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We construct coherent states for each eigenspace of a magnetic Lapla-
cian on the complex projective n-space in order to apply a quantization-
dequantization method. Doing so allows to define the Berezin transform for
these spaces. We then establish a formula for this transform as a function
of the Fubini–Study Laplacian in a closed form involving of a terminating
Kampé de Fériet function. For the lowest spherical Landau level on the
Riemann sphere the obtained formula reduces to the one derived by Berezin
himself.
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1. Introduction

The Berezin transform was introduced and studied in [7–9] for classical
complex symmetric spaces and in [10, 18, 22, 27], for the Bergman, Hardy and
Bargmann–Fock spaces. We also refer to [45] for compact hermitian symmetric
spaces and to [35] for hermitian line bundles over Kähler manifolds. In his influ-
ential paper [8], Berezin used the coherent states quantization together with the
correspondence principle to express the transform bearing his name in the sphere
and in the Lobachevsky plane through their corresponding Laplace–Beltrami op-
erators. For quantization methods, we refer to the survey [1]. Actually, this
transform sets a connection between what Berezin called the contravariant and
the covariant symbols of a linear operator and turns out to be closely related to
heat flows of elliptic operators [15,18].

More generally, the Berezin transform stemming from systems of coherent
states attached to a class of generalized Bergman spaces on Cn and on the hy-
perbolic complex balls Bn was introduced in [33] and [24] respectively. There,
these spaces arise as eigenspaces of Schrödinger operators with uniform magnetic
fields whose discrete spectra are the so-called Euclidean and hyperbolic Landau
levels. From a complex geometrical point of view, these Schrödinger operators
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are Bochner Laplacians on hermitian line bundles parametrized by the magnetic
field strength or the reciprocal of the Planck parameter [35].

Extensions of Berezin formulas to the magnetic realm were obtained in [33]
and [24] by means of spherical Fourier transforms on the Euclidean and the hyper-
bolic spaces. Another expression of the Berezin transform on Bn, involving Wilson
polynomials [3], was derived in [13]. Expressing the magnetic Berezin transform
as a function of the Laplace–Beltrami operator on a given complex Kähler mani-
fold has interesting applications [19,43], see also [35] for the so-called big Hankel
operators with non analytic symbols. In particular, the Berezin transform on
weighted Bergman spaces is a contraction. At the physical level, obtaining of
this kind of formulas comes in the same spirit as obtaining of the famous Simon’s
diamagnetism inequality [41]. Moreover, since the Laplace-Beltrami operator de-
scribes a free particle, the expressions alluded to above transfer the effect of the
magnetic field to the representing function. As a matter of the fact, they shed
the light on the interplay between the geometry of the phase space on the one
hand and the physical quantities on the other hand.

In this paper, we are interested in the complex projective n-space Pn(C),
which is the prototype of rank-one complex Riemannian symmetric spaces of
compact type. It is canonically endowed with its Fubini–Study metric and the
magnetic Laplacian ∆ν (ν is proportional to the magnetic field strength), as
introduced and studied in [26], is the Bochner Laplacian on powers of the Hopf
line bundle and of its conjugate (see also [12, 36]). When acting on the space of
smooth bounded functions, this operator admits a discrete spectrum consisting
of eigenvalues called spherical Landau levels, and we shall be concerned with the
corresponding eigenspaces Aνm, m ∈ Z+. To each of these eigenspaces, we attach
coherent states and use them to define the Berezin transform. Our main result
is then a formula expressing this transform as a function of the Fubini–Study
Laplacian. In particular, we recover the original formula of Berezin derived in [9]
for the complex projective line which corresponds in our framework to the lowest
spherical Landau level (m = 0) on P1(C).

We should mention here that our approach for obtaining the main results is
quite different from that in [5]. Indeed,

(1) We point out that in the case of the Riemann sphere (n = 1), the mag-
netic Laplacian coincides with the Hamiltonian of the Dirac monopole whose
“eigenfunctions” were identified as eigensections by Wu and Yang [44].

(2) We introduce the Berezin transform as a result of a quantization-dequanti-
zation process via the construction of a suitable set of coherent states and
we provide an example of such states for the case n = 1. We also link this
construction to the definition based on reproducing kernels well known to
analysts.

(3) Our argument in proving the existence of a formula expressing this transform
is similar to the one used by Berezin himself [8] (case m = 0). Actually, we
use the fact that Pn(C) is a rank-one symmetric space (the algebra of bi-
invariant operators is generated by the Laplace–Beltrami operator) and that
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the Berezin transform commutes with the translation operators defined by
group elements of SU(n+ 1).

(4) While preparing some tools needed for proving our formula, we refer to
Koornwinder’s paper [30] about the spectral function of the Fubini–Study
Laplacian ∆FS (see (4.15) below).

(5) We make use of a suitable Clebsh–Gordan type linearization formula due
to Srivastava [42] for the product of Jacobi polynomials which provides an
expansion of the product of Jacobi polynomials over polynomials of the same
family. Our choice of this formula is justified by the fact that it contains less
terms than in the sum resulting from the power expansion for the product
of these polynomials. Consequently, we end up with a simpler formula for
the Berezin transform as a function of ∆FS in a closed form involving a
terminating Kampé de Fériet function F 2:2,2

2:1,1 . In particular, we are able to
recover Berezin’s original formula [9] derived in the case of the Riemann
sphere and corresponding to the lowest Landau level.

