∂
∂pi
}, where Γhij are components of the

Levi-Civita connection ∇ on M (see [24] for more details).

Lemma 2.1 ([24]). Let (M, g) be a Riemannian manifold, ∇ be the Levi-
Civita connection and R be the Riemannian curvature tensor. Then the Lie
bracket of the cotangent bundle T ∗M of M satisfies the following:

1. [ωV , θV ] = 0,

2. [XH , θV ] = (∇Xθ)V ,

3. [XH , Y H ] = [X,Y ]H − (pR(X,Y ))V ,

for all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M), such that pR(X,Y ) = paR
a
ijkX

iY j dxk,
where Raijk are local components of R on (M, g).

Let (M, g) be a Riemannian manifold. We define the map

=0
1(M)→ =1

0(M)

ω 7→ ω̃

for all X ∈ =1
0(M), g(ω̃,X) = ω(X). Locally, for all ω = ωi dx

i ∈ =0
1(M), we

have ω̃ = gijωi
∂
∂xj

, where (gij) is the inverse matrix of the matrix (gij).
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For each x ∈ M , the scalar product g−1 = (gij) is defined on the cotangent
space T ∗xM by g−1(ω, θ) = g(ω̃, θ̃) = gijωiθj . In this case, we have ω̃ = g−1 ◦ ω.

If ∇ is the Levi-Civita connection of (M, g), then we have

∇X ω̃ = ∇̃Xω,
Xg−1(ω, θ) = g−1(∇Xω, θ) + g−1(ω,∇Xθ)

for all X ∈ =1
0(M) and ω, θ ∈ =0

1(M).

3. Vertical rescaled Cheeger–Gromoll metric

Definition 3.1. Let (M, g) be a Riemannian manifold and f : M →]0,+∞[
be a strictly positive smooth function on M . On the cotangent bundle T ∗M , we
define a vertical rescaled Cheeger–Gromoll metric denoted by gf :

gf (XH , Y H) = g(X,Y )V = g(X,Y ) ◦ π, (3.1)

gf (XH , θV ) = 0, (3.2)

f (ωV , θV ) =
f

α
(g−1(ω, θ) + g−1(ω, p)g−1(θ, p)) (3.3)

for all X,Y ∈ =1
0(M), ω, θ ∈ =0

1(M), where α = 1 + ‖p‖2 and ‖p‖ =
√
g−1(p, p)

is the norm of p with respect to the metric g.

Note that if f = 1, then gf is the Cheeger–Gromoll metric [19].

Lemma 3.2. Let (M, g) be a Riemannian manifold and ρ : R → R be a
smooth function. Then we have the following:

1. XH(ρ(r2))ξ = 0,

2. ωV (ρ(r2))ξ = 2ρ′(r2)g−1(ω, p)x,

3. XH(g−1(θ, p))ξ = g−1(∇Xθ, p)x,

4. ωV (g−1(θ, p))ξ = g−1(ω, θ)x,

5. XH(g(Y, Z))ξ = Xg(X,Y )x = g(∇XY, Z)x + g(Y,∇XZ)x,

6. XH(g−1(θ, η))ξ = Xg−1(θ, η)x = g−1(∇Xθ, η)x + g−1(θ,∇Xη)x,

7. ωV (g(Y, Z))ξ = 0,

8. ωV (g−1(θ, η))ξ = 0

for all ξ = (x, p) ∈ T ∗M , X,Y, Z ∈ =1
0(M) and ω, θ, η ∈ =0

1(M), r2 = g−1(p, p).

Proof. Locally, Lemma 3.2 follows from formulas (2.2) and (2.3).

Lemma 3.3. Let (M, g) be a Riemannian manifold and (T ∗M, gf ) be its
cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric.
Then we have the following:
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(1) XHgf (θV , ηV ) =
1

f
X(f)gf (θV , ηV ) + gf ((∇Xθ)V , ηV ) + gf (θV , (∇Xη)V ),

(2) ωV gf (θV , ηV ) =
−2

α
g−1(ω, p)gf (θV , ηV ) +

1

α
g−1(ω, θ)gf (ηV ,PV )

+
1

α
g−1(ω, η)gf (θV ,PV )

for all X ∈ =1
0(M) and ω, θ,P ∈ =0

1(M) such that Px = p ∈ T ∗xM , (PV is the
canonical vertical or Liouville vector field on T ∗M).

