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Cotangent Bundle Equipped with Vertical
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In the paper, a deformation (in the vertical bundle) of the Cheeger—
Gromoll metric on the cotangent bundle T*M over an m-dimensional Rie-
mannian manifold (M, g), called the vertical rescaled Cheeger—Gromoll met-
ric, is considered. The para-Nordenian properties of the vertical rescaled
Cheeger—Gromoll metric are studied.
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1. Introduction

The geometry of the cotangent bundle T* M has been studied by many au-
thors: A.A. Salimov and F. Agca [18,19], K. Yano and S. Ishihara [24], F. Agca [1],
F. Ocak and S. Kazimova [16], F. Ocak [15], A. Gezer and M. Altunbas [9] and
others.

The notion of almost para-complex structure (or almost product structure)
on a smooth manifold was introduced in [12], and a survey of further results on
para-complex geometry (including para-Hermitian and para-Kéhler geometry)
can be found, for instance, in [3,5]. Also, other further significant developments
are to be found in [2,22]. Some aspects concerning the geometry of tangent and
cotangent bundles are presented in [8-10,15,17,18].

In this paper, we introduce the vertical rescaled Cheeger—Gromoll metric on
the cotangent bundle T* M as a new natural metric with respect to the metric g.
First we study the geometry of the vertical rescaled Cheeger—Gromoll metric. We
construct almost para-complex Norden structures on a cotangent bundle equipped
with the vertical rescaled Cheeger—Gromoll metric and investigate conditions for
these structures to be para-Kahler—Norden, quasi-para-Ké&hler—-Norden. Finally,
we describe some properties of almost para-complex Norden structures in the
context of almost product Riemannian manifolds.
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2. Cotangent bundles 7" M

Let (M™,g) be an m-dimensional Riemannian manifold, T*M be its cotan-
gent bundle and 7 : T*M — M be the natural projection. A local chart
(U, xl)zzm on M induces a local chart (7~ 1(U), 2%, 2 = Di)i=Tami=mi o0 T M,
where p; is the component of covector p in each cotangent space T M, x € U,
with respect to the natural coframe dz’. Let C°°(M) (respectively, C™°(T*M))
be the ring of real-valued C*° functions on M (respectively, 7*M) and 3% (M)
(respectively, S%(T*M)) be the module over C*>°(M) (respectively, C*°(T™*M))
of C*° tensor fields of type (r,s).

Denote by Ffj the Christoffel symbols of g and by V, the Levi-Civita connec-
tion of g.

We have two complementary distributions on 7% M, the vertical distribution
VT*M = Ker(dr) and the horizontal distribution HT*M that define a direct

sum decomposition
TT*"M =VT*M & HT* M. (2.1)

Let X = X* 8?:1' and w = w;da’ be local expressions in U C M of a vector and

covector fields X € S§(M) and w € SY(M), respectively. Then the horizontal
and the vertical lifts of X and w are defined respectively by

9
+ pal X7 =, (2.2)
Pi

(2.3)

with respect to the natural frame {821-,8%%}, where F?j are components of the
Levi-Civita connection V on M (see [24] for more details).

Lemma 2.1 ([24]). Let (M,g) be a Riemannian manifold, V be the Levi-
Civita connection and R be the Riemannian curvature tensor. Then the Lie
bracket of the cotangent bundle T*M of M satisfies the following:

1. [wv,8Y]=0,
2. [XH,0V]=(Vx0),
3. [XH?YH] = [X, Y]H - (pR(X,Y))V,

for all X, Y € S§(M) and w,0 € SY(M), such that pR(X,Y) = paRfijin dz*,
where Ry, are local components of R on (M, g).

Let (M, g) be a Riemannian manifold. We define the map

SH(M) — (M)

W W

for all X € SY(M), g(@,X) = w(X). Locally, for all w = w;dz* € SY(M), we

have w = gijwi%, where (g/) is the inverse matrix of the matrix (g;;).
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For each € M, the scalar product g ' = (¢¥) is defined on the cotangent

space Ty M by g7 (w,0) = g(@,0) = g”w;0;. In this case, we have & = g~ ! ow.

