Journal of Mathematical Physics, Analysis, Geometry 2021, Vol. 17, No. 3, pp. 388-402 doi: https://doi.org/10.15407/mag17.03.388

Para-Complex Norden Structures in Cotangent Bundle Equipped with Vertical Rescaled Cheeger–Gromoll Metric

Abderrahim Zagane

In the paper, a deformation (in the vertical bundle) of the Cheeger–Gromoll metric on the cotangent bundle T^*M over an *m*-dimensional Riemannian manifold (M, g), called the vertical rescaled Cheeger–Gromoll metric, is considered. The para-Nordenian properties of the vertical rescaled Cheeger–Gromoll metric are studied.

Key words: cotangent bundles, horizontal lift, vertical lift, vertical rescaled Cheeger–Gromoll metric, para-complex structure, pure metric

Mathematical Subject Classification 2010: 53C20,53C15,53C56,53B35

1. Introduction

The geometry of the cotangent bundle T^*M has been studied by many authors: A.A. Salimov and F. Agca [18,19], K. Yano and S. Ishihara [24], F. Agca [1], F. Ocak and S. Kazimova [16], F. Ocak [15], A. Gezer and M. Altunbas [9] and others.

The notion of almost para-complex structure (or almost product structure) on a smooth manifold was introduced in [12], and a survey of further results on para-complex geometry (including para-Hermitian and para-Kähler geometry) can be found, for instance, in [3,5]. Also, other further significant developments are to be found in [2,22]. Some aspects concerning the geometry of tangent and cotangent bundles are presented in [8–10, 15, 17, 18].

In this paper, we introduce the vertical rescaled Cheeger–Gromoll metric on the cotangent bundle T^*M as a new natural metric with respect to the metric g. First we study the geometry of the vertical rescaled Cheeger–Gromoll metric. We construct almost para-complex Norden structures on a cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric and investigate conditions for these structures to be para-Kähler–Norden, quasi-para-Kähler–Norden. Finally, we describe some properties of almost para-complex Norden structures in the context of almost product Riemannian manifolds.

[©] Abderrahim Zagane, 2021

2. Cotangent bundles T^*M

Let (M^m, g) be an *m*-dimensional Riemannian manifold, T^*M be its cotangent bundle and $\pi : T^*M \to M$ be the natural projection. A local chart $(U, x^i)_{i=\overline{1,m}}$ on M induces a local chart $(\pi^{-1}(U), x^i, x^{\overline{i}} = p_i)_{i=\overline{1,m},\overline{i}=m+i}$ on T^*M , where p_i is the component of covector p in each cotangent space T^*_xM , $x \in U$, with respect to the natural coframe dx^i . Let $C^{\infty}(M)$ (respectively, $C^{\infty}(T^*M)$) be the ring of real-valued C^{∞} functions on M(respectively, T^*M) and $\Im^r_s(M)$ (respectively, $\Im^r_s(T^*M)$) be the module over $C^{\infty}(M)$ (respectively, $C^{\infty}(T^*M)$) of C^{∞} tensor fields of type (r, s).

Denote by Γ_{ij}^k the Christoffel symbols of g and by ∇ , the Levi-Civita connection of g.

We have two complementary distributions on T^*M , the vertical distribution $VT^*M = Ker(d\pi)$ and the horizontal distribution HT^*M that define a direct sum decomposition

$$TT^*M = VT^*M \oplus HT^*M.$$
(2.1)

Let $X = X^i \frac{\partial}{\partial x^i}$ and $\omega = \omega_i dx^i$ be local expressions in $U \subset M$ of a vector and covector fields $X \in \mathfrak{S}^1_0(M)$ and $\omega \in \mathfrak{S}^0_1(M)$, respectively. Then the horizontal and the vertical lifts of X and ω are defined respectively by

$$X^{H} = X^{i} \frac{\partial}{\partial x^{i}} + p_{h} \Gamma^{h}_{ij} X^{j} \frac{\partial}{\partial p_{i}}, \qquad (2.2)$$

$$\omega^V = \omega_i \frac{\partial}{\partial p_i} \tag{2.3}$$

with respect to the natural frame $\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial p_i}\}$, where Γ_{ij}^h are components of the Levi-Civita connection ∇ on M (see [24] for more details).

Lemma 2.1 ([24]). Let (M, g) be a Riemannian manifold, ∇ be the Levi-Civita connection and R be the Riemannian curvature tensor. Then the Lie bracket of the cotangent bundle T^*M of M satisfies the following:

1.
$$[\omega^V, \theta^V] = 0,$$

- 2. $[X^H, \theta^V] = (\nabla_X \theta)^V,$
- 3. $[X^H, Y^H] = [X, Y]^H (pR(X, Y))^V$,

for all $X, Y \in \mathfrak{S}_0^1(M)$ and $\omega, \theta \in \mathfrak{S}_1^0(M)$, such that $pR(X,Y) = p_a R_{ijk}^a X^i Y^j dx^k$, where R_{iik}^a are local components of R on (M,g).

Let (M, g) be a Riemannian manifold. We define the map

$$\mathfrak{S}_1^0(M) \to \mathfrak{S}_0^1(M)$$

 $\omega \mapsto \widetilde{\omega}$

for all $X \in \mathfrak{S}_0^1(M)$, $g(\tilde{\omega}, X) = \omega(X)$. Locally, for all $\omega = \omega_i dx^i \in \mathfrak{S}_1^0(M)$, we have $\tilde{\omega} = g^{ij} \omega_i \frac{\partial}{\partial x^j}$, where (g^{ij}) is the inverse matrix of the matrix (g_{ij}) .

For each $x \in M$, the scalar product $g^{-1} = (g^{ij})$ is defined on the cotangent space T_x^*M by $g^{-1}(\omega, \theta) = g(\widetilde{\omega}, \widetilde{\theta}) = g^{ij}\omega_i\theta_j$. In this case, we have $\widetilde{\omega} = g^{-1} \circ \omega$.