Proof. The proof of Lemma 3.3 follows directly from Lemma 3.2.

Theorem 3.4. Let (M, g) be a Riemannian manifold and (T ∗M, gf ) be its
cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric. If
∇ (respectively, ∇f ) denotes the Levi-Civita connection of (M, g) (respectively,
(T ∗M, gf ) ), we have

(1) (∇f
XHY

H)ξ = (∇XY )Hξ +
1

2
(pRx(X,Y ))V ,

(2) (∇f
XHθ

V )ξ = (∇Xθ)Vξ +
1

2f(x)
Xx(f)θVξ +

f(x)

2α
(Rx(p̃, θ̃)X)H ,

(3) (∇f
ωV Y

H)ξ =
1

2f(x)
Yx(f)ωVx +

f(x)

2α
(Rx(p̃, ω̃)Y )H ,

(4) (∇f
ωV θ

V )ξ = − 1

2f(x)
gfξ (ωV , θV )(grad f)Hξ −

1

αf(x)

[
gfξ (ωV ,PV )θVξ

+gfξ (θV ,PV )ωVξ
]

+
[ α+ 1

αf(x)
gfξ (ωV , θV )− 1

αf2(x)
gfξ (ωV ,PV )gfξ (θV ,PV )

]
PVξ

for all ξ = (x, p) ∈ T ∗M , X,Y ∈ =1
0(M) and ω, θ,P ∈ =0

1(M) such that Px =
p ∈ T ∗xM , ( PV is the canonical vertical or Liouville vector field on T ∗M ) and
pR(X,Y ) = paR

a
ijkX

iY j dxk, where Raijk are local components of the curvature
tensor R on (M, g).

Proof. The proof of Theorem 3.4 follows from the Kozul formula and Lemma
3.3.

(1) Direct calculations give us

2gf (∇f
XHY

H , ZH) = XHgf (Y H , ZH) + Y Hgf (ZH , XH)− ZHgf (XH , Y H)

+ gf (ZH , [XH , Y H ]) + gf (Y H , [ZH , XH ])

− gf (XH , [Y H , ZH ])

= Xg(Y,Z) + Y g(Z,X)− Zg(X,Y ) + g(Z, [X,Y ])

+ g(Y, [Z,X])− g(X, [Y,Z])

= 2g(∇XY, Z) = 2gf ((∇XY )H , ZH)

and

2gf (∇f
XHY

H , ηV ) = XHgf (Y H , ηV ) + Y Hgf (ηV , XH)− ηV gf (XH , Y H)
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+ gf (ηV , [XH , Y H ]) + gf (Y H , [ηV , XH ])

− gf (XH , [Y H , ηV ])

= gf (ηV , [XH , Y H ]) = gf ((pR(X,Y ))V , ηV ).

Thus we have

∇f
XHY

H = (∇XY )H +
1

2
(pR(X,Y ))V .

(2) By straightforward calculations, we obtain

2gf (∇f
XHθ

V , ZH) = XHgf (θV , ZH) + θV gf (ZH , XH)− ZHgf (XH , θV )

+ gf (ZH , [XH , θV ]) + gf (θV , [ZH , XH ])

− gf (XH , [θV , ZH ])

= gf (θV , [ZH , XH ]) = gf ((pR(Z,X))V , θV )

=
f

α

(
g−1(pR(Z,X), θ) + g−1(pR(Z,X), p)g−1(θ, p)

)
=
f

α
gf ((R(p̃, θ̃)X)H , ZH),

where

g−1(pR(Z,X), θ) = gkl(pR(Z,X))kθl = psR
s
ijkZ

iXj θ̃k

= gstp̃
tRsijkZ

iXj θ̃k = RijktZ
iXj θ̃kp̃t

= g(R(Z,X)θ̃, p̃) = g(R(p̃, θ̃)X,Z)

= gf ((R(p̃, θ̃)X)H , ZH)

and

g−1(pR(Z,X), p) = gkl(pR(Z,X))kpl = (pR(Z,X))kp̃
k,

= psR
s
ijkZ

iXj p̃k = gstp̃
tRsijkZ

iXj p̃k

= RijktZ
iXj p̃tp̃k = g(R(Z,X)p̃, p̃) = 0.