If V is the Levi-Civita connection of (M, g), then we have

—~—

VX(:) = VXw,
Xg_l(w7 9) = g_l(VXwa 0) =+ g_l(wv VXe)

for all X € S3(M) and w,6 € IV (M).

3. Vertical rescaled Cheeger—Gromoll metric

Definition 3.1. Let (M, g) be a Riemannian manifold and f : M —]0, +o0o[
be a strictly positive smooth function on M. On the cotangent bundle T*M, we
define a vertical rescaled Cheeger-Gromoll metric denoted by ¢7:

g/ (x".0") =0, (3.2)
[ _ _
Hw",0") = (g7 (@, 0) + g7 (w,p)g ™ (0:p)) (3.3)
for all X,Y € S§(M), w,0 € SY(M), where a = 1 + ||p||? and ||p|| = /9~ 1(p,p)
is the norm of p with respect to the metric g.
Note that if f = 1, then g/ is the Cheeger-Gromoll metric [19].

Lemma 3.2. Let (M,g) be a Riemannian manifold and p : R — R be a
smooth function. Then we have the following:

L X" (p(r*))e =0,

2. WY (p(r?))e = 20'(r*)g~ (w, p)a,

3. XM(g71(0,p)e = g (Vx0.p)a,

4. WV (g7H0,p))e = g (w, 0)a,

5. X" (g(Y,2))e = Xg(X,Y )z = g(VxY, Z)0s + g(Y,Vx Z)a,

6. XA(g7(0,m)e = X9 (0,m)a = g (VxO,m)z+ g (0, Vx7)a,
7. WY(g(Y,2))e =0,

8. w (g7 (0,m)e=0
for all ¢ = (z,p) € T*M, X,Y,Z € S{(M) and w,0,n € SY(M), r? = g1 (p,p).
Proof. Locally, Lemma 3.2 follows from formulas (2.2) and (2.3). O

Lemma 3.3. Let (M,g) be a Riemannian manifold and (T*M,g’) be its
cotangent bundle equipped with the wvertical rescaled Cheeger—Gromoll metric.
Then we have the following:
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(1) XHgl(8V ") = }X(f)gf(ev, )+ g (Vx8)Y.0") + o (67, (Vxn)V),

) 1

(2) W/ (0V,n") = ;9’1(w,p)gf(9v,nv) + ag’l(wﬁ)gf(nv,?v)
1

+ag_1(wan)gf(9V7,PV)

for all X € S4(M) and w,0,P € V(M) such that P, = p € Ti M, (PV is the
canonical vertical or Liouville vector field on T*M).

Proof. The proof of Lemma 3.3 follows directly from Lemma 3.2. O

Theorem 3.4. Let (M,g) be a Riemannian manifold and (T*M, g') be its
cotangent bundle equipped with the vertical rescaled Cheeger—Gromoll metric. If
V (respectively, V71 ) denotes the Levi-Civita connection of (M, g) (respectively,
(T*M, g7) ), we have

(1) (ViuY™)e = (VXY + - (pRo(X, Y)Y,

x.(N0Y + 1D (r,5.6)x)",

2c

1
+3
@) (TeutV)e = (V3O + 575

)

el + LR Gy,

(3) (V™M)= 2f()

(@) (V50 )e =~ gyl (0.0 ) arad D~ LW¥, PV)0Y

1 [ (
af(a)

atl v L5V pVy fV pVyDV
— oY) — 0
af@ %) G P PN
for all ¢ = (z,p) € T*M, X,Y € S{(M) and w,0,P € V(M) such that P, =
p €TiM, ( PV is the canonical vertical or Liouville vector field on T*M ) and
pR(X,Y) = paR%kXin dz®, where R%k are local components of the curvature
tensor R on (M, g).