If ∇ is the Levi-Civita connection of (M,g), then we have

$$\nabla_X \widetilde{\omega} = \widetilde{\nabla_X \omega},$$
$$Xg^{-1}(\omega, \theta) = g^{-1}(\nabla_X \omega, \theta) + g^{-1}(\omega, \nabla_X \theta)$$

for all $X \in \mathfrak{S}_0^1(M)$ and $\omega, \theta \in \mathfrak{S}_1^0(M)$.

3. Vertical rescaled Cheeger–Gromoll metric

Definition 3.1. Let (M, g) be a Riemannian manifold and $f: M \to]0, +\infty[$ be a strictly positive smooth function on M. On the cotangent bundle T^*M , we define a vertical rescaled Cheeger–Gromoll metric denoted by g^f :

$$g^{f}(X^{H}, Y^{H}) = g(X, Y)^{V} = g(X, Y) \circ \pi, \qquad (3.1)$$

$$g^f(X^H, \theta^V) = 0, (3.2)$$

$${}^{f}(\omega^{V},\theta^{V}) = \frac{f}{\alpha}(g^{-1}(\omega,\theta) + g^{-1}(\omega,p)g^{-1}(\theta,p))$$
(3.3)

for all $X, Y \in \mathfrak{S}_0^1(M)$, $\omega, \theta \in \mathfrak{S}_1^0(M)$, where $\alpha = 1 + \|p\|^2$ and $\|p\| = \sqrt{g^{-1}(p,p)}$ is the norm of p with respect to the metric g.

Note that if f = 1, then g^f is the Cheeger–Gromoll metric [19].

Lemma 3.2. Let (M,g) be a Riemannian manifold and $\rho : \mathbb{R} \to \mathbb{R}$ be a smooth function. Then we have the following:

1.
$$X^H(\rho(r^2))_{\xi} = 0,$$

2.
$$\omega^V(\rho(r^2))_{\xi} = 2\rho'(r^2)g^{-1}(\omega, p)_x,$$

3. $X^H(g^{-1}(\theta, p))_{\xi} = g^{-1}(\nabla_X \theta, p)_x,$

4.
$$\omega^V(g^{-1}(\theta, p))_{\xi} = g^{-1}(\omega, \theta)_x,$$

5.
$$X^{H}(g(Y,Z))_{\xi} = Xg(X,Y)_{x} = g(\nabla_{X}Y,Z)_{x} + g(Y,\nabla_{X}Z)_{x},$$

6.
$$X^{H}(g^{-1}(\theta,\eta))_{\xi} = Xg^{-1}(\theta,\eta)_{x} = g^{-1}(\nabla_{X}\theta,\eta)_{x} + g^{-1}(\theta,\nabla_{X}\eta)_{x},$$

7.
$$\omega^V(g(Y,Z))_{\xi} = 0,$$

8.
$$\omega^V(g^{-1}(\theta,\eta))_{\xi} = 0$$

for all
$$\xi = (x, p) \in T^*M$$
, $X, Y, Z \in \mathfrak{S}^1_0(M)$ and $\omega, \theta, \eta \in \mathfrak{S}^0_1(M)$, $r^2 = g^{-1}(p, p)$.

Proof. Locally, Lemma 3.2 follows from formulas (2.2) and (2.3).

Lemma 3.3. Let (M,g) be a Riemannian manifold and (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger-Gromoll metric. Then we have the following:

(1)
$$X^H g^f(\theta^V, \eta^V) = \frac{1}{f} X(f) g^f(\theta^V, \eta^V) + g^f((\nabla_X \theta)^V, \eta^V) + g^f(\theta^V, (\nabla_X \eta)^V),$$

(2)
$$\omega^{V}g^{f}(\theta^{V},\eta^{V}) = \frac{-2}{\alpha}g^{-1}(\omega,p)g^{f}(\theta^{V},\eta^{V}) + \frac{1}{\alpha}g^{-1}(\omega,\theta)g^{f}(\eta^{V},\mathcal{P}^{V}) + \frac{1}{\alpha}g^{-1}(\omega,\eta)g^{f}(\theta^{V},\mathcal{P}^{V})$$

for all $X \in \mathfrak{S}_0^1(M)$ and $\omega, \theta, \mathcal{P} \in \mathfrak{S}_1^0(M)$ such that $\mathcal{P}_x = p \in T_x^*M$, $(\mathcal{P}^V \text{ is the canonical vertical or Liouville vector field on } T^*M)$.

Proof. The proof of Lemma 3.3 follows directly from Lemma 3.2.

Theorem 3.4. Let (M, g) be a Riemannian manifold and (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric. If ∇ (respectively, ∇^f) denotes the Levi-Civita connection of (M, g) (respectively, (T^*M, g^f)), we have

(1)
$$(\nabla_{X^H}^f Y^H)_{\xi} = (\nabla_X Y)_{\xi}^H + \frac{1}{2} (pR_x(X,Y))^V,$$

(2)
$$(\nabla_{X^H}^f \theta^V)_{\xi} = (\nabla_X \theta)_{\xi}^V + \frac{1}{2f(x)} X_x(f) \theta_{\xi}^V + \frac{f(x)}{2\alpha} (R_x(\widetilde{p}, \widetilde{\theta}) X)^H,$$

(3)
$$(\nabla^f_{\omega^V}Y^H)_{\xi} = \frac{1}{2f(x)}Y_x(f)\omega^V_x + \frac{f(x)}{2\alpha}(R_x(\widetilde{p},\widetilde{\omega})Y)^H)_{\xi}$$

$$(4) \quad (\nabla^{f}_{\omega^{V}}\theta^{V})_{\xi} = -\frac{1}{2f(x)}g^{f}_{\xi}(\omega^{V},\theta^{V})(\operatorname{grad} f)^{H}_{\xi} - \frac{1}{\alpha f(x)}\left[g^{f}_{\xi}(\omega^{V},\mathcal{P}^{V})\theta^{V}_{\xi}\right] \\ + g^{f}_{\xi}(\theta^{V},\mathcal{P}^{V})\omega^{V}_{\xi}\right] + \left[\frac{\alpha+1}{\alpha f(x)}g^{f}_{\xi}(\omega^{V},\theta^{V}) - \frac{1}{\alpha f^{2}(x)}g^{f}_{\xi}(\omega^{V},\mathcal{P}^{V})g^{f}_{\xi}(\theta^{V},\mathcal{P}^{V})\right]\mathcal{P}^{V}_{\xi}$$

for all $\xi = (x, p) \in T^*M$, $X, Y \in \mathfrak{S}_0^1(M)$ and $\omega, \theta, \mathcal{P} \in \mathfrak{S}_1^0(M)$ such that $\mathcal{P}_x = p \in T^*_x M$, (\mathcal{P}^V is the canonical vertical or Liouville vector field on T^*M) and $pR(X,Y) = p_a R^a_{ijk} X^i Y^j dx^k$, where R^a_{ijk} are local components of the curvature tensor R on (M, g).