Then it follows that

2gf (∇f
XHθ

V , ηV ) = XHgf (θV , ηV ) + θV gf (ηV , XH)− ηV gf (XH , θV )

+ gf (ηV , [XH , θV ]) + gf (θV , [ηV , XH ])

− gf (XH , [θV , ηV ])

= XHgf (θV , ηV ) + gf (ηV , [XH , θV ]) + gf (θV , [ηV , XH ]).

Using the first formula of Lemma 4.10, we have

2gf (∇f
XHθ

V , ηV ) =
1

f
X(f)gf (θV , ηV ) + gf ((∇Xθ)V , ηV ) + gf (θV , (∇Xη)V )
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+ gf (ηV , (∇Xθ)V )− gf (θV , (∇Xη)V )

= 2gf ((∇Xθ)V , ηV ) +
1

f
X(f)gf (θV , ηV ),

and thus

∇f
XHθ

V = (∇Xθ)V +
1

2f
X(f)θV +

f

2
(R(p̃, θ̃)X)H .

The other formulas are obtained by a similar calculation.

4. Para-Kähler–Norden Structures

An almost product structure ϕ on a manifold M is a (1, 1) tensor field on M
such that ϕ2 = idM , ϕ 6= ±idM (idM is the identity tensor field of type (1, 1) on
M). The pair (M,ϕ) is called an almost product manifold.

A linear connection ∇ on (M,ϕ) such that ∇ϕ = 0 is said to be an almost
product connection. There exists an almost product connection on every almost
product manifold [11].

An almost para-complex manifold is an almost product manifold (M,ϕ) such
that the two eigenbundles TM+ and TM− associated to the two eigenvalues +1
and −1 of ϕ, respectively, have the same rank. Note that the dimension of an
almost para-complex manifold is necessarily even [5].

An almost para-complex Norden manifold (M2m, ϕ, g) is a real 2m-
dimensional differentiable manifold M2m with an almost para-complex structure
ϕ and a Riemannian metric g such that

g(ϕX, Y ) = g(X,ϕY ) (4.1)

for all X,Y ∈ =1
0(M). In this case, g is called a pure metric with respect to ϕ or

para-Norden metric (B-metric) [22].
A para-complex Norden manifold (para-Kähler–Norden) is an almost para-

complex Norden manifold (M2m, ϕ, g) such that ϕ is integrable, i.e, ∇ϕ = 0
(B-manifold), where ∇ is the Levi-Civita connection of g [20, 22].

A Tachibana operator φϕ applied to the pure metric g is given by

(φϕg)(X,Y, Z) = (ϕX)(g(Y,Z))−X(g(ϕY,Z)) + g((LY ϕ)X,Z)

+ g((LZϕ)X,Y ) (4.2)

for all X,Y, Z ∈ =1
0(M) [23].

In a para-complex Norden manifold, a para-Norden metric g is called para-
holomorphic if

(φϕg)(X,Y, Z) = 0 (4.3)

for all X,Y, Z ∈ =1
0(M) [22].

A para-holomorphic Norden manifold is an almost para-complex Norden man-
ifold (M2m, ϕ, g) such that g is a para-holomorphic, i.e., φϕg = 0.
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It is well known that the almost para-holomorphic Norden manifold
(M2m, ϕ, g) is para-Kähler–Norden if and only if g is paraholomorphic, i.e., φϕg =
0 is equivalent to ∇ϕ = 0, which was proven in [22]. By virtue of this point
of view, para-holomorphic Norden manifolds are similar to para-Kähler–Norden
manifolds [20].

4.1. Let (M, g) be a Riemannian manifold. We consider an almost para-
complex structure J on T ∗M defined by{

JXH = −XH

JωV = ωV
(4.4)

for all X ∈ =1
0(M) and ω ∈ =0

1(M) [4].

Theorem 4.1. Let (M, g) be a Riemannian manifold, (T ∗M, gf ) be its cotan-
gent bundle equipped with the vertical rescaled Cheeger–Gromoll metric and the
almost para-complex structure J defined by (4.4). The triple (T ∗M,J, gf ) is an
almost para-complex Norden manifold.

