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We study Jacobi—Lie Hamiltonian systems admitting Vessiot—Guldberg
Lie algebras of Hamiltonian vector fields related to Jacobi structures on real
low-dimensional Jacobi-Lie groups. Also, we find all possible examples of
Jacobi-Lie Hamiltonian systems on real two- and three-dimensional Jacobi—
Lie groups. Finally, we present Lie symmetries of Jacobi-Lie Hamiltonian
systems on the real three-dimensional Lie group SL(2,R).
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1. Introduction

A Lie system is a t-dependent system of first-order ODEs that possesses a
superposition rule [5,6, 16]. In other words, the Lie system amounts to a t-
dependent vector field that takes values in a finite-dimensional real Lie algebra
of vector fields, the so-called Vessiot—Guldberg Lie algebra (VG Lie algebra) of
the system.

The analysis of Lie systems dates back to the end of the 19th century, when
Lie, Vessiot, Guldberg, Koningsberger and others [9, 13, 16, 23] pioneered the
study of systems of ODEs admitting superposition rules. For almost a century,
the study of this problem was not considered. After the work of Winternitz [24],
many authors investigated this problem [3-9,13,17,23,24]. Some results were
obtained for Lie systems admitting a VG Lie algebra of Hamiltonian vector fields
relative to symplectic and Poisson structures [7].

A particular class of Lie systems on Poisson manifolds, the so-called Lie—
Hamilton systems, that admits a VG Lie algebra of Hamiltonian vector fields
with respect to a Poisson structure was studied in [7]. Indeed, Lie-Hamilton
systems are a generalization of t-dependent Hamiltonian systems. Lie systems
possessing VG Lie algebras of Hamiltonian vector fields with respect to Jacobi
structures [11,12,15], referred to as Jacobi-Lie systems, were studied and exactly
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introduced in [10]. In our previous work [2], we studied Jacobi-Lie Hamiltonian
systems on real low-dimensional Lie groups.

It is well known that the symplectic manifold is a particular case of the Pois-
son manifold because the Poisson bracket is not necessarily assumed to be non-
degenerate. Since the Jacobi bracket is not necessarily a derivation, the Jacobi
manifold is a generalization of the Poisson manifold [12,15].

In this work, we study Lie systems with V' G Lie algebras of Hamiltonian vector
fields with respect to Jacobi-Lie groups [11] especially on real two- and three-
dimensional Jacobi-Lie groups [20,21]. Moreover, we find all possible Jacobi-Lie
Hamiltonian systems on real low-dimensional Jacobi-Lie groups and we present
Lie symmetries for Jacobi-Lie Hamiltonian systems.

The outline of the paper is as follows: In Section 2, we recall several definitions
and results on Lie and Lie-Hamilton systems, Jacobi structures on Jacobi-Lie
groups [11], and Jacobi-Lie Hamiltonian systems [10]. In Section 3, we exemplify
the results of Section 2 on real two- and three-dimensional Jacobi-Lie groups [20,
21] and find all possible examples. Finally, in Section 4, we study Lie symmetries
of Jacobi-Lie Hamiltonian systems with good Hamiltonian functions on VIII =
SL(2,R).

2. Definitions and notations on Lie and Jacobi—Lie Hamilto-
nian systems

Throughout the paper, we assume that all functions and geometric structures
are real, smooth and globally defined. To highlight the main aspects of our
results, let us omit minor technical problems. Here, for self-containment of the
paper, we review some basic concepts of Lie, Lie-Hamilton [7,17] and Jacobi—Lie
Hamiltonian systems [10].

2.1. Lie systems and Lie-Hamilton systems. Let a and b be two vector
subsets of Lie algebra g, and let [a,b] denote the vector space spanned by the
Lie brackets between the elements of a and b. We define Lie(a, g, [+, -.]) to be the
smallest Lie subalgebra of (g, [-,-]) containing a and represent it by Lie(a).

Definition 2.1. A t-dependent vector field on a manifold M is a map
X:RxM—-TM, (t,z)— X(t,x),

satisfying 7py o X = mo, where w9 and 7)s are the projections from R x M and
TM onto M, respectively.

Using this definition, we can identify every ¢-dependent vector field with a
family {X;}ier of vector fields Xy : M — TM,z — Xy (z) = X(¢,x), and vice
versa.

Definition 2.2. The minimal Lie algebra of X on a manifold M is the small-
est real Lie algebra g* containing the vector fields { X;}¢cg. In other words, g% =

Lie ({X;}er).
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Definition 2.3 ([1]). An integral curve of X is an integral curve o : R —
R x M, t— (t,z(t)), of the suspension of X, i.e., for the vector field

~ 0
X:RxM = TRxM)=~TR&TM, (t2) = +X(t2),

we have d‘z(tt) = X(t,z(t)).

Note that we are identifying X with its associated system of differential equa-

tions dflgt) = X (t,z(t)).

Definition 2.4 ([17]). A Lie system is a system X on a manifold M whose
g% is finite dimensional.

Definition 2.5 ([16]). A superposition rule depending on n particular so-
lutions for a system X on a manifold M is a function ¥ : M"™ x M — M,

(T(1),--+»T(n); k) = @, such that the general solution x(t) of X can be written as
z(t) = V(za)(t),. .., 2m)t); k),
where x(1)(t), ..., %(y)(t) is any generic collection of particular solutions to X and

k = (k1,...,kn) is a point of M to be related to the initial conditions of X.