Proof. The proof of Theorem 3.4 follows from the Kozul formula and Lemma 3.3.

(1) Direct calculations give us

$$\begin{split} 2g^{f}(\nabla^{f}_{X^{H}}Y^{H},Z^{H}) &= X^{H}g^{f}(Y^{H},Z^{H}) + Y^{H}g^{f}(Z^{H},X^{H}) - Z^{H}g^{f}(X^{H},Y^{H}) \\ &+ g^{f}(Z^{H},[X^{H},Y^{H}]) + g^{f}(Y^{H},[Z^{H},X^{H}]) \\ &- g^{f}(X^{H},[Y^{H},Z^{H}]) \\ &= Xg(Y,Z) + Yg(Z,X) - Zg(X,Y) + g(Z,[X,Y]) \\ &+ g(Y,[Z,X]) - g(X,[Y,Z]) \\ &= 2g(\nabla_{X}Y,Z) = 2g^{f}((\nabla_{X}Y)^{H},Z^{H}) \end{split}$$

and

$$2g^{f}(\nabla^{f}_{X^{H}}Y^{H},\eta^{V}) = X^{H}g^{f}(Y^{H},\eta^{V}) + Y^{H}g^{f}(\eta^{V},X^{H}) - \eta^{V}g^{f}(X^{H},Y^{H})$$

$$\begin{split} &+g^{f}(\eta^{V},[X^{H},Y^{H}])+g^{f}(Y^{H},[\eta^{V},X^{H}])\\ &-g^{f}(X^{H},[Y^{H},\eta^{V}])\\ &=g^{f}(\eta^{V},[X^{H},Y^{H}])=g^{f}((pR(X,Y))^{V},\eta^{V}). \end{split}$$

Thus we have

$$\nabla^{f}_{X^{H}}Y^{H} = (\nabla_{X}Y)^{H} + \frac{1}{2}(pR(X,Y))^{V}.$$

(2) By straightforward calculations, we obtain

$$\begin{split} 2g^f(\nabla^f_{X^H}\theta^V,Z^H) &= X^H g^f(\theta^V,Z^H) + \theta^V g^f(Z^H,X^H) - Z^H g^f(X^H,\theta^V) \\ &\quad + g^f(Z^H,[X^H,\theta^V]) + g^f(\theta^V,[Z^H,X^H]) \\ &\quad - g^f(X^H,[\theta^V,Z^H]) \\ &= g^f(\theta^V,[Z^H,X^H]) = g^f((pR(Z,X))^V,\theta^V) \\ &\quad = \frac{f}{\alpha} \big(g^{-1}(pR(Z,X),\theta) + g^{-1}(pR(Z,X),p)g^{-1}(\theta,p)\big) \\ &\quad = \frac{f}{\alpha} g^f((R(\widetilde{p},\widetilde{\theta})X)^H,Z^H), \end{split}$$

where

$$g^{-1}(pR(Z,X),\theta) = g^{kl}(pR(Z,X))_k \theta_l = p_s R^s_{ijk} Z^i X^j \tilde{\theta}^k$$
$$= g_{st} \tilde{p}^t R^s_{ijk} Z^i X^j \tilde{\theta}^k = R_{ijkt} Z^i X^j \tilde{\theta}^k \tilde{p}^t$$
$$= g(R(Z,X)\tilde{\theta},\tilde{p}) = g(R(\tilde{p},\tilde{\theta})X,Z)$$
$$= g^f((R(\tilde{p},\tilde{\theta})X)^H, Z^H)$$

and

$$g^{-1}(pR(Z,X),p) = g^{kl}(pR(Z,X))_k p_l = (pR(Z,X))_k \tilde{p}^k,$$

$$= p_s R^s_{ijk} Z^i X^j \tilde{p}^k = g_{st} \tilde{p}^t R^s_{ijk} Z^i X^j \tilde{p}^k$$

$$= R_{ijkt} Z^i X^j \tilde{p}^t \tilde{p}^k = g(R(Z,X)\tilde{p},\tilde{p}) = 0.$$

Then it follows that

$$\begin{split} 2g^f(\nabla^f_{X^H}\theta^V,\eta^V) &= X^H g^f(\theta^V,\eta^V) + \theta^V g^f(\eta^V,X^H) - \eta^V g^f(X^H,\theta^V) \\ &\quad + g^f(\eta^V,[X^H,\theta^V]) + g^f(\theta^V,[\eta^V,X^H]) \\ &\quad - g^f(X^H,[\theta^V,\eta^V]) \\ &= X^H g^f(\theta^V,\eta^V) + g^f(\eta^V,[X^H,\theta^V]) + g^f(\theta^V,[\eta^V,X^H]). \end{split}$$

Using the first formula of Lemma 4.10, we have

$$2g^f(\nabla^f_{X^H}\theta^V,\eta^V) = \frac{1}{f}X(f)g^f(\theta^V,\eta^V) + g^f((\nabla_X\theta)^V,\eta^V) + g^f(\theta^V,(\nabla_X\eta)^V)$$

$$+ g^{f}(\eta^{V}, (\nabla_{X}\theta)^{V}) - g^{f}(\theta^{V}, (\nabla_{X}\eta)^{V})$$

= $2g^{f}((\nabla_{X}\theta)^{V}, \eta^{V}) + \frac{1}{f}X(f)g^{f}(\theta^{V}, \eta^{V}),$

and thus

$$\nabla_{X^H}^f \theta^V = (\nabla_X \theta)^V + \frac{1}{2f} X(f) \theta^V + \frac{f}{2} (R(\widetilde{p}, \widetilde{\theta}) X)^H.$$

The other formulas are obtained by a similar calculation.