The paper is organized as follows. In Section 2, we briefly review the canonical
coherent states, their generalization through the Hilbertian probabilistic scheme
as well as the associated quantization formalism leading to the Berezin transform
whose construction is also linked with the one using reproducing kernels. In Sec-
tion 3, we recall the geometrical definition of magnetic Laplacians ∆ν on Pn(C)
and we discuss the case n = 1 in terms of Dirac monopoles. In Section 4, we recall
some notations on spherical harmonics that help us to summarize some needed
results on eigenspaces of ∆ν . The free magnetic case ν = 0, which corresponds to
Fubini–Study Laplacian ∆FS , is also discussed together with its known spectral
function. In Section 5, we attach a system of coherent states to each eigenspace
of ∆ν and provide an example. Next, we introduce the corresponding Berezin
transform. In Section 6, we establish a formula representing this transform as a
function of ∆FS in a closed form and show that we recover the original result of
Berezin for P1(C). Section 7 is devoted to some concluding remarks.

2. Coherent states quantization

2.1. Canonical coherent states. The original idea of coherent states was
introduced by E. Schrödinger [38] in order to obtain quantum states in L2(R)
that follow the classical flow associated to the harmonic oscillator Hamiltonian
Ĥ = −}2

2
d2

dx2
+ 1

2x
2 − 1

2 . Namely, we have a set {Ψz ∈ L2(R), z ∈ C} labeled by
elements of C ' T ∗R (the phase space of a particle moving on R) given by

Ψz(x) = e−
1
2
}zz̄ 1

(π})4
exp

(
− 1

2}
(z̄2 + x2 − 2

√
2z̄x)

)
, x ∈ R, (2.1)

where } denotes the Planck parameter (we set } = 1 for the sake of simplicity).
If we denote by {φj} an orthonormal basis of L2(R) consisting of eigenfunctions
of the quantum harmonic oscillator Ĥ, i.e., Ĥφj = jφj (the φj are called number
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states), then the function Ψz in (2.1) also admits an expansion over the {φj}
called number states or Iwata’s expansion [14]:

Ψz(x) = (N (z))−1/2
+∞∑
j=0

z̄j√
j!
φj(x), (2.2)

where N (z) = ezz̄ is a factor ensuring the normalization condition 〈Ψz,Ψz〉 =
1. But since here the coefficients { 1√

j!
zj} form an orthonormal basis for the

Fock–Bargmann space of entire Gaussian square integrable functions on C, whose
reproducing kernel is known to be ezw̄, then one can interpret the quantity N (z)
as the diagonal function of this kernel. The most important property of states
(2.2) is the resolution of the identity operator. More precisely, for any φ ∈ L2(R),
the following holds:

φ =

∫
C
〈Ψz, φ〉L2(R)Ψz

1

π
dσ (z) , (2.3)

where 〈Ψz, φ〉L2(R) denotes the inner product of Ψz and φ and dσ(z) ≡ dx dy, z =
x+ iy, is the usual Lebesgue measure on C ∼= R2.

2.2. The Hilbertian-probabilistic scheme. Now, one of the generaliza-
tions of coherent states, when written in the expansion form (2.2), is actually
known as the Hilbertian-probabilistic scheme as explained in detail in [2, 23].
In order to use this scheme, we first need to fix some notations. Let (X,µ)
be a measurable space and denote by L2(X,µ) the space of µ-square integrable
functions on X. Let A ⊂ L2(X, dµ) be a closed subspace (possibly infinite-
dimensional) with an orthonormal basis {Cj(x)}∞j=0 and let (H; 〈·, ·〉) be a infinite-

dimensional separable Hilbert space equipped with an orthonormal basis {φj}∞j=0.
Let D ⊆ X be a subset of X for which the following quantity is finite, i.e.

D 3 x 7→ N (x) =
+∞∑
j=0

Cj(x)Cj(x) < +∞. (2.4)

Then, for x ∈ D, we define the coherent state by

H 3 Ψx := (N (x))−
1
2

+∞∑
j=0

Cj(x)φj . (2.5)

These vectors are normalized, i.e., 〈Ψx,Ψx〉H = 1, and provide the resolution of
the identity operator of H as

1H =

∫
D
TxN (x) dµ(x), (2.6)

where Tx is the rank-one operator defined by Tx[φ] = 〈φ,Ψx〉HΨx. The choice
of the Hilbert space H defines then a quantization of the domain D ⊆ X by the
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states (2.5) via the inclusion map D 3 x 7→ Ψx ∈ H. Observe that by (2.4)–(2.6)
we have

K(x, y) = (N (x))1/2 (N (y))1/2 〈Ψy,Ψx〉H (2.7)

for all x, y ∈ X, meaning that (2.7) defines the reproducing kernel of A and that
N (x) = K (x, x). We also note that the map V : H→ A defined by

V [φ](x) = (N (x))1/2 〈φ,Ψx〉H (2.8)

is an isometry from H into A which sends φj to Cj . It is called a coherent state
transform. In this respect, the property (2.6) bridges classical and quantum
mechanics in the sense that every operator acting on H or any vector lying there
can be decomposed over the phase space X. The Klauder–Berezin coherent states
quantization consists in associating to a classical observable (that is, a function
on X with specific properties) the operator-valued integral