Theorem 2.6 (Lie-Scheffers [6,16]). A system X on a manifold M admits
a superposition rule if and only if it can be written in the form

X(t,x) =Y bi(t)Xi(x)
=1

for a set bi(t),...,b.(t) of t-dependent functions and a family of vector fields
X1,..., X, on M spanning an r-dimensional real Lie algebra: a VG Lie algebra
of X. In other words, a system X on a manifold M possesses a superposition rule
if and only if it is a Lie system.

Definition 2.7 ([22]). A manifold M endowed with a bivector field P €
(AT M) satisfying [P, P] = 0 is called a Poisson manifold (M, P), where [, -] is
the Schouten—Nijenhius bracket and I'(A? T'M) is the space of sections of \* T'M
over M.

Note that for general p-vector fields P = X; A --- A X, and g-vector fields
Q = Y1 A---NYy, the Schouten—Nijenhius bracket is given by [P, Q] = [X1A--- A
b 4 oy N
Xp, iAo AY ] =2 S ()XY AXIA - AXi A AXpAYT A A
i=1j=1
Yj N NYy, for all X;,Y; € X(M), where [X;,Y;] denotes the Lie bracket of the
two vector fields X;,Y; on M.
We call P a Poisson bivector of the Poisson manifold (M, P). The Poisson
bivector P induces a bundle morphism P# : T*M — TM such that

B(P*a)=P(a,B), a,B € T*M.
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Definition 2.8. A vector field X on M with the Poisson bivector P is said
to be a Hamiltonian vector field if it can be written as X = P#(df), where f is a
function on M called Hamiltonian function. Conversely, every function f is called
a Hamiltonian function of a unique Hamiltonian vector field X .

Definition 2.9 ([7]). A Lie-Hamilton system on a Poisson manifold M is a
Lie system X whose g* consists of Hamiltonian vector fields relative to a Poisson
bivector P.

2.2. Jacobi and Jacobi—Lie structures. Jacobi manifolds were studied
by Lichnerowicz and Kirillov [12, 15].

Definition 2.10. A Jacobi manifold is a triple (M, A, E), where A is a bivec-
tor field, i.e., A € A*X(M), and E is a vector field on M, i.e., E € X(M), (called
the Reeb vector field) such that

[A,A] =2EAA,  LgA=[E,A =0,

where [+, -] is the Schouten—Nijenhuis bracket, and Lg is the Lie derivative relative
to the vector field E.

The space (C> (M), {-,-}a,r) is a local Lie algebra in the sense of Kirillov [12]
with the following Jacobi bracket:

This Lie bracket is a Poisson bracket if and only if the vector field F identically
vanishes.

Definition 2.11. A Jacobi-Lie bialgebra is a pair ((g, ¢o), (g%, X0)), where g
is a finite-dimensional real Lie algebra with the Lie bracket [-,-]® and g* is a dual
space of g with the Lie bracket [-,-]9"; also, ¢o € g* and X € g are 1-cocycles on
g and g*, respectively, such that for all XY € g satisfy the following properties:

d*XO [X, Y]g = [X, d*XOYB)O - [Y7 d*XoX]gg()?
¢o(Xo) =0,
igo (dX) + [Xo, X]? =0,
where
Lo /\kg — /\kilg, P iy, P.
Moreover, d,, being the Chevalley—Eilenberg differential of g* acting on g and
d.«x,, is its generalization such that we have

VX, Y eg dux,Y =d.Y + X, NY.

In addition, [-, -]5)0 is the ¢g-Schouten—Nijenhuis bracket with the following prop-
erties:

VP e AFg VP € AF g
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[P, Py, = [P, P+ (—1)F (k= 1)P Aig, P — (K — Dig, P AP, (1)
[P, P'ls, = (=1)"[P', Pla,. (2:2)
If ((g,¢00), (g%, X,)) is a Jacobi-Lie bialgebra, then ((g*, X,), (g, ¢,)) is also a

Jacobi-Lie bialgebra. For this case, we have d as the Chevalley-Eilenberg differ-
ential of g acting on g* and it has the following ¢g € g* generalization:

Yw € AFg* dyw = dw + ¢p A w. (2.3)

In the above definition, Xy and ¢, are 1-cocycles on g* and g, respectively,
i.e., we must have

d.X, =0, db,=0. (2.4)

Definition 2.12 ([11]). A bivector A on a connected Lie group G is said to
be o—multiplicative if A satisfies the relation

Algh) = (Rp)«(A(9)) + e 79 (Ly)w(A(R), g, h,€G,

where 0 : G — R is a multiplicative function. Meanwhile, (Lg). (respectively,
(Rh)*) is the pullback of the left (respectively, the right) invariant action of G
on itself.

Definition 2.13 ([l1]). A Jacobi-Lie group is a connected Lie group G
together with a Jacobi structure (A, E) on G such that:

i) A is o—multiplicative.
ii) F is a right invariant vector field, F(¢) = —Xo and A#(do) = Xo — e~ Xy,

where E = — X, and ¢ is the identity element of G; in addition, j{ and X are the
right and the left invariant vector fields, respectively, such that Xo(e) = Xo(e) =
Xo-

Iglesias and Marrero proved in [11] that if G is a connected and simply con-
nected Lie group with Lie algebra g and the pair ((g, ¢0), (g%, Xo)) is a Jacobi-Lie
bialgebra, then G is a Jacobi-Lie group and it has a special Jacobi structure.