4. Para-Kähler–Norden Structures

An almost product structure φ on a manifold M is a (1, 1) tensor field on M such that $\varphi^2 = id_M$, $\varphi \neq \pm id_M$ (id_M is the identity tensor field of type (1, 1) on M). The pair (M, φ) is called an almost product manifold.

A linear connection ∇ on (M, φ) such that $\nabla \varphi = 0$ is said to be an almost product connection. There exists an almost product connection on every almost product manifold [11].

An almost para-complex manifold is an almost product manifold (M, φ) such that the two eigenbundles TM^+ and TM^- associated to the two eigenvalues +1 and -1 of φ , respectively, have the same rank. Note that the dimension of an almost para-complex manifold is necessarily even [5].

An almost para-complex Norden manifold (M^{2m}, φ, g) is a real 2*m*dimensional differentiable manifold M^{2m} with an almost para-complex structure φ and a Riemannian metric g such that

$$g(\varphi X, Y) = g(X, \varphi Y) \tag{4.1}$$

for all $X, Y \in \mathfrak{S}_0^1(M)$. In this case, g is called a pure metric with respect to φ or para-Norden metric (B-metric) [22].

A para-complex Norden manifold (para-Kähler–Norden) is an almost paracomplex Norden manifold (M^{2m}, φ, g) such that φ is integrable, i.e., $\nabla \varphi = 0$ (B-manifold), where ∇ is the Levi-Civita connection of g [20, 22].

A Tachibana operator ϕ_{φ} applied to the pure metric g is given by

$$(\phi_{\varphi}g)(X,Y,Z) = (\varphi X)(g(Y,Z)) - X(g(\varphi Y,Z)) + g((L_Y\varphi)X,Z) + g((L_Z\varphi)X,Y)$$
(4.2)

for all $X, Y, Z \in \mathfrak{S}_0^1(M)$ [23].

In a para-complex Norden manifold, a para-Norden metric g is called para-holomorphic if

$$(\phi_{\varphi}g)(X,Y,Z) = 0 \tag{4.3}$$

for all $X, Y, Z \in \mathfrak{S}_0^1(M)$ [22].

A para-holomorphic Norden manifold is an almost para-complex Norden manifold (M^{2m}, φ, g) such that g is a para-holomorphic, i.e., $\phi_{\varphi}g = 0$.

It is well known that the almost para-holomorphic Norden manifold (M^{2m}, φ, g) is para-Kähler–Norden if and only if g is paraholomorphic, i.e., $\phi_{\varphi}g = 0$ is equivalent to $\nabla \varphi = 0$, which was proven in [22]. By virtue of this point of view, para-holomorphic Norden manifolds are similar to para-Kähler–Norden manifolds [20].

4.1. Let (M, g) be a Riemannian manifold. We consider an almost paracomplex structure J on T^*M defined by

$$\begin{cases} JX^H = -X^H \\ J\omega^V = \omega^V \end{cases}$$
(4.4)

for all $X \in \mathfrak{S}_0^1(M)$ and $\omega \in \mathfrak{S}_1^0(M)$ [4].

Theorem 4.1. Let (M, g) be a Riemannian manifold, (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric and the almost para-complex structure J defined by (4.4). The triple (T^*M, J, g^f) is an almost para-complex Norden manifold.

Proof. For all $X, Y \in \mathfrak{S}_0^1(M)$ and $\omega, \theta \in \mathfrak{S}_1^0(M)$, from (4.4) we have

1.
$$g^{f}(JX^{H}, Y^{H}) = g^{f}(-X^{H}, Y^{H}) = g^{f}(X^{H}, -Y^{H}) = g^{f}(X^{H}, JY^{H});$$

2.
$$g^f(JX^H, \theta^V) = g^f(-X^H, \theta^V) = 0 = g^f(X^H, \theta^V) = g^f(X^H, J\theta^V)$$

3.
$$g^{f}(J\omega^{V}, Y^{H}) = g^{f}(\omega^{V}, Y^{H}) = 0 = g^{f}(\omega^{V}, -Y^{H}) = g^{f}(\omega^{V}, JY^{H});$$

4.
$$g^f(J\omega^V, \theta^V) = g^f(\omega^V, \theta^V) = g^f(\omega^V, J\theta^V),$$

i.e., g^f is pure with respect to J. Hence, (T^*M, J, g^f) is an almost para-complex Norden manifold.

Proposition 4.2. Let (M,g) be a Riemannian manifold, (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger-Gromoll metric and the almost para-complex structure J defined by (4.4). Then we get

1.
$$(\phi_J g^f)(X^H, Y^H, Z^H) = 0,$$

$$2. \quad (\phi_J g^f)(\omega^V, Y^H, Z^H) = 0,$$

3.
$$(\phi_J g^f)(X^H, \theta^V, Z^H) = 2g^f ((pR(X, Z))^V, \theta^V);$$

4.
$$(\phi_J g^f)(X^H, Y^H, \eta^V) = 2g^f ((pR(X, Y))^V, \eta^V);$$

5.
$$(\phi_J g^f)(\omega^V, \theta^V, Z^H) = 0,$$

$$6. \quad (\phi_J g^f)(\omega^V, Y^H, \eta^V) = 0;$$

7.
$$(\phi_J g^f)(X^H, \theta^V, \eta^V) = \frac{-2}{f} X(f) g^f(\theta^V, \eta^V);$$

8.
$$(\phi_J g^f)(\omega^V, \theta^V, \eta^V) = 0$$

for all $X, Y, Z \in \mathfrak{S}_0^1(M)$ and $\omega, \theta, \eta \in \mathfrak{S}_1^0(M)$, where R denotes the curvature tensor of (M, g).

Proof. We calculate the Tachibana operator ϕ_J applied to the pure metric g^f . This operator is characterized by (4.2).