+ol 0V, PV + [S

Proof. The proof of Theorem 3.4 follows from the Kozul formula and Lemma
3.3.
(1) Direct calculations give us
29! (VI VT, 21y = XM gl (v, 2) 4 YH gl (25, x 1) — zH gf (xH v )
+g/ (2" XY ) 4 gt (v (21 X))
- gf(XHa [YHv ZH])
=29(VxY,Z) =24 (VxY)?, Z")

and

2gf (VI n Y7, V) = XHgf (VH V) + Y Hg (¥, XT) — iV gf (XH Y H)
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+ gl (VXY H) + g/ (VH Y, X))
— g/ (X [yH 0V
=g/ (", (X", Y"]) = ¢/ (pR(X,Y))",1").
Thus we have
1
VY = (VxY)? + 5 (PRX, Y)HVY.
(2) By straightforward calculations, we obtain
297 (V1 10V, 2T = X" gl 8V, 2M) 1 6V ¢/ (27, XM — ZH g (X 9"
+gf (Z" (XM, 0V]) + ¢/ (0, (27, X))
- gf(XHv [9\/’ ZH])
1oV, [z", xM) = g/ (pR(Z, X))V, 0")

=g
L 0R(2.X).0)+ 9 OR(ZX). 0057 0.9)
=Ly rmoxn, 21,
where
g (PR(Z, X),0) = g™ (pR(Z, X)), = ps ;1,2 X 0"
= gstﬁRfijingk = RijktZingkﬁt
= g(R(Z, X)0,5) = g(R(P,0)X, Z)
=g/ (R, O)X)", 2"
and

9 (PR(Z.X),p) = ¢ (WR(Z, X))kp1 = (PR(Z, X))1P",
= po RS Z' X" = gup' R, 2 XIp*

Then it follows that
297 (V0 ") = X950V ")+ 0V g (0", X)) — Vgl (X" 0V
+g7 0V, [(XH,0V) + g7 (0. [0V, X))
- gf(XH7 [0V777VD
= X"g5 0V, 0") + g/ (", [X",0V]) + ¢/ 6V, [n", X]).

Using the first formula of Lemma 4.10, we have

29/ (V] 60 ") = }X(fmf(eV,nV) Lol (Vx0) . n") + o7 (8Y. (Vxn)Y)
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+g/ (", (Vx0)") - g/ (6", (Vxn)")

= 29/ (Vx0) 1Y) + SX (Nl (070,

f
and thus
£a8Y = (Vx0)Y + X (8" + L(rE.8)x)"
Vhnt" = (Vx)" + S X8 + 5 (REHX)P.
The other formulas are obtained by a similar calculation. O

4. Para-Kahler—Norden Structures

An almost product structure ¢ on a manifold M is a (1, 1) tensor field on M
such that ¢? = idys, ¢ # +idys (idyy is the identity tensor field of type (1,1) on
M). The pair (M, p) is called an almost product manifold.

A linear connection V on (M, ) such that Vi = 0 is said to be an almost
product connection. There exists an almost product connection on every almost
product manifold [11].

An almost para-complex manifold is an almost product manifold (M, ¢) such
that the two eigenbundles TM™ and T M~ associated to the two eigenvalues +1
and —1 of ¢, respectively, have the same rank. Note that the dimension of an
almost para-complex manifold is necessarily even [5].

An almost para-complex Norden manifold (M?™ p,g) is a real 2m-
dimensional differentiable manifold M?™ with an almost para-complex structure
 and a Riemannian metric g such that

9(pX,Y) = g(X,¢Y) (4.1)

for all X,Y € S§(M). In this case, g is called a pure metric with respect to ¢ or
para-Norden metric (B-metric) [22].

A para-complex Norden manifold (para-Kédhler-Norden) is an almost para-
complex Norden manifold (M?™, ¢, g) such that ¢ is integrable, i.e, Vo = 0
(B-manifold), where V is the Levi-Civita connection of g [20,22].