Theorem 2.14 ([11]). Let the pair ((g,$0), (g%, X0)) be a Jacobi-Lie bial-
gebra and let G be a connected and simply connected Lie group with Lie algebra
g. Then there exists a unique multiplicative function o : G — R and a unique
o-multiplicative bivector A on G satisfying (do)(e) = ¢o and the intrinsic deriva-
tive of bivector at ¢ is —d.x,, that is, d.A = —d.x,. Furthermore, the following
identity holds:

A#(dd) = Xo — G_UX(),
and the pair (A, E) is a Jacobi structure on G.

Definition 2.15. A coboundary Jacobi—Lie bialgebra is a Jacobi—Lie bialge-
bra such that d.x, is a 1-coboundary, that is, there exists r € A?g satisfying

dixoX = ad (g, 1y(X)(r), VX € g, (2.5)

(for more details, see [11]).
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A Jacobi structure on G was determined in [11,20] as follows:
A=7F—e%F, FE=—Xo, (2.6)

where both 7 and 7 (Vg € G 7(g) = (Ry)«r and 7(g) = (Lg).r) are the right
and the left invariant bivectors on the Lie group G (i.e., the pullback of the 7-
matrix r € A%g) as well as X is a right invariant vector field on G. Furthermore,
(do)(e) = ¢o.

The relation (2.6) can be expressed in terms of the local coordinates z* on G
as follows [20]:

1 ..
A=ort (XX —emo X[ X9, A0, (2.7)
and
E = i v Ry
=—a'X; "0y, (2.8)

where both XZ-R " and XiL” are the ith components of the right and the left in-
variant vector fields on the Lie group G [20]; namely X7 = XiR 19, and X1 =
XiL 9,,. Furthermore, we have that

[Xﬁ7Xﬁ]: i];'X1§7 [XiL’XjL]:_i];XkL’

where ffj are the structure constants of the Lie algebra g of the Lie group G.
Moreover, 7% is the component of the skew-symmetric tensor r = %r“ Xi N X7,
and the multiplicative function ¢ : G — R is defined as (do)(e) = ¢ as well
as o' is obtained from the relation Xy = a'X;, where {X;} is the basis of the
Lie algebra g. Now, using the results from [20] and the relations (2.7) and (2.8),
one can calculate the vector field F and the bivector A related to the real two-
and three-dimensional Jacobi-Lie bialgebras [20]. Our results are listed in Tables
5.1-5.3. The first column gives the names of the real two- and three-dimensional
Jacobi—Lie bialgebras according to [20], and the second column gives the Jacobi
structure (A, E) on the Lie group G related to the Lie algebra g. Note that
the elements of the real two-dimensional Jacobi—Lie group G are given by g =
e X1e¥X2 for all ¢ € G. Additionally, for the real three-dimensional Jacobi-Lie
group G, we assume that g = e*X1e¥X2¢2X3 for all g € G.

Definition 2.16 (][20]). A bi-r-matrix Jacobi-Lie bialgebra is a Jacobi-Lie
bialgebra possessing classical r-matrices r € A%g and 7 € A%g*.

Definition 2.17 ([20]). A coboundary Jacobi-Lie bialgebra is a Jacobi-Lie
bialgebra admitting the classical r-matrix r € A%g or 7 € A%g*.

In [20], real two- and three-dimensional bi-r-matrix Jacobi-Lie bialgebras and
coboundary Jacobi-Lie bialgebras have been classified, and here we apply those
classifications to obtain the results of Tables 5.1-5.3.
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2.3. Jacobi—Lie Hamiltonian systems. Jacobi-Lie Hamiltonian sys-
tems were introduced in [10]. In other words, Lie systems possessing a Vessiot—
Guldberg Lie algebra of Hamiltonian functions with respect to a Jacobi structure.
One of the most useful constructions on Jacobi manifolds is in a sense analogue
of the gradient defined as follows.

Definition 2.18. A vector field X on the manifold M is Hamiltonian rela-
tive to a Jacobi structure (M, A, E) if there exists a function f, referred to as
Hamiltonian, such that

X =[A fl+ fE = A*(df) + fE.

Let f be a smooth function on the Jacobi manifold M. Then there exists a
unique vector field Xy on M, referred to as a Hamiltonian vector field associated
with f, such that the following equality is satisfied:

{f,9ne=Xrg—gEf, geC®(M).

A vector field X; can possess several Hamiltonian functions.  Obviously,
(Ham(M, A, E),|-,-) is a Lie algebra, where the bracket is the one concerning
vector fields and Ham(M, A, E) is the space of Hamiltonian vector fields of the
Jacobi manifold. If E'f = 0 (that is, the derivative of the function f in the direc-
tion of the vector field E is equal to zero), then the function f is called a good
Hamiltonian function and Xy, a good Hamiltonian vector field [10].

Definition 2.19 ([10]). A Jacobi-Lie system is a quadruple (M, A, E, X),
where (M, A, E) is a Jacobi manifold and X is a Lie system such that g* C
Ham(M, A, E).

Definition 2.20 ([10]). A Jacobi-Lie Hamiltonian system is a quadruple
(M,A,E,| f), where (M, A, E) is a Jacobi manifold and f : RxM — M, (t,x) —
fi(z) is a t-dependent function and Lie({f;}er,{-, }a,E) is finite dimensional.
The system X on M is said to be Jacobi-Lie Hamiltonian system related to
(M, A, E, f) if X; is a Hamiltonian vector field with the Hamiltonian function f;
(relative to the Jacobi manifold) for all ¢ € R.