1. From Lemma 3.3, we have

$$\begin{split} (\phi_J g^f)(X^H, Y^H, Z^H) &= (JX^H)g^f(Y^H, Z^H) - X^H g^f(JY^H, Z^H) \\ &\quad + g^f \big((L_{Y^H}J)X^H, Z^H \big) + g^f \big(Y^H, (L_{Z^H}J)X^H \big) \\ &= -X^H g^f(Y^H, Z^H) + X^H g^f(Y^H, Z^H) \\ &\quad + g^f \big(L_{Y^H}JX^H - J(L_{Y^H}X^H), Z^H \big) \\ &\quad + g^f \big(Y^H, L_{Z^H}JX^H - J(L_{Z^H}X^H) \big) \\ &= -g^f \big([Y^H, X^H], Z^H \big) - g^f \big(J[Y^H, X^H], Z^H \big) \\ &\quad - g^f \big(Y^H, [Z^H, X^H] \big) - g^f \big(Y^H, J[Z^H, X^H] \big) = 0. \end{split}$$

2. We also have

$$\begin{split} (\phi_J g^f)(\omega^V, Y^H, Z^H) &= (J\omega^V) g^f(Y^H, Z^H) - \omega^V g^f(JY^H, Z^H) \big) \\ &+ g^f \left((L_{Y^H} J) \omega^V, Z^H \right) + g^f \left(Y^H, (L_{Z^H} J) \omega^V \right) \\ &= + g^f \left([Y^H, \omega^V], Z^H \right) - g^f \left(J[Y^H, \omega^V], Z^H \right) \\ &+ g^f \left(Y^H, [Z^H, \omega^V] \right) - g^f \left(Y^H, J[Z^H, \omega^V] \right) \\ &= 2 g^f \left([Y^H, \omega^V], Z^H \right) + 2 g^f \left(Y^H, [Z^H, \omega^V] \right) \\ &= 2 g^f \left((\nabla_Y \omega)^V, Z^H \right) + 2 g^f \left(Y^H, (\nabla_Z \omega)^V \right) = 0. \end{split}$$

3. We obtain

$$\begin{split} (\phi_J g^f)(X^H, \theta^V, Z^H) &= (JX^H)g^f(\theta^V, Z^H) - X^H g^f(J\theta^V, Z^H) \\ &+ g^f \left((L_{\theta^V}J)X^H, Z^H \right) + g^f \left(\theta^V, (L_{Z^H}J)X^H \right) \\ &= -g^f \left([\theta^V, X^H], Z^H \right) - g^f \left(J[\theta^V, X^H], Z^H \right) \\ &- g^f \left(\theta^V, [Z^H, X^H] \right) - g^f \left(\theta^V, J[Z^H, X^H] \right) \\ &= -2g^f \left(\theta^V, [Z^H, X^H] \right) = -2g^f \left(\theta^V, (pR(Z, X))^V \right) \\ &= 2g^f \left((pR(X, Z))^V, \theta^V \right). \end{split}$$

4. Finally, we get

$$\begin{split} (\phi_J g^f)(X^H, Y^H, \eta^V) &= (JX^H)g^f(Y^H, \eta^V) - X^H g^f(JY^H, \eta^V) \\ &+ g^f \left((L_{Y^H}J)X^H, \eta^V \right) + g^f \left(Y^H, (L_{\eta^V}J)X^H \right) \\ &= -g^f \left([Y^H, X^H], \eta^V \right) - g^f \left(J[Y^H, X^H], \eta^V \right) \\ &- g^f \left(Y^H, [\eta^V, X^H] \right) - g^f \left(Y^H, J[\eta^V, X^H] \right) \\ &= -2g^f \left([Y^H, X^H], \eta^V \right) = 2g^f \left((pR(X,Y))^V, \eta^V \right). \end{split}$$

The other formulas are obtained by a similar calculation.

Theorem 4.3. Let (M, g) be a Riemannian manifold, (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric and the almost para-complex structure J defined by (4.4). The triple (T^*M, J, g^f) is a para-Kähler–Norden manifold if and only if M is flat and f is constant.

Proof. For all $\overline{X}, \overline{Y}, \overline{Z} \in \mathfrak{S}_0^1(T^*M)$ such as $\overline{X} = X^H, \omega^V, \overline{Y} = Y^H, \theta^V$ and $\overline{Z} = Z^H, \eta^V$, by virtue of Proposition 4.2, we have.

$$\begin{split} (\phi_J g^f))(\overline{X},\overline{Y},\overline{Z}) &= 0 \Leftrightarrow \begin{cases} 2g^f \left((pR(X,Z))^V, \theta^V \right) = 0\\ 2g^f \left((pR(X,Y))^V, \eta^V \right) = 0\\ \frac{-2}{f} X(f)g^f (\theta^V, \eta^V) = 0 \end{cases} \\ \Leftrightarrow \begin{cases} pR(X,Z) = 0\\ pR(X,Y) = 0 \Leftrightarrow R = 0 \text{ and } f = \text{const.} \\ X(f) = 0 \end{cases} \end{split}$$

4.2. Now we study a quasi-para-Kähler–Norden manifold. The basic class of non-integrable almost paracomplex manifolds with para–Norden metric is the class of quasi-para-Kähler manifolds. An almost para-complex Norden manifold (M, φ, g) is a quasi-para-Kähler–Norden manifold if

$$\underset{X,Y,Z}{\sigma}g((\nabla_X\varphi)Y,Z) = 0$$

for all $X, Y, Z \in \mathfrak{S}_0^1(M)$, where σ is the cyclic sum by three arguments [7,13]. It is well known that

$$\underset{X,Y,Z}{\sigma}g((\nabla_X\varphi)Y,Z) = 0$$

is equivalent to

1

$$(\phi_{\varphi}g)(X,Y,Z) + (\phi_{\varphi}g)(Y,Z,X) + (\phi_{\varphi}g)(Z,X,Y) = 0,$$

which was proven in [21].

Theorem 4.4. Let (M, g) be a Riemannian manifold, (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric and the almost para-complex structure J defined by (4.4). The triple (T^*M, J, g^f) is a quasi-para-Kähler–Norden manifold if and only if f is constant.