Pf :=

∫
D
Tx f(x)N (x) dµ(x). (2.9)

The map f 7→ Pf is not one-to-one in general and given an operator P on H, any
function f such that P = Pf is called a contravariant symbol for P . On the other
hand, the mean value 〈P [Ψx],Ψx〉H of P with respect to the coherent state Ψx is
referred to as the lower or covariant symbol of P . Consequently, we can associate
to a classical observable f the mean value 〈Pf [Ψx],Ψx〉H. Doing so leads to the
Berezin transform of f defined by

f 7−→ B[f ](x) := 〈Pf [Ψx],Ψx〉H, x ∈ D ⊆ X. (2.10)

2.3. Link with the Berezin transform defined via reproducing ker-
nels. It would be helpful to make a connection with the usual definition of the
Berezin transform for a classical symmetric domain X ⊂ Cn. For this, let A be
a closed subspace of L2(X,µ) consisting of continuous functions and possessing
a reproducing kernel K(·, ·) as above. The Berezin symbol σ(S) of a bounded
linear operator S on A is the function given by σ(S)(x) = 〈Sex, ex〉, where

ex(·) := K(·, x)(K(x, x))−
1
2 ∈ A. (2.11)

The Toeplitz operator Tf with the symbol f ∈ L∞(X) is the operator defined
on A by Tf [Φ] = Pr(fΦ), Φ ∈ A, where Pr is the orthogonal projection from
L2(X,µ) onto A. The Berezin transform associated to A is defined to be the
positive self-adjoint operator B := σT which turns out to be a bounded operator
on L2(X,K(x, x) dµ(x)). Now, with the above notations, one can make appeal
to the transform (2.8) to check that

Tf [V [ϕ]] = V [Pf [ϕ]] (2.12)

is satisfied for every ϕ ∈ H and f ∈ L∞(X). This means that V −1TfV = Pf
so that we can identify Pf with Tf . Next, taking into account (2.7), (2.8), and
(2.11) and recalling that V is an isometric map, one can verify that

σ(Tf )(x) = 〈Tf [V [Ψx]], V [Ψx]〉L2(X) = 〈Pf [Ψx] ,Ψx〉H (2.13)

which says that we can identify acting on Tf by σ with 〈Pf [Ψx] ,Ψx〉H.
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3. Magnetic Laplacians ∆ν on Pn(C)

3.1. Geometrical construction. We here recall [26] the construction of
magnetic Laplacian ∆ν in Pn(C), n ≥ 1. Let S2n+1 =

{
ζ ∈ Cn+1, 〈ζ, ζ〉 = 1

}
be

the (2n + 1)−dimensional unit sphere of Cn+1. Then the unit circle U (1) ≡ S1

acts freely on S2n+1 and one can define the complex projective space by Pn(C) =
S1\ S2n+1 to be the set of all complex lines of Cn+1. Indeed, the Hopf fibra-
tion S1 → S2n+1 → Pn(C) defines a principal U (1)−bundle on Pn(C) whose
associated complex line is L =

{
(l, z) ∈ Pn(C)× Cn+1, z ∈ l

}
. It is endowed

with the Fubini–Study metric ds2
FS which reads in a standard charte Cn ≡{

(z1, . . . , zn+1) ∈ Cn+1; zn+1 = 1
}

or local coordinates as

ds2
FS :=

n∑
i,j=1

((1 + 〈z, z〉) δij − zizj) dzi ⊗ dzj , (3.1)

where gij (z) = (1 + 〈z, z〉)−2 ((1 + 〈z, z〉) δij − zizj) . The projective space Pn(C)
equipped with this metric is a compact Kählerian manifold of complex dimension
n. The associated Laplace–Beltrami operator is given by

n∑
i,j=1

gij (z)
∂2

∂zi∂zj
, (3.2)

where
(
gij (z)

)
is the inverse of the matrix and reads

∆FS = 4(1 + 〈z, z〉)
n∑

i,j=1

(δij + ziz̄j)
∂2

∂zi∂z̄j
. (3.3)

The Fubini–Study distance is defined by

cos2 dFS(z, w) =
|1 + 〈z, w〉|2

(1 + 〈z, z〉)(1 + 〈w,w〉)
. (3.4)

Let ∇ = d + ∂ log (1 + 〈z, z〉) be the unique hermitian connection associated
with ds2

FS on L. Now, for a positive integer ν, let Lν := (L∗)⊗ν ⊗ (L∗)⊗ν be the
complex line bundle over Pn(C), where L∗ denotes the conjugate dual of L. Then
the corresponding hermitian connection on Pn(C) reads

∇ν = d+ ν
(
∂ − ∂

)
∂ log (1 + 〈z, z〉) . (3.5)

Next, consider the operator

∆ν := − (∇ν)∗∇ν (3.6)

acting on the space of smooth sections Γ∞n,ν := C∞ (Pn(C),Lν) , which is also
known as the Bochner Laplacian on Hermitian line bundles parametrized by the
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magnetic field strength ν. Precisely, in the local coordinates, the operator ∆ν

takes the form (we omit the dependence on n):

∆ν = 4(1+〈z, z〉)

 n∑
i,j=1

(δij + ziz̄j)
∂2

∂zi∂z̄j
− ν

n∑
j=1

(
zj

∂

∂zj
− z̄j

∂

∂z̄j

)
− ν2

+4ν2

(3.7)
and will be called, according to [26], a magnetic Laplacians on Pn(C). The
dependence of the operator ∆ν on n is omitted.