Theorem 2.21 ([10]). If (M,A,E, f) is a Jacobi-Lie Hamiltonian sys-
tem, then the system X of the form X; = Xy, ,Vt € R, is a Jacobi-Lie system
(M,A\,E,X). If X is a Lie system whose {X;}er are good Hamiltonian vector
fields, then X possesses a Jacobi—Lie Hamiltonian.

3. Jacobi-Lie Hamiltonian systems on real low-dimensional
Jacobi—-Lie groups

Now we consider some Jacobi structures obtained by using the real two- and
three-dimensional Jacobi-Lie groups related to the Jacobi—Lie bialgebras (see Ta-
bles 5.1, 5.3 below). In these examples, we consider the Lie group G related to
the Jacobi-Lie bialgebra ((g, ¢o), (g*, Xo)). For these examples, we use the for-
malisms mentioned in the previous section for calculating Jacobi-Lie Hamiltonian
systems on real low-dimensional Jacobi-Lie groups.
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Example 3.1. Consider the real two-dimensional bi-r-matrix Jacobi—Lie bial-
gebra ((g,¢0), (8%, X0)) = ((Ag,bX?),(Ag.i,—bX1)), where Xg = —bX; =
a'X; = ol =—-b, a®=0.

In view of the results obtained in [20], we see that the Lie group Ay with Lie
algebra As is X = 9, X8 = —20, + 9, X} = e7Y0,, and X} = §,, where X7
and XiL are the ¢th components of the right and the left invariant vector fields
on the Lie group As. Moreover, r = %rini ANXj=X1ANXy=r2 =2 and
o = by [20]. Meanwhile, consider the Lie group As with the coordinates x and
y related to the Lie algebra As. Hence, using the relations (2.7), (2.8), one can
show that the Jacobi bivector field and the Reeb vector field have the following
forms (see Table 5.1):

Ay = (1= e CHING A, Ey, = b0, (3.1)
Simple calculations show that they satisfy
[AAw AA2] = QEAQ VAN AA2 =0, [EAQ, AA2] =0.

Thus, (Ag, Ap,, Ea,) is a Jacobi manifold. Now, using the above results and the
bundle morphism

A*T*M — TM
dg(A* (df)) = A(df,dg), Vdf,dg € T*M, (3.2)

we see that

(3.3)

M) = -t (L9 00,

Oy’ Ox

This morphism allows us to relate for every function f € C°°(M) an associated
Hamiltonian vector field Xy through the relation

X = A*(df) + fE. (3.4)

Substituting (3.3) and Ea, = b0, in (3.4), we obtain

Since every Hamiltonian function f; induces a unique Hamiltonian vector field,
it makes sense to represent it by XiH . Thus, one has that

X =X{ = (— (1 - e*(bJrl)y) 2 + bfl) (1 —(b+1)y ) %7;1

8 0

Here, the Hamiltonian vector fields X 1H , X{I are linearly independent over As and
they form a basis for the Lie algebra Ay with non-zero commutators [X{/, X4] =
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X fI . Note that the Hamiltonian vector fields need not be linearly independent on
a Lie group. It is easy to check that

(=1 + e~ (+0w) 5"
b

span the Lie algebra Ay of Hamiltonian vector fields on Ag, i.e., [X{T, X1 = X,
Consider now the system on Ay defined by

XH —pe? 0, + 9y, X =1bo,,

2

o S h(XT(a2), ez € ho, (3.6)
i=1

for arbitrary t-dependent functions b;(t). X2 is a Lie system since the associated

t-dependent vector field X#2 = 23:1 bi(t) X} takes values in the Lie algebra

(X{, X2 where [ X, X4 = XH | namely the Lie algebra As.

We now illustrate that the Lie system (3.6) is a Jacobi-Lie system. Indeed,
XH and XI are Hamiltonian vector fields with respect to (Ag, Ag,, Ey,) with the
Hamiltonian functions f; = e and f; = 1, respectively (i.e., X = A7 (dfi) +
fiE), and thus (Aa, Ag,, EA2,XA2) is a Jacobi-Lie system.

Since f = 3.7, bi(t)fi = bi(t)e™ + bo(t) is a Hamiltonian function of X*2
for every ¢t € R and the functions f; and fy satisfy the commutation relation
{f1 foda,, By, = f1, then the functions { f; }+cr span a finite-dimensional real Lie

algebra of functions with respect to the Lie bracket induced by (3.1). Conse-
quently, X#2 admits a Jacobi-Lie Hamiltonian system (Ag, Ag,, Ea,, f).

Example 3.2. Consider the real three-dimensional bi-r-matrix Jacobi—Lie bial-
gebra ((g, ¢o), (8%, X0)) = (ITT, =bX?+bX3), (I11.iv,bX1)), where Xo = bX; =
a'X; = al =b,a® =0,a% = 0. In view of the results of [20], we see that the Lie
group III with Lie algebra 117 is

xp\ (o XP\ [0+ (4 )@y +0)
Xt = 62 Zﬂf)y + 62'2’1&2 ) Xl = Oy , (3.7)
X?? e 12—1ay 4 e T;.l az XSL az

where X' and X} are the ith components of the right and the left invariant
vector fields on the Lie group III. Moreover, rr = %rini ANXj = %Xl A X9 —
FXiAXs=r2=1r¥%=—1and o0 = —b(y — 2) [20]. Meanwhile, consider the
Lie group Il with the coordinates x,y and z related to Lie algebra I71. Hence,
using the relations (2.7), (2.8), one can show that the Jacobi bivector field and
the Reeb vector field have the following forms (see Table 2):