Proof. We put, for all $\overline{X}, \overline{Y}, \overline{Z} \in \mathfrak{S}_0^1(T^*M)$,

$$A(\overline{X}, \overline{Y}, \overline{Z}) = (\phi_J g^f)(\overline{X}, \overline{Y}, \overline{Z}) + (\phi_J g^f)(\overline{Y}, \overline{Z}, \overline{X}) + (\phi_J g^f)(\overline{Z}, \overline{X}, \overline{Y}).$$

By virtue of Proposition 4.2, we have

$$\begin{split} A(X^H,Y^H,Z^H) &= 0, & A(\omega^V,Y^H,Z^H) = 0 \\ A(\omega^V,\theta^V,Z^H) &= -\frac{2}{f}Z(f)g^f(\omega^V,\theta^V), & (\omega^V,\theta^V,\eta^V) = 0 \end{split}$$

Then, for (T^*M, J, g^f) to be a quasi-para-Kähler–Norden manifold, it suffices that Z(f) = 0, for any $Z \in \mathfrak{S}^1_0(M)$, i.e., f is constant.

4.3. Now we study a generalization of the almost para-complex structure defined by (4.4).

Lemma 4.5. Let (M, φ) be an almost para-complex manifold and define a tensor field $J_{\varphi} \in \mathfrak{S}^{1}_{1}(T^{*}M)$ by

$$\begin{cases} J_{\varphi}X^{H} = -(\varphi X)^{H} \\ J_{\varphi}\omega^{V} = \omega^{V} \end{cases}$$

$$\tag{4.5}$$

for all $X \in \mathfrak{S}_0^1(M)$ and $\omega \in \mathfrak{S}_1^0(M)$. Then the couple (T^*M, J_{φ}) is an almost para-complex manifold.

Proof. By virtue of (4.5), we have

$$\begin{cases} J_{\varphi}^{2} X^{H} = J_{\varphi} (J_{\varphi} X^{H}) = J_{\varphi} (-(\varphi X)^{H}) = (\varphi(\varphi X))^{H} = (\varphi^{2} X)^{H}, \\ J_{\varphi}^{2} \omega^{V} = J_{\varphi} (J_{\varphi} \omega^{V}) = J_{\varphi} \omega^{V} = \omega^{V} \end{cases}$$

for any $X \in \mathfrak{S}_0^1(M)$ and $\omega \in \mathfrak{S}_1^0(M)$. Since $\varphi^2 = id_M$, then $J_{\varphi}^2 = id_{T^*M}$.

Theorem 4.6. Let (M, φ, g) be an almost para-complex Norden manifold, (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger-Gromoll metric and the almost para-complex structure J_{φ} defined by (4.5). The triple (T^*M, J_{φ}, g^f) is an almost para-complex Norden manifold.

Proof. For all $X, Y \in \mathfrak{S}_0^1(M)$ and $\omega, \theta \in \mathfrak{S}_1^0(M)$, from (4.5) we have

$$\begin{split} g^f(J_{\varphi}X^H,Y^H) &= g^f(-(\varphi X)^H,Y^H) = -g(\varphi X,Y) = -g(X,\varphi Y) \\ &= g^f(X^H,-(\varphi Y)^H) = g^f(X^H,J_{\varphi}Y^H), \\ g^f(J_{\varphi}X^H,\theta^V) &= g^f(-(\varphi X)^H,\theta^V) = 0 = g^f(X^H,\theta^V) = g^f(X^H,J_{\varphi}\theta^V), \\ g^f(J_{\varphi}\omega^V,\theta^V) &= g^f(\omega^V,\theta^V) = g^f(\omega^V,J_{\varphi}\theta^V). \end{split}$$

Since g is pure with respect to φ , then g^f is pure with respect to J_{φ} .

Proposition 4.7. Let (M, φ, g) be an almost para-complex Norden manifold, (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger-Gromoll metric and the almost para-complex structure J_{φ} defined by (4.5). Then we get

$$1. \quad (\phi_{J_{\varphi}}g^f)(X^H,Y^H,Z^H)=-(\phi_{\varphi}g)(X,Y,Z);$$

$$2. \quad (\phi_{J_{\omega}}g^f)(\omega^V,Y^H,Z^H)=0;$$

3.
$$(\phi_{J_{\alpha}}g^{f})(X^{H},\theta^{V},Z^{H}) = g^{f} \left((pR(\varphi X,Z) + pR(X,Z))^{V},\theta^{V} \right);$$

- $4. \quad (\phi_{J_{\varphi}}g^f)(X^H,Y^H,\eta^V)=g^f\big((pR(\varphi X,Y)+pR(X,Y))^V,\eta^V\big),$
- 5. $(\phi_{J_{\omega}}g^f)(\omega^V, \theta^V, Z^H) = 0;$

 $6. \quad (\phi_{J_{\omega}}g^f)(\omega^V,Y^H,\eta^V)=0;$

7.
$$(\phi_{J_{\varphi}}g^f)(X^H, \theta^V, \eta^V) = \frac{-1}{f}(\varphi X(f) + X(f))g^f(\theta^V, \eta^V);$$

8. $(\phi_{J_{\omega}}g^f)(\omega^V, \theta^V, \eta^V) = 0$

for all $X, Y, Z \in \mathfrak{S}_0^1(M)$ and $\omega, \theta, \eta \in \mathfrak{S}_1^0(M)$, where R denotes the curvature tensor of (M, g).

Proof. We calculate the Tachibana operator $\phi_{J_{\varphi}}$ applied to the pure metric g^f . With the same steps as in the proof of Proposition 4.2, we get the results. \Box

Theorem 4.8. Let (M, φ, g) be an almost para-complex Norden manifold, (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger-Gromoll metric and the almost para-complex structure J_{φ} defined by (4.5). The triple (T^*M, J_{φ}, g^f) is a para-Kähler-Norden manifold if and only if M is a flat para-Kähler-Norden manifold and f is constant.