3.2. An example. Take n = 1 and consider the elements of Γ∞1,ν . These
are smooth sections of the U (1)-bundle with the first Chern class ν [25] and are
acted on by the Hamiltonian Hν = −∆ν + 4ν2 of the Dirac (point) monopole
in R3 with magnetic charge ν (in suitable units, see (3.8) below). Indeed, eigen-
functions of this monopole were identified as sections by Wu and Yang [44] and
are known as monopole harmonics. Their explicit expression in the coordinate
z are given below by (3.9). For more information on Dirac monopoles, see [39].
The restriction ν ∈ Z+ results from Dirac’s quantization condition for monopole
charges, which requires that the total flux of the magnetic field across a closed
surface be an integer multiple of a universal constant. It can also be understood in
the context of cohomology groups for hermitian line bundles [28] or as the Weil–
Souriau–Kostant quantization condition [40]. In the stereographic coordinate z ∈
C∪{∞} ≡ S2 ≡ P1(C) (and suitable units) this Hamiltonian reads [21, p. 598]:

Hν = −(1 + |z|2)

(
(1 + |z|2)

∂2

∂z∂z̄
+ ν

(
zj

∂

∂zj
− z̄j

∂

∂z̄j

)
− ν2

)
− ν2. (3.8)

Note that −1
4 ∆ν = Hν for n = 1. The stereorgraphic projection bridges the

monopole system and the Landau system which describes spinless charged par-
ticles in perpendicular homogeneous magnetic fields [17, p. 240]. Precisely, to
determine eigenstates of the monopole Hamiltonian (3.8) one proceeds exactly as
for the Landau Hamiltonian of the Euclidean setting. This leads, for each fixed
integer m ∈ Z+, to a finite dimensional L2 eigenspace whose orthonormal basis
vectors

{
Φν,m
k

}
k
,−m ≤ k ≤ 2ν +m, are given by [34]:

Φν,m
k (z) :=

√
(2ν + 2m+ 1) (2ν +m)!m!

(m+ k)!(2ν +m− k)!
(1 + zz)−ν zkP (k,2ν−k)

m

(
1− zz
1 + zz

)
,

(3.9)

where P
(α,β)
m (·) is the Jacobi polynomial [3]. The eigenstates (3.9) are associated

with the eigenvalue
τm := (2m+ 1) ν +m (m+ 1) (3.10)

called a spherical Landau level.

4. Spaces of bounded eigenfunctions of ∆ν

In order to summarize some needed results [26] about eigenspaces of the op-
erator ∆ν , we first need to fix some notations [37].
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4.1. Spherical harmonics. Let P(Cn) denote the space of polynomials
in the independent variables z and z̄ of Cn. The elements of this space can be
written in the form

u(z, z̄) =
∑
|α|≤k

∑
|β|≤l

cα,βz
αz̄β, cα,β ∈ C, α, β ∈ Zn+, (4.1)

for nonnegative integers k and l, where the standard multi-index is used. The
subspace of P(Cn) composed of polynomials that are homogeneous of degree p
in z and of degree q in z̄ is denoted by Pp,q(Cn). The dimension of Pp,q(Cn) is
given by

κ(n, p, q) =

(
p+ n− 1

p− 1

)(
q + n− 1

q − 1

)
(4.2)

in terms of binomial coefficients(
α

s

)
:= α(α− 1) · · · (α− s+ 1)/s! if s ∈ Z+ \ {0} and

(
α

0

)
:= 1, for all α ∈ R.

The subspace of Pp,q(Cn) composed of harmonic elements, that is, elements in
the kernel of the complex Laplacian

∆Cn := 4
n∑
j=1

∂2

∂zj∂z̄j
(4.3)

is denoted by Hp,q(Cn). The set of restrictions of elements of Hp,q(Cn) to the
unit sphere S2n−1 = {ζ ∈ Cn, 〈ζ, ζ〉 = 1}, denoted by H (p, q), is called the space
of complex spherical harmonics of degree p in z and degree q in z̄. Note that
H (p, 0) consists of holomorphic polynomials, and H (0, q) consists of polynomials
whose complex conjugates are holomorphic. The dimensions of spaces H (p, q),
denoted by d(n, p, q), are given by

d(n, p, q) = κ(n, p, q)− κ(n, p− 1, q − 1), p, q 6= 0, (4.4)

d(n, p, 0) = κ(n, p, 0) and d(n, 0, q) = κ(n, 0, q). (4.5)

For n = 1, d(n, p, 0) = d(n, 0, q) = 1, but H (p, q) = {0} if both p > 0 and
q > 0. It is a standard fact that the spaces H (p, q) are pairwise orthogonal in
L2(S2n−1, dω), where dω is the uniform measure on the sphere.