A Tachibana operator ¢, applied to the pure metric g is given by

(p9)(X, Y, Z) = (pX)(9(Y, Z)) — X(9(¢Y, Z)) + 9((Lyp) X, Z)
+9((Lzp)X,Y) (4.2)

for all X,Y,Z € S} (M) [23].
In a para-complex Norden manifold, a para-Norden metric g is called para-
holomorphic if

(9p9)(X,Y,Z) =0 (4.3)

for all X,Y,Z € 3§ (M) [22].
A para-holomorphic Norden manifold is an almost para-complex Norden man-
ifold (M?™, ¢, g) such that g is a para-holomorphic, i.e., ¢pg = 0.
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It is well known that the almost para-holomorphic Norden manifold
(M?™ ¢, g) is para-Kihler-Norden if and only if g is paraholomorphic, i.e., P9 =
0 is equivalent to Ve = 0, which was proven in [22]. By virtue of this point
of view, para-holomorphic Norden manifolds are similar to para-Kahler—-Norden
manifolds [20].

4.1. Let (M,g) be a Riemannian manifold. We consider an almost para-
complex structure J on T*M defined by

JXH = —x*H
SV Y (4.4)

for all X € S(M) and w € SY(M) [4].

Theorem 4.1. Let (M, g) be a Riemannian manifold, (T* M, g/) be its cotan-
gent bundle equipped with the vertical rescaled Cheeger—Gromoll metric and the
almost para-complex structure J defined by (4.4). The triple (T*M, J, g/) is an
almost para-complex Norden manifold.

Proof. For all X,Y € $}(M) and w,6 € IV (M), from (4.4) we have

—

2. g/ (XM, 0Y) =g/ (—X",0Y) =0 =g/ (X",0") = g/ (X", T6Y);
3. g/ (JV, YH) =g/ (WY, YH) =0 =g/ (W, -YH) = g/ (WY, TJYH);
4. g/ (J0Y,0Y) = g/ (WY, 0Y) = g/ (W", J0Y),

i.e., g is pure with respect to .J. Hence, (T*M, .J, g/) is an almost para-complex
Norden manifold. O

Proposition 4.2. Let (M,g) be a Riemannian manifold, (T*M,g') be its
cotangent bundle equipped with the vertical rescaled Cheeger—Gromoll metric and
the almost para-complex structure J defined by (4.4). Then we get

Lo (ogg) (XY, ZM) = 0;
2.

3.

T (d97)(XH, 0V, 0V) = _f2X(f)gf(9V,nV);

8. (g9)(W",0V,n") =0
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for all X,Y,Z € S{(M) and w,0,n € SY(M), where R denotes the curvature
tensor of (M,g).

Proof. We calculate the Tachibana operator ¢; applied to the pure metric
g7. This operator is characterized by (4.2).
1. From Lemma 3.3, we have

(@79 ) XY Z1) = (1XT)g! (Y7, 2) — xH gl (JY 1, Z2T)
+ 0 (Lyu )XH, Z1) + g (VT (LyuT) X
= —X"gl (Y, 21y + Xx"gl (Y, 2™)
+ g/ (Lyn I X" — J(Lyn X)), ZH)
+ g (Y, Lyn JXT — J(Lyn X))
= —g/ (Y, x1), 21) — g/ (g ¥, x 1), 2
g (Y7, [z", xH)) — g/ (YH,7(2", X)) = 0.
2. We also have
(659") (WY, Y, 2M) = ( Vg (Y7, 21 — Vgl (YT, 2))
g (Lyu D)V, Z") + ¢/ (YH, (Lyn J)w")
=+g ([YH Y1, 2") = g (JIy T WY, 2
g (Y7, (27, w"]) — gf (YT, J[2",wY])
=2g ([YH’ V],ZH) 129 (YH7[ZH’WV])
=2¢/ (Vyw)”, Z2") + 247 (Y, (V2w)") = 0.
3. We obtain
(@ 79") (X, 6V, 2) = (JXT)g7 (0", 2") — X g7 70V, 2")
+ 9/ (Lov XM, ZH) + g7 (Y, (LynT)XH)
=- f([9V X", ZzM) — ¢! (J16V, X1, Z7)
(HV ZH XH) ( ZH XH])
= —2¢7(9V,[2", xH]) = (9V (pR(Z,X))")
=2g/ ((pR(X Z)",6").
4. Finally, we get
(679 )XY ") = (JXT)g! (YT ") = X gl (gY T 0¥
+g! (Lyn HXT ") + ¢/ (YT, (L )X
=g/ (Y™, x",0") =g/ (Y™, X"],n")
g/ (Y, [0, X)) =g/ (Y1, T, X))
= =29/ (Y™, X"],0") =29/ ((pR(X,Y))V,1").