Proof. For all $\overline{X}, \overline{Y}, \overline{Z} \in \mathfrak{S}_0^1(T^*M)$ such as $\overline{X} = X^H, \omega^V, \overline{Y} = Y^H, \theta^V$ and $\overline{Z} = Z^H, \eta^V$, by virtue of Proposition 4.7, we have

$$\begin{split} (\phi_{J\varphi}g^{f}))(\overline{X},\overline{Y},\overline{Z}) &= 0 \Leftrightarrow \begin{cases} (\phi_{\varphi}g)(X,Y,Z) = 0\\ g^{f}\big((pR(\varphi X,Z) + pR(X,Z))^{V},\theta^{V}\big) = 0\\ g^{f}\big((pR(\varphi X,Y) + pR(X,Y))^{V},\eta^{V}\big) = 0\\ \frac{-1}{f}(\varphi X(f) + X(f))g^{f}(\theta^{V},\eta^{V}) = 0\\ \varphi g^{f}(\varphi g)(X,Y,Z) = 0\\ pR(\varphi X + X,Z) = 0\\ pR(\varphi X + X,Y) = 0\\ (\varphi X + X)(f) = 0 \end{split}$$

Since $\varphi \neq \pm i d_M$, then

$$(\phi_{J_{\varphi}}g^{f}))(\overline{X},\overline{Y},\overline{Z}) = 0 \Leftrightarrow \begin{cases} \phi_{\varphi}g = 0 \\ R = 0 \\ f = \text{const} \end{cases} \square$$

Theorem 4.9. Let (M, φ, g) be a para-Kähler–Norden manifold, (T^*M, g^f) be its cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric and the almost para-complex structure J_{φ} defined by (4.5). The triple (T^*M, J_{φ}, g^f) is a quasi-para-Kähler–Norden manifold if and only if f is constant.

Proof. Since (M, φ, g) is a para-Kähler–Norden manifold, then for all $X, Y, Z \in \mathfrak{S}_0^1(M)$ $(\phi \varphi g)(X, Y, Z) = 0$, and $R(\varphi Y, Z) = R(Y, \varphi Z)$. With the same steps as in the proof of Theorem 4.4, we get the results.

4.4. Now consider the almost product structure J defined by (4.4) and the Levi-Civita connection ∇^f of (T^*M, g^f) given by Theorem 3.4. We define a tensor field S of type (1,2) and a linear connection $\widehat{\nabla}$ on T^*M ,

$$S(\overline{X},\overline{Y}) = \frac{1}{2} \left[(\nabla^f_{J\overline{Y}}J)\overline{X} + J\left((\nabla^f_{\overline{Y}}J)\overline{X} \right) - J\left((\nabla^f_{\overline{X}}J)\overline{Y} \right) \right], \tag{4.6}$$

$$\widehat{\nabla}_{\overline{X}}\overline{Y} = \nabla^f_{\overline{X}}\overline{Y} - S(\overline{X},\overline{Y}) \tag{4.7}$$

for all $\overline{X}, \overline{Y} \mathfrak{S}_0^1(T^*M)$, is an almost product connection on T^*M (see [11, p.151] for more details).

Lemma 4.10. Let (M, g) be a Riemannian manifold, T^*M be its cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric g^f and the almost product structure J defined by (4.4). Then the tensor field S is as follows:

(1)
$$S(X^H, Y^H) = \frac{1}{2} (pR(X, Y))^V$$
,

(2)
$$S(X^H, \theta^V) = -\frac{1}{f}X(f)\theta^V + \frac{f}{2\alpha}(R(\tilde{p}, \tilde{\theta})X)^H,$$

(3)
$$S(\omega^V, Y^H) = -\frac{1}{f}Y(f)\omega^V,$$

(4)
$$S(\omega^V, \theta^V) = -\frac{1}{2f}g^f(\omega^V, \theta^V)(\operatorname{grad} f)^H$$

for all $X, Y \in \mathfrak{S}^1_0(M)$ and $\omega, \theta \in \mathfrak{S}^0_1(M)$.

Proof. The proof of Lemma 4.10 follows directly from Theorem 3.4, formula (4.4) and formula (4.6).

Theorem 4.11. Let (M, g) be a Riemannian manifold, T^*M be its cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric g^f and the almost product structure J defined by (4.4). Then the almost product connection $\widehat{\nabla}$ defined by (4.7) is as follows:

(1)
$$\widehat{\nabla}_{X^H} Y^H = (\nabla_X Y)^H,$$

(2)
$$\widehat{\nabla}_{X^H} \theta^V = (\nabla_X \theta)^V + \frac{3}{2f} X(f) \theta^V$$

(3)
$$\widehat{\nabla}_{\omega^V} Y^H = \frac{f}{2\alpha} (R(\widetilde{p}, \widetilde{\omega})Y)^H,$$

(4)
$$\widehat{\nabla}_{\omega^{V}}\theta^{V} = -\frac{1}{\alpha f} \Big[g^{f}(\omega^{V}, \mathcal{P}^{V})\theta^{V} + g^{f}(\theta^{V}, \mathcal{P}^{V})\omega^{V} \Big] + \Big[\frac{\alpha + 1}{\alpha f} g^{f}(\omega^{V}, \theta^{V}) - \frac{1}{\alpha f^{2}} g^{f}(\omega^{V}, \mathcal{P}^{V})g^{f}(\theta^{V}, \mathcal{P}^{V}) \Big] \mathcal{P}^{V}$$

for all $X, Y \in \mathfrak{S}_0^1(M)$ and $\omega, \theta \in \mathfrak{S}_1^0(M)$.

Proof. The proof of Theorem 4.11 follows directly from Theorem 3.4, Lemma 4.10 and formula (4.7).