1 1
Am =5 (1 - =20, N8, — 5= VN9, N D, + (y + 2)etW2)a, A D,
Fyp = —b0,. (3.8)

Obviously, [AH]I, A]ﬂm] = 2EmAAmm = —2b(y+z)eb(y‘z)6x/\8yA62 and [E]I]I]h AH]I] =
0. As a result, (III, Ay, Frp) is a Jacobi manifold. Now, using the above results
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and (3.2), it follows that

_ bly—=2) _ bly—2)
4o [ _(1—e Jof  (1—e ) of
Am(df) = ( 2 oy + 2 0z O
(1 — eb(y—z)) af b(y—=z) af
u <2ax —ly+z) e

(1)) of by Of
+ (2(‘):1: —(y+=z)e 3.

Substituting (3.9) and Eyy = —b0,, in (3.4), we obtain

_ ebly—2) _ ebly—2)
X, = <_<1€y)8f+(16y>8f bf> "

2 oy 2 0z
(1 — eb(ny)) af b(y—=z) af
+<28x—(y+z)e 3, Dy
(1 — eb(yi)Z)) 8f b(y—=z) af
+<28x—(y+z)e 3, 0,

Since every Hamiltonian function f; induces a unique Hamiltonian vector field,
it makes sense to represent it by X”. Thus, one has that X1 = Xy, XI =
Xy, and X4 = Xy, . The Hamiltonian vector fields X{7, X4 and X# are linearly
independent over Il and they form a basis for the Lie algebra I1 with non-zero
commutators [XI, XI = X}

It is straightforward to verify that the Lie algebra II of Hamiltonian vector
fields on III is spanned by

X{{ = _baﬂvv
X' = (‘i * %eb(y’z) - by) 0o + (y +2)e"V 2 0,
X = Bi(1,—b(y + 2))e @b, — 9,

+ (2 b(y+2) Bi(1,—b(y+2)e ¥+ 4 1) 0z,

where Fi(1,-b(y +2)) = f_og(y+z)§dm. The system on III can be defined as

3

d

==Y bx/(3), el (3.10)
=1

for arbitrary t-dependent functions b;(t).
As the associated t-dependent vector field X™ = S b;(t)XH takes values

in the Lie algebra I, that is, [X4, X] = X}, then X s a Lie system. We
now manifest that (III, Ay, Eyr, X™) is a Jacobi-Lie system. In fact, X{I ,X{I
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and X g are Hamiltonian vector fields relative to (III, Ay, Frpp) with good Hamil-
tonian functions f1 = 1, fo = y, and f3 = —e 2%Ei(1, —b(y + z), respectively,
(i e. XH A#(dfl) + fiE ) and thus (ITI, Arr, Err, X™) is a Jacobi-Lie system.
Because F=32 bi(t) fi = bi(t) + ba(t)y — bs(t)e 2" Ei(1, —b(y + z) is a Hamil-
tonian function of X™ for every t € R, and the functions fi, fo, and f3 satisfy
the commutation relations {f2, f3}ax sy = J1, then the functions {ft}ter span
a finite-dimensional real Lie algebra of functions with respect to the Lie bracket
induced by (3.8). Consequently, X™ admits a Jacobi-Lie Hamiltonian system
(I, A, B, f)-

Example 3.3. Consider the real three-dimensional bi-r-matrix Jacobi—Lie bial-
gebra (g, ¢0), (g%, X0)) = ((II1,0),(II11.v,3X> — 3X3)), where Xo = 11X, —
*Xg—OéZX:>Oé =0, o? %anda —%.

In view of the results of [20], we see that the Lie group III with Lie algebra
II1is

X{% J20 Oz XlL Oy + (3/"‘2)(82! +0:)
X = S0, + & 520 |, | XF | = Oy , (3.11)
XE e2 2_18 I 212“8 Xk o,

where XZ»R and XZ.L are the ith components of the right and the left invariant
vector fields on the Lie group III. Moreover, r = %rini ANXj = %Xl AN X3+
%Xg AXg= 713 =112 =1and o =0 [20]. Meanwhile, consider the Lie group
IIT with the coordinates x,y and z related to the Lie algebra I1I. Hence, using
the relations (2.7), (2.8), one can show that the Jacobi bivector field and the
Reeb vector field have the following forms (see Table 5.2):

2 _ 230 1
Amze Lo, na,+© : 8/\8—§(y+z+1—6 28, A9,
1 1
B = =50, + 50-. (3.12)

One can show that

2z

et —1
(A, Amr) = 2Em A A = Oz NOy N O, [Em, Am) =

Hence, (III, Arp, Exqpr) is a Jacobi manifold. Now, using the above results and
(3.2), it follows that

1— a 1— 2x 8
A]ﬁﬂ(df):<( 46 )8£ 7( 46 )a£>&r

+((—1+e2w+<y+z+1—e >af>

4 ox 2 0z

(-1+e*")of (y+rz+l-¢ )af
+<4 5 5 3y | = (3.13)
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Substituting (3.13) and Em = —39, + 30. in (3.4), we obtain

Xy = <(1—62x)a‘f+ (1_6%)&’0) O

4 oy 4 0z

(71+62”) of (y+z+1762x) of f
+< 1 oz 2 9: 2%

4 oz 2 ay+§

Since every Hamiltonian function f; induces a unique Hamiltonian vector field, it
makes sense to represent it by X /7. Thus, one has that X{{ = X, X = Xy,
and X?fl = Xy,. The Hamiltonian vector fields XH X1 and ng[ are linearly
independent over Il and they form a basis for the Lie algebra I11 with non-zero
commutators [X{1, X4 = —(XH + X1, [XF X = —(x¥ + X1IT).