Proof. For all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M), from (4.4) we have

1. gf (JXH , Y H) = gf (−XH , Y H) = gf (XH ,−Y H) = gf (XH , JY H);

2. gf (JXH , θV ) = gf (−XH , θV ) = 0 = gf (XH , θV ) = gf (XH , JθV );

3. gf (JωV , Y H) = gf (ωV , Y H) = 0 = gf (ωV ,−Y H) = gf (ωV , JY H);

4. gf (JωV , θV ) = gf (ωV , θV ) = gf (ωV , JθV ),

i.e., gf is pure with respect to J . Hence, (T ∗M,J, gf ) is an almost para-complex
Norden manifold.

Proposition 4.2. Let (M, g) be a Riemannian manifold, (T ∗M, gf ) be its
cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric and
the almost para-complex structure J defined by (4.4). Then we get

1. (φJg
f )(XH , Y H , ZH) = 0;

2. (φJg
f )(ωV , Y H , ZH) = 0,

3. (φJg
f )(XH , θV , ZH) = 2gf

(
(pR(X,Z))V , θV

)
;

4. (φJg
f )(XH , Y H , ηV ) = 2gf

(
(pR(X,Y ))V , ηV

)
;

5. (φJg
f )(ωV , θV , ZH) = 0,

6. (φJg
f )(ωV , Y H , ηV ) = 0;

7. (φJg
f )(XH , θV , ηV ) =

−2

f
X(f)gf (θV , ηV );

8. (φJg
f )(ωV , θV , ηV ) = 0
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for all X,Y, Z ∈ =1
0(M) and ω, θ, η ∈ =0

1(M), where R denotes the curvature
tensor of (M, g).

Proof. We calculate the Tachibana operator φJ applied to the pure metric
gf . This operator is characterized by (4.2).

1. From Lemma 3.3, we have

(φJg
f )(XH , Y H , ZH) = (JXH)gf (Y H , ZH)−XHgf (JY H , ZH)

+ gf
(
(LY HJ)XH , ZH

)
+ gf

(
Y H , (LZHJ)XH

)
= −XHgf (Y H , ZH) +XHgf (Y H , ZH)

+ gf
(
LY HJXH − J(LY HXH), ZH

)
+ gf

(
Y H , LZHJXH − J(LZHXH)

)
= −gf

(
[Y H , XH ], ZH

)
− gf

(
J [Y H , XH ], ZH

)
− gf

(
Y H , [ZH , XH ]

)
− gf

(
Y H , J [ZH , XH ]

)
= 0.

2. We also have

(φJg
f )(ωV , Y H , ZH) = (JωV )gf (Y H , ZH)− ωV gf (JY H , ZH)

)
+ gf

(
(LY HJ)ωV , ZH

)
+ gf

(
Y H , (LZHJ)ωV

)
= +gf

(
[Y H , ωV ], ZH

)
− gf

(
J [Y H , ωV ], ZH

)
+ gf

(
Y H , [ZH , ωV ]

)
− gf

(
Y H , J [ZH , ωV ]

)
= 2gf

(
[Y H , ωV ], ZH

)
+ 2gf

(
Y H , [ZH , ωV ]

)
= 2gf

(
(∇Y ω)V , ZH

)
+ 2gf

(
Y H , (∇Zω)V

)
= 0.

3. We obtain

(φJg
f )(XH , θV , ZH) = (JXH)gf (θV , ZH)−XHgf (JθV , ZH)

+ gf
(
(LθV J)XH , ZH

)
+ gf

(
θV , (LZHJ)XH

)
= −gf

(
[θV , XH ], ZH

)
− gf

(
J [θV , XH ], ZH

)
− gf

(
θV , [ZH , XH ]

)
− gf

(
θV , J [ZH , XH ]

)
= −2gf

(
θV , [ZH , XH ]

)
= −2gf

(
θV , (pR(Z,X))V

)
= 2gf

(
(pR(X,Z))V , θV

)
.

4. Finally, we get

(φJg
f )(XH , Y H , ηV ) = (JXH)gf (Y H , ηV )−XHgf (JY H , ηV )

+ gf
(
(LY HJ)XH , ηV

)
+ gf

(
Y H , (LηV J)XH

)
= −gf

(
[Y H , XH ], ηV

)
− gf

(
J [Y H , XH ], ηV

)
− gf

(
Y H , [ηV , XH ]

)
− gf

(
Y H , J [ηV , XH ]

)
= −2gf

(
[Y H , XH ], ηV

)
= 2gf

(
(pR(X,Y ))V , ηV

)
.