The other formulas are obtained by a similar calculation. O
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Theorem 4.3. Let (M, g) be a Riemannian manifold, (T*M, g7) be its cotan-
gent bundle equipped with the vertical rescaled Cheeger—Gromoll metric and the
almost para-complex structure J defined by (4.4). The triple (T*M,J,g7) is a
para-Kdhler—Norden manifold if and only if M is flat and f is constant.

Proof. For all X,Y,Z € S{(T*M) such as X = XH 0wV, Y = Y ¢V and
7 = ZH V., by virtue of Proposition 4.2, we have.

9/ (PR(X, 2))V,6") =0
(b9 NXY.Z)=0% ((PR(X Y)V,n')=0
k f2X(f) 16" ") =0
pPR(X,Z) =0
& ¢ pR(X,Y) =0« R =0and f = const. O
X(f)=0

4.2. Now we study a quasi-para-Kéhler-Norden manifold. The basic class
of non-integrable almost paracomplex manifolds with para—Norden metric is the
class of quasi-para-Kéahler manifolds. An almost para-complex Norden manifold
(M, p,g) is a quasi-para-Kéhler-Norden manifold if

X%Zg((VX@)Yv Z)=0

for all X,Y,Z € S4(M), where o is the cyclic sum by three arguments [7,13]. It
is well known that

3 9(Vxp)Y,2) =0
is equivalent to

which was proven in [21].

Theorem 4.4. Let (M, g) be a Riemannian manifold, (T*M, g7) be its cotan-
gent bundle equipped with the vertical rescaled Cheeger—Gromoll metric and the
almost para-complex structure J defined by (4.4). The triple (T*M,J,g7) is a
quasi-para-Kdhler—Norden manifold if and only if f is constant.

Proof. We put, for all X,Y,Z € S{(T*M),
AXY,2) = (979" ) (X, Y, Z) + (679" (Y, 2. X) + (¢,79")(Z,X.Y).
By virtue of Proposition 4.2, we have
AXHP YR ZzH) =, AwY, Y, z7) =0,
Aw", 0V, 2" = —;Z(f)gf(wv,ﬁv), (w",0",n")=0.

Then, for (T*M,J,g) to be a quasi-para-Kéhler-Norden manifold, it suffices
that Z(f) = 0, for any Z € S}(M), i.e., f is constant. O
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4.3. Now we study a generalization of the almost para-complex structure
defined by (4.4).

Lemma 4.5. Let (M,p) be an almost para-complex manifold and define a
tensor field J, € I1(T*M) by

{ Jo X = —(px)H

1% \%4

4.5
Jow' =w (4:5)

for all X € I4(M) and w € IV(M). Then the couple (T*M, J,) is an almost
para-complex manifold .

Proof. By virtue of (4.5), we have

{ J2XT = J,(J,XT) = Jo(— (X)) = (p(0X) = (p*X)7

Jf,wv = J(Jw") = JwY =wY
for any X € S§(M) and w € SY(M). Since p? = idyy, then Jg = idr+p. O

Theorem 4.6. Let (M, p,g) be an almost para-complex Norden manifold,
(T*M, gf) be its cotangent bundle equipped with the vertical rescaled Cheeger—
Gromoll metric and the almost para-complex structure J,, defined by (4.5). The
triple (T* M, J¢,gf) is an almost para-complex Norden manifold.