A simple calculation shows that

1
XfI:—§ (22 -3y —2-2)(-1+e2%)0,
3 1
+ <262xy+2e2zz+62$—|—g—;—l—ezxx—x> Oy

3 1 3 )
+ (Qezxy2e2mze2x+2y+2,z

+ 1+62xx+y2+2yz+z2+a:) 0z,

1 1 1 1
X{I = (5 — §€2I>8$ — §€2x ay + 5 €2x az,

1 1
X;I — —§6y + 583,

span the Lie algebra I11 of Hamiltonian vector fields on III.
The system on III can be written as

3

dy

7 = 2 biX (), el
=1

for arbitrary ¢-dependent functions b;(¢). Since the associated t-dependent vec-
tor field XM = Z§:1 bi(t) X} takes values in the Lie algebra ITI, that
is, (X, XM = (X5 + X)), [ Xf, xI] = (X + XH), then X™ is a Lie
system.

We now prove that (III, Ay, Epp, X'™0) is a Jacobi-Lie system. As a matter of
the fact, X 1H , Xf and X 3{1 are Hamiltonian vector fields relative to (III, Ar, Exr)
with the Hamiltonian functions fi =2 (y+2+2)(—y+2x), fo=14+y+ 2z and
f3 =1, respectively, (i.e., XT = A#(df;) + f;E), and thus (IIL, Ay, B, , X™) is
a Jacobi-Lie system.
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Using the Lie bracket induced by Apy and FEpg of the Lie group III, we
can write {f1, fotam g, = —f2 — f3, {f1,fs}am u, = —fo — f3. Therefore,
(ITL, Aqr, B, f = 2?21 bi(t)f;) for X" is a Jacobi-Lie Hamiltonian system,
where A and Eppp are those appearing in (3.12).

Example 3.4. Consider the real three-dimensional bi-r-matrix Jacobi—Lie bial-
gebra ((g, ¢o), (g, Xo)) = (IV,=X"), (ITT.vi,— X2 — X3)), where Xg = —Xo —
X3=0o'X;=a'=0,a?>=—-1and o® = —1.

In view of the results of [20], we see that the Lie group IV with Lie algebra
IV is

Xf Or Xk Op +y0y — (y — 2)0;
X2 = [e%0, — ze®0, |, Xt = Oy ,

where XZ-R and XZ-L are the ¢th components of the right and the left invariant
vector fields on the Lie group IV. Moreover, r = %rini ANXj=X1ANXa+ X2 A
X3 =12 =2 1% =2 and 0 = —z [20]. Meanwhile, consider the Lie group IV
with the coordinates =,y and z related to the Lie algebra IV. Hence, using the
relations (2.7), (2.8), one can show that the Jacobi bivector field and the Reeb
vector field have the following forms (see Table 5.2):

Ay = —2€® 0, N0+ € (z—y—1+€")0yND., Ery =e€"0y+e*(1—2x)0,, (3.14)
Then one can show that
[A]W, A]W] =2 xezx&c AN 8y A0, = 2Ey N A]W, [Ew, A]W} = 0.

Hence (IV, Ay, Ery) is a Jacobi manifold. Now, using the above results and (3.2),
it follows that

s = (02 ) o+ (< —y-1+9 2 o
—I—<—xe %%—e (z—y—1+e)ay)8z. (3.15)

Substituting (3.15) and Eyy = €9, + €*(1 — )0, in (3.4), we obtain

Xy = <:ce“g£> Op + <—ex(z—y—1+ex)g£+fe“<)8y
—|—(—xexgi—i—e”(z—y—l—i—ex)g”z—i—ex(l—m)f)@z.

Since every Hamiltonian function f; induces a unique Hamiltonian vector field, it
makes sense to represent it by X/. Thus, one has that X{{ = X, X = Xy,
and Xi,fl = Xy,. The Hamiltonian vector fields X{I , X2H , and Xg are linearly
independent over IV and they form a basis for the Lie algebra I'V with non-zero
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commutators [X{T, X2 = — (X — X1 [XH XxH] = —XII. A short calculation
shows that

1+¢” 2" +2y—2

Xf{:—aery_TBer 0z,

x
X =e" 0y +e"(1—1)0,,

x x -9
Xg__f;aﬁ@(ﬂ«“)

0z,
span the Lie algebra I'V of Hamiltonian vector fields on IV. The system on IV
can be considered as

3
% = bi(t) X (), v € IV,
=1

for arbitrary ¢-dependent functions b;(¢). Since the associated ¢t-dependent vector
field X1V = E?:l bi(t) X} takes values in the Lie algebra IV, that is, [X{1, XJ] =
—(XH — X [XH XH] = —XH then X"V is a Lie system. We now exhibit
that (IV, Ary, Erv, X'V) is a Jacobi-Lie system. Actually, X#, XM and X1
are the Hamiltonian vector fields relative to (IV, Ary, Ery) with the Hamiltonian

functions f1 = W, 5=1,and f3 = —% respectively (i.e., X1 = A% (df;)+
fiE), and thus (IV, Ay, Erv, X'V) is a Jacobi-Lie system.