4.2. Bounded eigenfunctions of ∆ν. For λ ∈ C, we set Λn,ν (λ) := n2 −
λ2 + 4ν2 and consider the equation [26, p. 149]:

∆νF (z) = Λn,ν (λ)F (z), (4.6)

where F is a bounded function on Cn. Define the eigenspace

Aνm := {F ∈ L∞(Cn), ∆νF = Λn,ν (λ)F}. (4.7)
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From [26], the eigenspace Aνm = {0} if λ 6∈ Dν , where

Dν := {λ ∈ C,
1

2
(n± λ) + ν ∈ Z−} ∪ {λ ∈ C,

1

2
(n± λ)− ν ∈ Z−}. (4.8)

Otherwise it is not trivial if and only if λ has the form λ = ±(2(m + ν) + n)
for some m ∈ Z+. Note that when n = 1 and λ = ±(2(m + ν) + 1) the above
parametrization of the eigenvalue of ∆ν gives that −1

4 Λ1,ν (λ) = τm (where τm
was given by (3.10)) as an expected form of the example in Subsection 3.2. For
n ≥ 1 and under the condition λ = ±(2(m + ν) + n), any function F in Aνm
admits the expansion

F (rω) =
1

(1 + r2)(m+ν)

∑
0≤p≤m

0≤q≤m+2ν

rp+q2F1

(
p−m, q −m− 2ν

n+ p+ q

∣∣∣∣− r2

)

×
d(n,p,q)∑
j=1

aν,p,qj hjp,q(ω, ω̄), (4.9)

where r > 0, ω ∈ S2n−1, aν,p,qj are constant complex numbers, 2F1 is the Gauss

hypergeometric function [3] and
{
hjp,q

}d(n,p,q)

j=0
is an orthonormal basis of H (p, q).

Note that F satisfies the growth condition

lim
r→∞

F (rω) =
∑

0≤p≤m

Γ(m− p+ 1)Γ(n+ 2p+ 2ν)

(−1)p−mΓ(m+ n+ p+ 2ν)

d(n,p,p+2ν)∑
j=1

aν,pj hjp,p+2ν(ω, ω̄)

(4.10)
where we wrote aν,pj = aν,p,p+2ν

j . In particular, Aνm has a finite dimension given
by

dimC A
ν
m =

(2m+ n+ 2ν)Γ(m+ n)Γ(m+ n+ 2ν)

n (Γ(n))2 Γ(m+ 1)Γ(m+ 2ν + 1)
(4.11)

and admits a reproducing kernel given by [26]:

Kν,m(z, w) := cν,nm

(
(1 + 〈z, w〉)2

(1 + |z|2)(1 + |w|2)

)ν
P (n−1,2ν)
m (cos 2dFS(z, w)) (4.12)

with

cν,nm =
(2m+ 2ν + n)Γ(m+ n+ 2ν)

πnΓ(m+ 2ν + 1)
. (4.13)

4.3. The free-magnetic case ν = 0. In this case, the operator in (3.7)
reduces to the Fubini-Study Laplacian (3.3), i.e., ∆0 = ∆FS which has a dis-
crete spectral decomposition with eigenvalues (−4k(k + n))k≥0. Besides, each
eigenspace is finite-dimensional and has an orthonormal basis given by homoge-
neous spherical harmonics of degree zero. Let

dµn(w) = (1 + 〈w,w〉)−(n+1)dµ (w) , w ∈ Cn, (4.14)
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where dµ (w) is the Lebesgue measure on Cn. Letting ν = 0 in (4.12), the kernel
of the orthogonal projection from the space L2(Cn, dµn) onto the k-th eigenspace
of ∆FS reduces to

K0,k(z, w) = π−n(2k + n)
Γ(n+ k)

k!
P

(n−1,0)
k (cos 2dFS(z, w)). (4.15)

This is in agreement with the formula derived by Koornwinder in [30, Theo-
rem 3.8, p. 19]. Consequently, the spectral theorem implies that for any function
L continuous on an open set containing the spectrum of −∆FS , the operator
L(−∆FS) is an integral operator whose kernel is given by∑

k≥0

L(4k(k + n))K0,k(z, w). (4.16)

5. Coherent states quantization

5.1. Coherent states attached to Aνm. Now we specialize the definition
(2.5) of coherent states to the eigenspace (4.7) by taking X ≡ Cn endowed with
dµn, x ≡ z ∈ Cn, A ≡ Aνm, and an orthonormal basis (Φν,m

p,q,j)p,q,j of Aνm, where
1 ≤ j ≤ d(n, p, q) and 0 ≤ q ≤ m + 2ν, 0 ≤ p ≤ m. The Hilbert space H
carrying the quantum states of some physical system and its basis (φp,q,j)p,q,j
will be specified when needed. With these data, we define for any n ≥ 1, ν,m ∈
Z+, the following coherent states:

Ψν,m
z := (N ν,m(z))−1/2

∑
0≤p≤m

0≤q≤m+2ν
1≤j≤d(n,p,q)

Φν,m
p,q,j(z).φp,q,j , (5.1)

where

N ν,m(z) = N ν,m =
(2m+ 2ν + n)Γ(m+ n+ 2ν)

πnΓ(m+ 2ν + 1)

(n)m
m!

. (5.2)

To check (5.2), observe that the normalizing factor can be expressed as the diag-
onal of the reproducing kernel (4.12) and use the special value ( [20], p.169),

P (n−1,2ν)
m (1) =

(n)m
m!