The other formulas are obtained by a similar calculation.
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Theorem 4.3. Let (M, g) be a Riemannian manifold, (T ∗M, gf ) be its cotan-
gent bundle equipped with the vertical rescaled Cheeger–Gromoll metric and the
almost para-complex structure J defined by (4.4). The triple (T ∗M,J, gf ) is a
para-Kähler–Norden manifold if and only if M is flat and f is constant.

Proof. For all X,Y , Z ∈ =1
0(T ∗M) such as X = XH , ωV , Y = Y H , θV and

Z = ZH , ηV , by virtue of Proposition 4.2, we have.

(φJg
f ))(X,Y , Z) = 0⇔


2gf
(
(pR(X,Z))V , θV

)
= 0

2gf
(
(pR(X,Y ))V , ηV

)
= 0

−2

f
X(f)gf (θV , ηV ) = 0

⇔


pR(X,Z) = 0

pR(X,Y ) = 0

X(f) = 0

⇔ R = 0 and f = const.

4.2. Now we study a quasi-para-Kähler–Norden manifold. The basic class
of non-integrable almost paracomplex manifolds with para–Norden metric is the
class of quasi-para-Kähler manifolds. An almost para-complex Norden manifold
(M,ϕ, g) is a quasi-para-Kähler–Norden manifold if

σ
X,Y,Z

g((∇Xϕ)Y, Z) = 0

for all X,Y, Z ∈ =1
0(M), where σ is the cyclic sum by three arguments [7, 13]. It

is well known that
σ

X,Y,Z
g((∇Xϕ)Y, Z) = 0

is equivalent to

(φϕg)(X,Y, Z) + (φϕg)(Y, Z,X) + (φϕg)(Z,X, Y ) = 0,

which was proven in [21].

Theorem 4.4. Let (M, g) be a Riemannian manifold, (T ∗M, gf ) be its cotan-
gent bundle equipped with the vertical rescaled Cheeger–Gromoll metric and the
almost para-complex structure J defined by (4.4). The triple (T ∗M,J, gf ) is a
quasi-para-Kähler–Norden manifold if and only if f is constant.

Proof. We put, for all X,Y , Z ∈ =1
0(T ∗M),

A(X,Y , Z) = (φJg
f )(X,Y , Z) + (φJg

f )(Y , Z,X) + (φJg
f )(Z,X, Y ).

By virtue of Proposition 4.2, we have

A(XH , Y H , ZH) = 0, A(ωV , Y H , ZH) = 0,

A(ωV , θV , ZH) = − 2

f
Z(f)gf (ωV , θV ), (ωV , θV , ηV ) = 0.

Then, for (T ∗M,J, gf ) to be a quasi-para-Kähler–Norden manifold, it suffices
that Z(f) = 0, for any Z ∈ =1

0(M), i.e., f is constant.
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4.3. Now we study a generalization of the almost para-complex structure
defined by (4.4).

Lemma 4.5. Let (M,ϕ) be an almost para-complex manifold and define a
tensor field Jϕ ∈ =1

1(T ∗M) by{
JϕX

H = −(ϕX)H

Jϕω
V = ωV

(4.5)

for all X ∈ =1
0(M) and ω ∈ =0

1(M). Then the couple (T ∗M,Jϕ) is an almost
para-complex manifold .

Proof. By virtue of (4.5), we have{
J2
ϕX

H = Jϕ(JϕX
H) = Jϕ(−(ϕX)H) = (ϕ(ϕX))H = (ϕ2X)H ,

J2
ϕω

V = Jϕ(Jϕω
V ) = Jϕω

V = ωV

for any X ∈ =1
0(M) and ω ∈ =0

1(M). Since ϕ2 = idM , then J2
ϕ = idT ∗M .

Theorem 4.6. Let (M,ϕ, g) be an almost para-complex Norden manifold,
(T ∗M, gf ) be its cotangent bundle equipped with the vertical rescaled Cheeger–
Gromoll metric and the almost para-complex structure Jϕ defined by (4.5). The
triple (T ∗M,Jϕ, g

f ) is an almost para-complex Norden manifold.