Proof. For all X,Y € S}(M) and w,6 € (M), from (4.5) we have

g (T X YTy = gl (—(0X)",YT) = —g(0X,Y) = —g(X, ¢Y)
gf(XH7 ( Y)H) = gf(XHv‘]SOYH)?

gf( QDX) 9 ) _O_Qf(XHa‘gv) :gf(XHaJQOQV)’
g’ (

TwW",0") = g/ (WY, J,0").

g/ (J,x",0Y)
gf(waV70V)

Since ¢ is pure with respect to ¢, then g/ is pure with respect to Jo. O

Proposition 4.7. Let (M, ¢, g) be an almost para-complex Norden manifold,
(T*M, gf) be its cotangent bundle equipped with the vertical rescaled Cheeger—
Gromoll metric and the almost para-complex structure J, defined by (4.5). Then
we get

Lo (o, 9" )(XTYH, ZH) = —(¢p9)(X, Y, Z);

2 (65 0")Y Y, 2H) = 0;

3. (0,9")(XH,0V, 2%) = g (PR(pX, Z) + PR(X, 2))",0V);
4 (og,9") (XY 0") =g (pPR(#X,Y) + pR(X, Y)Y, 1Y),

5. (07,00)wY,07,2%) = 0;
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6. (qbt](pgf)(wv’YH’nV) =0;

(0,0 NXY.Y) = 2 @X() + X (e 0 0);

8. (47,9, 0",n") =0

for all X,Y,Z € S4(M) and w,0,m € SY(M), where R denotes the curvature
tensor of (M,g).

Proof. We calculate the Tachibana operator ¢, applied to the pure metric
gf. With the same steps as in the proof of Proposition 4.2, we get the results. [

Theorem 4.8. Let (M, p,g) be an almost para-complex Norden manifold,
(T*M, gf) be its cotangent bundle equipped with the vertical rescaled Cheeger—
Gromoll metric and the almost para-complex structure J,, defined by (4.5). The
triple (T* M, Jg,,gf) is a para-Kdhler—Norden manifold if and only if M is a flat
para-Kdahler—Norden manifold and f is constant.

Proof. For all X,Y,Z € S{(T*M) such as X = XH wV, Y = Y 6V and
Z = ZH nV by virtue of Proposition 4.7, we have

(Ppg)(X,Y, Z

S o' ((PR(¢X, Z) + pR(X, Z)

@10 NEYZ) =0 3 of (4R(pX.Y) + pR(X.Y)

(X (1) + X()a'
(0p9)(X,Y,Z) =0
pR(pX +X,Z)=0

pR(pX + X,Y)=0"
(X +X)(f) =0

)
)VV

9V

Since ¢ # +idyy, then

bpg =0
(67,9 NX.Y.Z) =0 R=0 . O

f = const

Theorem 4.9. Let (M, ,q) be a para-Kihler-Norden manifold, (T*M, g¥)
be its cotangent bundle equipped with the vertical rescaled Cheeger—Gromoll met-
ric and the almost para-complex structure J, defined by (4.5). The triple
(T* M, J¢,gf) 1s a quasi-para-Kdhler—Norden manifold if and only if f is con-
stant.

Proof. Since (M,p,g) is a para-Kéhler—-Norden manifold, then for all
XY, Z € S4(M) (bpg)(X,Y,Z) = 0, and R(¢Y,Z) = R(Y,¢Z). With the
same steps as in the proof of Theorem 4.4, we get the results. ]
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4.4. Now consider the almost product structure J defined by (4.4) and
the Levi-Civita connection V/ of (T*M, g/) given by Theorem 3.4. We define a
tensor field S of type (1,2) and a linear connection V on T*M |

<7 = Lol ! NY ! Ny
S(X,Y) = 3 [(VJ?J)X + J((VYJ)X) — J((VYJ)Y)], (4.6)
ViV = VLY - S(X.Y) (4.7)
for all X,YS{(T*M), is an almost product connection on T*M (see [11, p.151]

for more details).