Using the Lie bracket induced by Ary and Ery of the Lie group IV, the func-
tions fi, f2, and f3 satisfy the commutation relations {fi, fa}ay, oy = —f2t

f3, {fl, fg}AW’ Epy = —f3. Therefore, (]IV, A]W, E]IHa f = Z?:l bz<t)fl) fOI‘ XHV is a
Jacobi-Lie Hamiltonian system, where Ay and Epy are those appearing in (3.14).

4. Lie symmetry for Jacobi—Lie Hamiltonian systems

We now give an example of Jacobi-Lie Hamiltonian systems with good Hamil-
tonian functions on the Lie group VIII = SL(2,R) whose distribution associated
with this system is of dimension two. Then we obtain a ¢-independent Lie sym-
metry [7] for this system to illustrate our procedure.

Let X be a t-dependent vector field on M, the associated distribution of X
is the generalized distribution AX on M spanned by the vector fields of gX. In
other words,

AY ={Z,|Zeg"} CT.M,

and the associated co-distribution of X is the generalized co-distribution (AX)+
on M of the form

(AN ={veT;M |VY, € AY v(Y,) =0} CTiM,

where (AX)1 is the annihilator of AZX.

The function pX : M — NU {0}, 2 — dim A is lower semicontinuous at z
since it cannot decrease in the neighborhood of z. In addition, p* (x) is constant
on the connected components of a dense and open subset UX of M (cf. [22, p. 19]),
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where AX becomes a regular involutive distribution. Also, (AX)* becomes a
regular co-distribution on each connected component since dim (AX)+= dim M —

pX ().

Theorem 4.1. A function h : UX — R is a local t-independent constant of
motion for a t-dependent vector field X if and only if dh € (AX)|yx.

The proof is given in [7].

Definition 4.2. Let X be a Jacobi-Lie system with a Jacobi-Lie Hamiltonian
structure (M, A, E, f). Then one can define its symmetry distribution as follows:
(SI)\(E)J; = A7 (dh;) + hi E € T, M, where dh; € (AX)*|y.

Now, using the symmetry distribution, we study the t-independent Lie sym-
metries of Jacobi—Lie Hamiltonian systems with good Hamiltonian functions on
real low-dimensional Lie groups. In the following theorem, we state the result
not giving the proof of the theorem [10].

Theorem 4.3. Let X be a Jacobi—Lie system possessing a Jacobi—Lie Hamil-
tonian structure (M,A, E, f) with good Hamiltonian functions {fi}ter. The
smooth function h on the Jacobi manifold M is a t-independent constant of mo-
tion for X if and only if h commutes with all elements of Lie({ fi}er, {-, A E)
relative to {-,-}a.E-

Lemma 4.4. The mapping
P (COO(M)7 {'7 .}A,E) — (Ham(M7A7E)7 ['7 ])
is a homomorphism Lie algebras, i.e., o{f,g9}n.r = [X5, Xg].

Theorem 4.5. Let X be a Jacobi-Lie system admitting a Jacobi—Lie Hamil-
tonian structure (M, A, E, f) with good Hamiltonian functions { fi }er. If h is a t-
independent constant of motion for X, then Xj, = A¥(dh)+hE is a t-independent
Lie symmetry of X.

Proof. In view of Lemma 4.4, we have

[Xn, Xy,] = [A?(dh) + hE, AP (dfy) + fiE] = o{h, fi}a.E
=—p{fe,h}rg = —p(Xih —hEf;) = —p(X;h) =0, teR. [

Example 4.6. As an example of the above result, let us consider the Lie group
VIII = SL(2,R) with the following Jacobi structure:

Ay = 2y0, N Oy — (1 +y2)0y A0,  Eym = 20, — y0Oy + 20, (4.1)

where z,y and z are the local coordinates on the Lie group VIII (see [10]).
A simple calculation shows that X1 = —20, and X3 = —yd, + 20, span the
Lie algebra Ay of Hamiltonian vector fields on VIII.
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The system on VIII can be written as
o _ Zzzb»(t)X.H(fy) v € VIII
dt — (] 7 bl b

for arbitrary ¢-dependent functions b;(¢). Since the associated t-dependent vec-
tor field XV = 2 b;(t) X} takes values in the Lie algebra A, that
is, [X{, X4 = XH | then XV is a Lie system.

We now prove that (VIII, Ayrr, By, X V') is a Jacobi-Lie system. As
a matter of the fact, X{/ and X/ are Hamiltonian vector fields relative to
(VIIL, Ay, Eymn) with good Hamiltonian functions f; = xy and fo = —yz.
Note that these functions are first integrals of XiH and BEyyy for ¢ = 1,2, re-
spectively. Subsequently, (VIII, Ayyy, By, X V) is a Jacobi-Lie system. Us-
ing the Lie bracket induced by Ay and Eyyg of Lie group VIII, we can write
{fl, fQ}AVHHLEVHH = f1; therefore, (VH]I]I, AVJI]I]I; EVH]L f = 2?21 bi (t)fz) for )(VH]I is
a Jacobi-Lie Hamiltonian system.

It is easy to check that h = 1 is a t-independent constant of motion. One can
show that

{h ) fa}AVHLEVHH =0, a=1,2
Then the function h always Jacobi commutes with the whole Lie algebra
Lie({ ft}ter, {*; -} Ay, )» s expected.