. (5.3)

The states defined above satisfy the resolution of the identity

1H =

∫
Cn

T ν,mw N ν,m dµn(w), (5.4)

where T ν,mw is the operator which projects a vector φ ∈ H onto a coherent state
Ψν,m
w as T ν,mw [φ] = 〈Ψν,m

w , φ〉HΨν,m
w and allows the quantization scheme described

in Section 2.
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Example 5.1. For n = 1, coherent states (5.1) can be defined via the super-
position

Ψν,m
z (x) = (2 (ν +m) + 1)−

1
2

2(ν+m)∑
k=0

Φ
(ν,m)
k (z)φk (x) , (5.5)

where Φ
(ν,m)
k (z) are given by (3.9) and

φk (x) ≡ φ(r)
k (x,N) := K

(r)
k (x+Nr,N)

√
k! (N − k)!rNr+xsNs−x

rkskΓ (Nr + x+ 1) Γ (Ns− x+ 1)

(5.6)

with −Nr ≤ x ≤ (1− r)N, s = 1 − r, N ∈ Z+ and K
(r)
k (., N) being the

Kravchuk polynomial [29]. The functions x 7→ φ
(r)
k (x,N) satisfy the orthogonal-

ity relations
∑N

j=0 φ
(r)
k (xj , N)φ

(r)
` (xj , N) = δ`,k at points xj of the discrete set

Ω
(r)
N+1 = {xj = j − rN, j = 0, 1, . . . , N}. Here, the Hilbert space H in the above

formalism is specified to be `2
(

Ω
(r)
N+1

)
, the space of square summable functions

on Ω
(r)
N+1, and it stands for the states space of the Kravchuk oscillator, see [32,34]

for more details on such coherent states.

5.2. Berezin transform Bνm. Now, to an arbitrary function ϕ ∈ L∞(Cn),
viewed as a classical observable, we associate (quantization) the operator-valued
integral

Pϕ =

∫
Cn

T ν,mw [ϕ]N ν,m dµn(w), (5.7)

viewed as a quantum observable, where T ν,mw is the rank-one operator

T ν,mw [ϕ] = 〈ϕ,Ψν,m
w 〉Ψν,m

w . (5.8)

Next, we define a new classical observable by taking the expectation (dequanti-
zation) of Pϕ with respect to the set of coherent states {Ψν,m

z } as follows:

z 7→ 〈Ψν,m
z , Pϕ[Ψν,m

z ]〉H. (5.9)

Then, according to the formalism in Subsection 2.2, the map defined by

ϕ 7→ Bνm [ϕ] (z) := 〈Ψν,m
z , Pϕ[Ψν,m

z ]〉H (5.10)

is the Berezin transform of ϕ. Starting from the scalar product (5.10) and re-
placing there Pϕ and T ν,mw [ϕ] by their expressions (5.7) and (5.8) successively,
straightforward computations readily give

Bνm[ϕ](z) =
m!cν,nm
(n)m

∫
Cn

(
cos2 dFS(z, w)

)2ν (
P (n−1,2ν)
m (cos 2d(z, w))

)2
ϕ(w) dµn(w),

(5.11)
where cν,nm is the constant given by (4.13).
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Proposition 5.2. For ν, m ∈ Z+ there exists a measurable function W such
that Bνm = W (∆FS).

Proof. Notice that the kernel of the Berezin transform Bν
m depends only on

the geodesic distance dFS defined by (3.4) which is an SU(n + 1)-biinvariant
function. It follows that Bν

m commutes with the translation operators τg defined
by

τg [f ] (z) = f (g.z) , g ∈ SU(n+ 1), z ∈ Cn, (5.12)

where for the group element written into bloc matrices g =

(
A B
C D

)
, A,B,C,D

there are n×n, n× 1, 1×n, 1× 1 matrices, respectively, and the group action is
defined by g.z = (Az +B) (Cz +D)−1 . According to [11] (see Section 4 there),
for every operator δ in the space L2 on a symmetric domain which commutes
with operators (5.12) there is a function of the Laplace operators ∆(1), . . . ,∆(r),
where r is the rank of the domain. That is, δ = W

(
∆(1), . . . ,∆(r)

)
. But since

here Pn(C) is a rank-one symmetric domain, then Bν
m = W

(
∆(1)

)
, where ∆(1) =

∆FS is the Fubini-Study operator.

In the subsequent section, we shall determine explicitly W relying on the
spectral theory of ∆FS .

6. A formula for the Berezin transform Bνm
Here is our main result.

Theorem 6.1. For any n ≥ 1, ν,m ∈ Z+, the transform Bν
m can be expressed

as a function of the Fubini–Study Laplacian ∆FS,

Bνm =
βν,n,m

Γ

(
2ν + 1 + n

2 −
√
n2−∆FS

2

)
Γ

(
2ν + 1 + n

2 +

√
n2−∆FS

2

)
× F 2:2,2

2:1,1

[
2ν + 1, 2ν + 1 : −m , 2ν +m+ n, −m , 2ν +m+ n

2ν + 1 + n
2 −
√
n2−∆FS

2 , 2ν + 1 + n
2 +

√
n2−∆FS

2 : 2ν + 1, 2ν + 1

∣∣∣∣∣ 1, 1
]
,

(6.1)

where

βν,n,m = (2m+ 2ν + n)
Γ (m+ 2ν + n) Γ (m+ 2ν + 1)

Γ (m+ n) Γ (m+ 1)
Γ(n), (6.2)

and F 2:2,2
2:1,1 denotes the Kampé de Fériet function. In particular, for n = 1 and

m = 0 corresponding to the lowest Landau level on the Riemann sphere, we
retrieve Berezin’s formula

Bν0 =
∏
`≥1

(
1 +

∆FS

(`+ 2ν)(`+ 2ν + 1)

)
. (6.3)
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Proof. Appealing to (4.16) and the kernel of Bνm in (5.11), the requirement
Bν
m = W (−∆FS) is equivalent to the equation

m!