Lemma 4.10. Let (M,g) be a Riemannian manifold, T*M be its cotangent
bundle equipped with the vertical rescaled Cheeger—Gromoll metric gf and the
almost product structure J defined by (4.4). Then the tensor field S is as follows:

(1) S(XTYH) = SpROXY)),

(2) SCET6Y) = = X(0Y + 5 (RG.5X),
(3) S, yH)= —}Y(fw,
(4) SWY,0%) = —jfgfw,eV)(gmd HH

for all X,Y € S{(M) and w,0 € IV(M).
Proof. The proof of Lemma 4.10 follows directly from Theorem 3.4, formula

(4.4) and formula (4.6). O

Theorem 4.11. Let (M, g) be a Riemannian manifold, T*M be its cotangent
bundle equipped with the vertical rescaled Cheeger—Gromoll metric gf and the

almost product structure J defined by (4.4). Then the almost product connection
V defined by (4.7) is as follows:

(1) VxuYH = (VxY)H,
3

(2) Vxut" = (Vx0)" + 27X (e,
- H f ~ o~ H
(3) V¥ = - (REEY),
4) VoV = —alf [gf W, PV + gf (eV,PV)wV] + [O‘O;,lgf (w",8")—

1
! @0 P P
af
for all X,Y € (M) and w,0 € IV(M).
Proof. The proof of Theorem 4.11 follows directly from Theorem 3.4, Lemma
4.10 and formula (4.7). O
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Lemma 4.12. Let (M, g) be a Riemannian manifold, T*M be its cotangent
bundle equipped with the vertical rescaled Cheeger—Gromoll metric gf and the
almost product structure J defined by (4.4), and let T denote the torsion tensor
of V. Then we have

1) T(Xy")=(pR(X,Y))",

2 TOX0%) = X8V = 5 (RE O,
3 T YH) = - V(Y + L (REDY).

1) T(wY,0V)=0
for all X,Y € S(M) and w,0 € IV(M).

Proof. The proof of Lemma 4.12 follows directly from Lemma 4.10 and the
formula

T(X,Y)=VxY - VX - [X,Y] = S(V,X) - S(X,Y)
for all X,Y € S{(T*M). O
From Lemma 4.12, we obtain.

Theorem 4.13. Let (M, g) be a Riemannian manifold, T* M be its cotangent
bundle equipped with the vertical rescaled Cheeger—Gromoll metric g7, and let v
be the almost product connection defined by (4.7). Then V is symmetric if and
only if f is a constant function and M 1is flat.
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ITapa-komiuiekcHi ctpyKtypu Hop/ieHa B KOmoTu4HOMY
po3niapyBaHHi 3 BEPTUKAJIbHOIO MAaCIITaOOBAHOIO
meTpukoio Yirepa-I'pomosia

Abderrahim Zagane

Y crarTi posrisuaerbes Aedopmariis (Y BEPTUKAIBHOMY DO3IIADYBaH-
Hi) merpuku Hirepa—I'pomosuia Ha KomoruanoMy posmapysanui 7% M Has
M-BUMIPHAM piMaHOBUM MHOrOBUOM (M, g), 10 HA3UBAETHCS BEPTHKAJIb-
HOIO MacmTaboBaHoo merpukolo Uirepa—I'pomosuta. ocmigkeno mapa-
HOP/IEHOBI BJIACTUBOCTI BEPTUKAJIBHOI MAacIITaboBaHOI MeTpuky Jirepa—
I'pomosta.

Kitro4goBi cjioBa: KOJOTUYHI po3IIapyBaHHs, TOPU30HTAJIbHMIA JIiT, BEP-
TUKAJbHUI JII(PT, BepTUKAJbHA MaciiTaboBaHna MeTpuka direpa—I'pomosnia,
apa-KOMILIEKCHA, CTPYKTYPa, YUCTa METPUKA.
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