Proof. For all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M), from (4.5) we have

gf (JϕX
H , Y H) = gf (−(ϕX)H , Y H) = −g(ϕX, Y ) = −g(X,ϕY )

= gf (XH ,−(ϕY )H) = gf (XH , JϕY
H),

gf (JϕX
H , θV ) = gf (−(ϕX)H , θV ) = 0 = gf (XH , θV ) = gf (XH , Jϕθ

V ),

gf (Jϕω
V , θV ) = gf (ωV , θV ) = gf (ωV , Jϕθ

V ).

Since g is pure with respect to ϕ, then gf is pure with respect to Jϕ.

Proposition 4.7. Let (M,ϕ, g) be an almost para-complex Norden manifold,
(T ∗M, gf ) be its cotangent bundle equipped with the vertical rescaled Cheeger–
Gromoll metric and the almost para-complex structure Jϕ defined by (4.5). Then
we get

1. (φJϕg
f )(XH , Y H , ZH) = −(φϕg)(X,Y, Z);

2. (φJϕg
f )(ωV , Y H , ZH) = 0;

3. (φJϕg
f )(XH , θV , ZH) = gf

(
(pR(ϕX,Z) + pR(X,Z))V , θV

)
;

4. (φJϕg
f )(XH , Y H , ηV ) = gf

(
(pR(ϕX, Y ) + pR(X,Y ))V , ηV

)
,

5. (φJϕg
f )(ωV , θV , ZH) = 0;



398 Abderrahim Zagane

6. (φJϕg
f )(ωV , Y H , ηV ) = 0;

7. (φJϕg
f )(XH , θV , ηV ) =

−1

f
(ϕX(f) +X(f))gf (θV , ηV );

8. (φJϕg
f )(ωV , θV , ηV ) = 0

for all X,Y, Z ∈ =1
0(M) and ω, θ, η ∈ =0

1(M), where R denotes the curvature
tensor of (M, g).

Proof. We calculate the Tachibana operator φJϕ applied to the pure metric
gf . With the same steps as in the proof of Proposition 4.2, we get the results.

Theorem 4.8. Let (M,ϕ, g) be an almost para-complex Norden manifold,
(T ∗M, gf ) be its cotangent bundle equipped with the vertical rescaled Cheeger–
Gromoll metric and the almost para-complex structure Jϕ defined by (4.5). The
triple (T ∗M,Jϕ, g

f ) is a para-Kähler–Norden manifold if and only if M is a flat
para-Kähler–Norden manifold and f is constant.

Proof. For all X,Y , Z ∈ =1
0(T ∗M) such as X = XH , ωV , Y = Y H , θV and

Z = ZH , ηV , by virtue of Proposition 4.7, we have

(φJϕg
f ))(X,Y , Z) = 0⇔



(φϕg)(X,Y, Z) = 0

gf
(
(pR(ϕX,Z) + pR(X,Z))V , θV

)
= 0

gf
(
(pR(ϕX, Y ) + pR(X,Y ))V , ηV

)
= 0

−1

f
(ϕX(f) +X(f))gf (θV , ηV ) = 0

⇔


(φϕg)(X,Y, Z) = 0

pR(ϕX +X,Z) = 0

pR(ϕX +X,Y ) = 0

(ϕX +X)(f) = 0

.

Since ϕ 6= ±idM , then

(φJϕg
f ))(X,Y , Z) = 0⇔


φϕg = 0

R = 0

f = const

.

Theorem 4.9. Let (M,ϕ, g) be a para-Kähler–Norden manifold, (T ∗M, gf )
be its cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll met-
ric and the almost para-complex structure Jϕ defined by (4.5). The triple
(T ∗M,Jϕ, g

f ) is a quasi-para-Kähler–Norden manifold if and only if f is con-
stant.

Proof. Since (M,ϕ, g) is a para-Kähler–Norden manifold, then for all
X,Y, Z ∈ =1

0(M) (φϕg)(X,Y, Z) = 0, and R(ϕY,Z) = R(Y, ϕZ). With the
same steps as in the proof of Theorem 4.4, we get the results.
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4.4. Now consider the almost product structure J defined by (4.4) and
the Levi-Civita connection ∇f of (T ∗M, gf ) given by Theorem 3.4. We define a
tensor field S of type (1, 2) and a linear connection ∇̂ on T ∗M ,

S(X,Y ) =
1

2

[
(∇f

JY
J)X + J

(
(∇f

Y
J)X

)
− J

(
(∇f

X
J)Y

)]
, (4.6)

∇̂XY = ∇f
X
Y − S(X,Y ) (4.7)

for all X,Y =1
0(T ∗M), is an almost product connection on T ∗M (see [11, p.151]

for more details).