(n)m
cν,nm

(
cos2 dFS(z, w)

)2ν (
P (n−1,2ν)
m (cos 2dFS(z, w))

)2

=

∞∑
k=0

W (λk)K0,k(z, w), (6.4)

where λk := 4k(k + n), and K0,k(z, w) was defined in (4.15). Setting t =

cos2 dFS(z, w) and using the symmetry relation P
(α,β)
k (−x) = (−1)kP

(β,α)
k (x)

satisfied by Jacobi polynomials, (6.4) takes the form

t2ν
(
P (2ν,n−1)
m (1− 2t)

)2

=
∞∑
k=0

[
W (λk) (m+ 2ν)! (n)m (2k + n)Γ(n+ k)

(2m+ 2ν + n) (n+m+ 2ν − 1)!m! (−1)k (n)k

]
P

(0,n−1)
k (1− 2t) . (6.5)

To get a solution for the unknown quantity W (λk), we need to expand the left-

hand side of (6.5) as a series of Jacobi polynomials (P
(0,n−1)
k )k≥0. To proceed,

we make use of the following formula [42, p. 4467] satisfied by any α1, α, β > −1,
any m,µ ∈ Z+ and any t ∈ [0, 1]:

tµP (α1,β)
m (1− 2t)P (α1,β)

m (1− 2t)

= (α+ 1)µ

(
α1 +m

m

)2 +∞∑
k=0

(α+ β + 2k + 1)(−µ)k
(α+ 1)k(α+ β + k + 1)µ+1

P
(α,β)
k (1− 2t)

× F 2:2,2
2:1,1

[
µ+ 1, α+ µ+ 1 : −m ,α1 + β +m+ 1, −m, α1 + β +m+ 1
µ− k + 1 , α+ β + µ+ 2 + k : α1 + 1 , α1 + 1

∣∣∣∣ 1, 1] ,
(6.6)

where

F 2:2,2
2:1,1

[
a1, a2 : b1, b2, b3, b4
c1, c2 : d1, d2

∣∣∣∣x, y] :=

∞∑
s,l=0

(a1)l+s(a2)l+s
(c1)l+s(c2)l+s

(b1)l(b2)l(b3)s(b4)s
(d1)l(d2)s

xlys

l!s!

(6.7)
is the Kampé de Fériet function [31]. Specializing (6.6) with µ = α1 = 2ν, β =
n− 1, α = 0, we get, after identification, that

W (λk) = (2m+ 2ν +m)
Γ (m+ 2ν + n) Γ (m+ 2ν + 1)

Γ (m+ n) Γ (m+ 1)
Γ(n)

× 1

Γ (n+ 2ν + 1 + k) Γ (2ν − k + 1)

× F 2:2,2
2:1,1

[
2ν + 1, 2ν + 1 : −m , 2ν +m+ n,−m, 2ν +m+ n
2ν − k + 1, n+ 2ν + k + 1 : 2ν + 1, 2ν + 1

∣∣∣∣ 1, 1] . (6.8)
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Observe that in (6.6) the infinite sum over k terminates at 2ν and that

(−2ν)k = (−1)k
(2ν)!

(2ν − k)!
, k ≤ 2ν. (6.9)

Similarly, the Kampé de Fériet series in (6.8) terminates at m. Solve the equation
λk = 4k(k + n) = λ in the variable k ≥ 0 so that we can extend the function W

for λ ∈ R+. Precisely, we may write W (λ) by replacing k in (6.8) by −n+
√
n2+λ

2 .
Finally, by replacing λ by −∆FS , we have ended with this point. In the case n =
1, using the definition (6.7), we see that F 2:2,2

2:1,1 reduces to 1 for m = 0 and that

W (4k (k + 1)) =
Γ(2ν + 1)Γ(2ν + 2)

Γ(2ν + 1− k)Γ(2ν + 2 + k)
. (6.10)

Now recall the Weierstrass product for the Gamma function [3],

1

Γ(s+ 1)
= eγs

∏
`≥1

(
1 +

s

`

)
e−s/`, (6.11)

where γ is Euler’s constant given by γ = limq→+∞

(∑q
j=1

1
j − log q

)
. It follows

that

W (4k(k + 1)) = βν,1,0e
γ(4ν+3)

∏
`≥1

(
1 +

2ν − k
`

)(
1 +

2ν + 1 + k

`

)
e−(4ν+3)/`.