Lemma 4.12. Let (M, g) be a Riemannian manifold, T^*M be its cotangent bundle equipped with the vertical rescaled Cheeger-Gromoll metric g^f and the almost product structure J defined by (4.4), and let \hat{T} denote the torsion tensor of $\hat{\nabla}$. Then we have

1)
$$\widehat{T}(X^H, Y^H) = (pR(X, Y))^V$$

2)
$$\widehat{T}(X^H, \theta^V) = \frac{3}{2f}X(f)\theta^V - \frac{f}{2\alpha}(R(\widetilde{p}, \widetilde{\theta})X)^H,$$

3)
$$\widehat{T}(\omega^V, Y^H) = -\frac{3}{2f}Y(f)\omega^V + \frac{f}{2\alpha}(R(\widetilde{p}, \widetilde{\omega})Y)^H)$$

- 4) $\widehat{T}(\omega^V, \theta^V) = 0$
- for all $X, Y \in \mathfrak{S}^1_0(M)$ and $\omega, \theta \in \mathfrak{S}^0_1(M)$.

Proof. The proof of Lemma 4.12 follows directly from Lemma 4.10 and the formula

$$\widehat{T}(\overline{X},\overline{Y}) = \widehat{\nabla}_{\overline{X}}\overline{Y} - \widehat{\nabla}_{\overline{Y}}\overline{X} - [\overline{X},\overline{Y}] = S(\overline{Y},\overline{X}) - S(\overline{X},\overline{Y})$$

for all $\overline{X}, \overline{Y} \in \mathfrak{S}_0^1(T^*M)$.

From Lemma 4.12, we obtain.

Theorem 4.13. Let (M, g) be a Riemannian manifold, T^*M be its cotangent bundle equipped with the vertical rescaled Cheeger–Gromoll metric g^f , and let $\widehat{\nabla}$ be the almost product connection defined by (4.7). Then $\widehat{\nabla}$ is symmetric if and only if f is a constant function and M is flat.

Acknowledgments. We thank the anonymous reviewers for their insightful comments and suggestions that helped us to improve the paper.

The author is supported by the University training research project management platform PRFU.

References

- F. Agca, g-Natural Metrics on the cotangent bundle, Int. Electron. J. Geom. 6 (2013), No. 1, 129–146.
- [2] D.V. Alekseevsky, C. Medori, and A. Tomassini, Homogeneous para-Kähler Einstein manifolds, manifolds, Russian Math. Surveys 64 (2009), No.1, 1–43.
- [3] V. Cruceanu, P.M. Gadea, and J. Munoz Masque, Para-Hermitian and para-Kähler manifolds, Quaderni Inst. Mat. Univ. Messina 1 (1995), 1–72.
- [4] V. Cruceanu, Une classe de structures géométriques sur le fibré cotangent, Tensor (N.S.) 53 (1993), 196–201.
- [5] V. Cruceanu, P. Fortuny, and P.M. Gadea, A survey on paracomplex geometry, Rocky Mountain J. Math. 26 (1996), 83–115.

- [6] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413–443.
- [7] G.T. Ganchev and A.V. Borisov, Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulgarie Sci. 39 (1986), No. 5, 31–34.
- [8] A. Gezer, On the tangent bundle with deformed sasaki metric, Int. Electron. J. Geom., 6 (2013), No. 2, 19–31.
- [9] A. Gezer and M. Altunbas, On the Rescaled Riemannian Metric of Cheeger Gromoll Type on the Cotangent Bundle, https://arxiv.org/abs/1309.1354v1.
- [10] A. Gezer and M. Ozkan, Notes on the tangent bundle with deformed complete lift metric, Turkish J. Math. 38 (2014), 1038–1049.
- [11] M. de Leon and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 1989.
- [12] P. Libermann, Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris 234 (1952), 2517–2519.
- [13] M. Manev and D. Mekerov, On Lie groups as quasi-Kähler manifolds with Killing Norden metric, Adv. Geom. 8 (2008), No. 3, 343–352.
- [14] E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl. 150 (1988), No. 4, 1–19.
- [15] F. Ocak, Notes About a New Metric on the Cotangent Bundle, Int. Electron. J. Geom. 12 (2019) No. 2, 241–249.
- [16] F. Ocak and S. Kazimova, On a new metric in the cotangent bundle, Trans. Natl. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 38 (2018), No. 1, 128–138.
- [17] F. Ocak and A.A. Salimov, Geometry of the cotangent bundle with Sasakian metrics and its applications, Proc. Indian Acad. Sci. Math. Sci. 124 (2014), No. 3, 427–436.
- [18] A.A. Salimov and F. Agca, Some Properties of Sasakian Metrics in Cotangent Bundles, Mediterr. J. Math. 8 (2011), No.2, 243–255.
- [19] A.A. Salimov and F. Agca, Some notes concerning Cheeger-Gromoll metrics, Hacet. J. Math. Stat. 42 (2013), No. 5, 533–549.
- [20] A.A. Salimov, A. Gezer, and M. Iscan, On para-Kähler–Norden structures on the tangent bundles, Ann. Polon. Math. 103 (2012), No. 3, 247–261.
- [21] A.A. Salimov, M. Iscan, and K. Akbulut, Notes on para-Norden–Walker 4-manifolds, Int. J. Geom. Methods Mod. Phys. 7 (2010), No. 8, 1331–1347.
- [22] A.A. Salimov, M. Iscan, and F. Etayo, Para-holomorphic B-manifold and its properties, Topology Appl. 154 (2007), No. 4, 925–933.
- [23] K. Yano and M. Ako, On certain operators associated with tensor field, Kodai Math. Sem. Rep. 20 (1968), 414–436.
- [24] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973.

Received April 27, 2020, revised November 26, 2020.

Abderrahim Zagane,

Relizane University, Dept. of mathematics, 48000, Relizane-Algeria., E-mail: Zaganeabr2018@gmail.com

Пара-комплексні структури Нордена в кодотичному розшаруванні з вертикальною масштабованою метрикою Чігера-Громолла

Abderrahim Zagane

У статті розглядається деформація (у вертикальному розшаруванні) метрики Чігера–Громолла на кодотичному розшаруванні T^*M над m-вимірним рімановим многовидом (M,g), що називається вертикальною масштабованою метрикою Чігера–Громолла. Досліджено паранорденові властивості вертикальної масштабованої метрики Чігера–Громолла.

Ключові слова: кодотичні розшарування, горизонтальний ліфт, вертикальний ліфт, вертикальна масштабована метрика Чігера–Громолла, пара-комплексна структура, чиста метрика.