Lemma 4.10. Let (M, g) be a Riemannian manifold, T ∗M be its cotangent
bundle equipped with the vertical rescaled Cheeger–Gromoll metric gf and the
almost product structure J defined by (4.4). Then the tensor field S is as follows:

(1) S(XH , Y H) =
1

2
(pR(X,Y ))V ,

(2) S(XH , θV ) = − 1

f
X(f)θV +

f

2α
(R(p̃, θ̃)X)H ,

(3) S(ωV , Y H) = − 1

f
Y (f)ωV ,

(4) S(ωV , θV ) = − 1

2f
gf (ωV , θV )(grad f)H

for all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M).

Proof. The proof of Lemma 4.10 follows directly from Theorem 3.4, formula
(4.4) and formula (4.6).

Theorem 4.11. Let (M, g) be a Riemannian manifold, T ∗M be its cotangent
bundle equipped with the vertical rescaled Cheeger–Gromoll metric gf and the
almost product structure J defined by (4.4). Then the almost product connection
∇̂ defined by (4.7) is as follows:

(1) ∇̂XHY H = (∇XY )H ,

(2) ∇̂XHθV = (∇Xθ)V +
3

2f
X(f)θV ,

(3) ∇̂ωV Y H =
f

2α
(R(p̃, ω̃)Y )H ,

(4) ∇̂ωV θV = − 1

αf

[
gf (ωV ,PV )θV + gf (θV ,PV )ωV

]
+

[
α+ 1

αf
gf (ωV , θV )−

1

αf2
gf (ωV ,PV )gf (θV ,PV )

]
PV

for all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M).

Proof. The proof of Theorem 4.11 follows directly from Theorem 3.4, Lemma
4.10 and formula (4.7).
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Lemma 4.12. Let (M, g) be a Riemannian manifold, T ∗M be its cotangent
bundle equipped with the vertical rescaled Cheeger–Gromoll metric gf and the
almost product structure J defined by (4.4), and let T̂ denote the torsion tensor
of ∇̂. Then we have

1) T̂ (XH , Y H) = (pR(X,Y ))V ,

2) T̂ (XH , θV ) =
3

2f
X(f)θV − f

2α
(R(p̃, θ̃)X)H ,

3) T̂ (ωV , Y H) = − 3

2f
Y (f)ωV +

f

2α
(R(p̃, ω̃)Y )H ,

4) T̂ (ωV , θV ) = 0

for all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M).

Proof. The proof of Lemma 4.12 follows directly from Lemma 4.10 and the
formula

T̂ (X,Y ) = ∇̂XY − ∇̂YX − [X,Y ] = S(Y ,X)− S(X,Y )

for all X,Y ∈ =1
0(T ∗M).

From Lemma 4.12, we obtain.

Theorem 4.13. Let (M, g) be a Riemannian manifold, T ∗M be its cotangent
bundle equipped with the vertical rescaled Cheeger–Gromoll metric gf , and let ∇̂
be the almost product connection defined by (4.7). Then ∇̂ is symmetric if and
only if f is a constant function and M is flat.
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Пара-комплекснi структури Нордена в кодотичному
розшаруваннi з вертикальною масштабованою

метрикою Чiгера-Громолла
Abderrahim Zagane

У статтi розглядається деформацiя (у вертикальному розшаруван-
нi) метрики Чiгера–Громолла на кодотичному розшаруваннi T ∗M над
m-вимiрним рiмановим многовидом (M, g), що називається вертикаль-
ною масштабованою метрикою Чiгера–Громолла. Дослiджено пара-
норденовi властивостi вертикальної масштабованої метрики Чiгера–
Громолла.

Ключовi слова: кодотичнi розшарування, горизонтальний лiфт, вер-
тикальний лiфт, вертикальна масштабована метрика Чiгера–Громолла,
пара-комплексна структура, чиста метрика.
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