(6.12)
Writing(

1 +
2ν − k
`

)(
1 +

2ν + 1 + k

`

)
=

(
1 +

2ν

`

)(
1 +

2ν + 1

`

)(
1− k

`+ 2ν

)(
1 +

k

`+ 2ν + 1

)
(6.13)

and using again the Weierstrass product

eγ(4ν+3)
∏
`≥1

(
1 +

2ν

`

)(
1 +

2ν + 1

`

)
e−(4ν+3)/` =

1

Γ(2ν + 1)Γ(2ν + 2)
, (6.14)

we get

W (4k(k + 1)) =
βν,1,0

Γ(2ν + 1)Γ(2ν + 2)

∏
`≥1

(
1− k(k + 1)

(`+ 2ν)(`+ 2ν + 1)

)
. (6.15)

As a matter of the fact, W can be chosen as

W (λ) =
((2ν)!)2(2ν + 1)

Γ(2ν + 1)Γ(2ν + 2)

∏
`≥1

(
1− λ

(`+ 2ν)(`+ 2ν + 1)

)
, λ ≥ 0, (6.16)
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so that

Bν0 = W (−∆FS) =
∏
`≥1

(
1 +

∆FS

(`+ 2ν)(`+ 2ν + 1)

)
. (6.17)

Identifying 2ν with 1/h in the notation of ( [9], p.171), we get Berezin’s formula

Bν0 =
∏
`≥1

(
1 + h2 ∆FS

(1 + `h)(1 + (`+ 1)h)

)
. (6.18)

This ends the proof.

To decompose the Kampé de Fériet series as a finite sum in terms of the
hypergeometric function 4F3, recall the expansion ( [20], p.101),

4F3

(
a, b, c, d
e, f, g

∣∣∣∣u) =

∞∑
l=0

(a)l(b)l(c)l(d)l
(e)l(f)l(g)l

ul

l!
,

provided the series converges. If, moreover, the quantity s = (e + f + g) − (a +
b + c + d) is an integer, we say that 4F3 is s-balanced. In the case s = 1, this
series is called Saalschützian.

Corollary 6.2. For any n ≥ 1, ν,m ∈ Z+ and λk = 4k (k + n) , k ∈ Z+, we
can decompose W (λk) as

W (λk) = (2m+ 2ν + n)(m+ 2ν + 1)n−1
((2ν +m)!)2

m!

× k!

(n)k(n)mΓ(2ν − k + 1)Γ(n+ k + 2ν + 1)

m∑
s=0

(−m)s(2ν + 1)s(2ν +m+ n)s
s!(2ν − k + 1)s(n+ 2ν + k + 1)s

×4F3

[
−m, 2ν + 1 + s, l2ν + 1 + s, 2ν +m+ n,
2ν − k + 1 + s, n+ 2ν + 1 + k + s, 2ν + 1

∣∣∣∣ 1] .
7. Concluding remarks

In this paper, we dealt with the complex projective n-space Pn(C), n ≥ 1,
endowed with its Fubini–Study metric and the Schrödinger operator ∆ν with a
uniform magnetic field whose strength is proportional to ν ∈ Z+. This operator is
nothing else but the Bochner Laplacian on powers of the Hopf line bundle and of
its conjugate. When acting on the space of smooth bounded functions, ∆ν admits
a discrete spectrum consisting of eigenvalues called spherical Landau levels, and
to each eigenspace Aνm, we attached a set of coherent states used afterwards to
define the Berezin transform via a quantization-dequantization process. Our main
result is a formula expressing this transform as a function of the Fubini-Study
Laplacian ∆FS = ∆0 given by a terminating Kampé de Fériet function F 2:2,2

2:1,1 .
In particular, we recovered Berezin’s original formula which corresponds in our
framework to the lowest Landau level on the Riemann sphere (n = 1,m = 0). A
more general formula was subsequently derived ( [8], p.370) for arbitrary n ≥ 1
and is also an instance of ours. We also derived another formula, where the Kampé
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de Fériet function is further expressed as a terminating 4F3 hypergeometric series
which is Saalschützian, taken at unit argument and having integer parameters.
These functions are known to satisfy parameter transformations ( [6]) and we
hope to exploit them in a future project for further simplification of the formula
obtained in Corollary 6.2. It would be also interesting to derive a suitable integral
representation for it: doing so would lead to a sharp estimate of the norm of
the Berezin transform extending the one corresponding to weighted Bergman
spaces [4, 16].
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explain the relation to it. We are also thankful to the Moroccan Association of
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Department of Mathematics, KTH Royal Institute of Technology, SE-10044, Stockholm,
Sweden,
E-mail: mouayn@usms.ma, mouayn@kth.se

Houda Yaqine,

Department of Mathematics, Faculty of Sciences and Technics (M’Ghila), Sultan Moulay
Slimane University, P.O. Box. 523, Béni Mellal, Morocco,
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Перетворення Березiна приєднанi до рiвнiв Ландау в
комплексному проєктивному просторi Pn(C)

Nizar Demni, Zouhäır Mouayn, and Houda Yaqine

Ми будуємо когерентнi стани для кожного власного простору ма-
гнiтного лапласiана в комплексному проєктивному n-просторi для того,
щоб застосувати метод квантизацiї-деквантизацiї. Це дозволяє визначи-
ти перетворення Березiна для цих просторiв. Потiм ми встановлюємо
формулу для цього перетворення як функцiю вiд лапласiана Фубiнi–
Штудi в замкненiй формi, яка мiстить кiнцеву функцiю Кампе де Ферiє.
Для найнижчого сферичного рiвня Ландау на рiмановiй сферi одержана
формула зводиться до формули одержаної самим Березiним.

Ключовi слова: комплексний проєктивний простiр, когерентнi стани,
перетворення Березiна, магнiтний лапласiан, лапласiан Фубiнi–Штудi,
формула Корнвiндера, спiввiдношення Клебша–Ґордана, функцiя Кам-
пе де Ферiє
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