By applying Theorem 4.5, X; = A#(dh) + hE must be a Lie symmetry for
this system. A short calculation shows that Xj; = 20, — y0, + 20.. It is easy to
check that X}, commutes with X{7, X1 and thus commutes with every Xy,, with
t € R, i.e., X} is a Lie symmetry for X VI,

5. Concluding remarks

Using the realizations [18] of the complete list of Jacobi structures on real two-
and three-dimensional Jacobi-Lie groups [20], we have obtained Hamiltonian vec-
tor fields and achieved Jacobi-Lie Hamiltonian systems on real low-dimensional
Jacobi—Lie groups. Then we have presented Lie symmetries for Jacobi—Lie Hamil-
tonian systems with good Hamiltonian functions.

Table 5.1: Reeb vector field and Jacobi bivector field related to real two-
dimensional bi-r-matrix Jacobi—Lie bialgebras.

((g,%0), (g%, X0)) Reeb vector field E and Jacobi bivector field A
(A1, X71), (A1, X2)) E= -9,
A=(1—-e"")0, N0y
((A2,0X?), (A2.i,—bX1)) | E = b0,
=(1— e O+¥)9, A 9,

((A1,0), (A2, — Xa)) 9,

0

sl g
I
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Table 5.2: Reeb vector field and Jacobi bivector field related to real three-

dimensional bi-r-matrix Jacobi—Lie bialgebras.

((9,%0), (8%, Xo0))

Reeb vector field FE
and Jacobi bivector field A

(I, -X?%+4 X3), (111, -2X,))

E =20,
A= (~1+e¥%)dy A D,
(1 — eV%)0, A D,

((II7 0)7 (I7 Xl))

E=-0,
A= —y0, N0y — 20, \ O,

((II7 0)7 (Va le))

E = —b0,
A=—(1+b)yd. N0y
—(14b)z0; A0,

(ITT,bX71), (IT1.i,—X5 + X3))

E=0, 0.

A=—L1-e )9, 00,
—i—%(l —e )9, N O,
—%(y + 2)e 9, A 0,

((I1T,—bX? + bX3), (II1.iv,bX1))

E = —bd,

A=1(1-eW=2))9, A0,
—1(1—etW=2)a, A 0,
+(y + 2)etW=2)9, A 9,

((III, 0)7 (IIIUa lXQ - %X?)))

E:—Qéay‘f'%az ,
A=70, N0y + S20, N O,
—(y+2+1—e*)0, AO.

((I11,0),(IV.iv, Xy — X3))

E=-0,+0.
= L(e> — 1), A 0.

(IIT,—2X"), (Vi,— Xy — X3))

= €2*9, + €%,

((I11,0), (VI4.viii, — X + X))

=0
E=— z
((111,0), (VIgiv, X> — X3)) o+
A= -=2y+2)0yN0,
E=0,-0
I11,0),(VIgwii,—Xs + X vz
((111,0), 2+ X3) 2yt 20, A0,
E=09,-0,

A= 25y +2)0y AO.

(IV,—=X", (I11.vi,— X5 — X3))

E=¢e"0y+€e"(1 —x)0,
A= —xe"0, N O,
+e(z—y—1+¢€%)0y N0,
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(IV,—X", (VI,.ii, —X3))

((IV7 _X1>7 (IV27 _bX3)) b= 82
A=e"(e”—1)0y N0,
((IV, _X1>7(IV“7_bX3)) N 82
A=—e"(e" —1)0y A O,
~ E =e"0,
((IV,=X1), (VIg.i,—X3)) 0
A = —2ye"oy N 0,
~ E=e" z
((IV, —Xl),(v_[a.i, _X3)) 626
A = Zye®0y N O,
E=¢e"0,

A= —a—ilyezﬁy A 0,

(V,—2X1), (V.i, —2X5 — 2X3))

E = 2e%0y + 2€"0,

A=e"(1—¢€")0, N0y
+e® (1 —€%)0 N O,
+e* (2 — y)Oy A O

((V> _%Xl)’ (VIa-ia _%Xlﬁ)

_ 2a _x
B = a—16¢ 0;

A= (" — e'ﬁlx)am A 0,
2a
—yea-1"0, N0,

(V, =24 XY), (VIaii, — 2% X3))

E = f—flel’@g
A= (" —eati™)O, N D,

_2a_,.
—yeati Oy A 0,

- E = be®0,
(IV,-XY), (IV 4, —bX3)) be®0
A=e"(e" —1)0y N0,
o1 .. = bexaz
(IV,—X1Y), (IV.ii, —bX3))
=—e"(e" —1)0y N O,
~ E = %,
(IV,—XY), (VIg.i, —X3)) ‘
A = —2ye®0, N 0,
| E =¢€"0,
IV, - XY, (VIgi,—X 9
(( ), (VIq.i,—X3)) 20, no.
(v, XY, ( ) e
IV, = XY, (VIa.ii,— X3 >
= —a+1ye Oy N O

(V, —2X1), (V.i, —2X5 — 2X3))

= 2e"0y + 2e"0,
A=e"(1—¢€")0, N0y
+e® (1 — €%)0y N\ O,
+e% (2 — y)Oy A 0.
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((VIy, X3, (IILix,—X,))

E= a2a16 8
(V, =22 XY, (VIgi, — 2% X3)) A= (e” —Qaea 179, A O,
—yea10y N D,
E= afle 8;5%
(V,— a+1 XN, (VI,.ii, ang)) A= (e” —2aeaT1x)8x A 0,
—yeati®Oy A D,
E =0, + 0,
- B A= (y—x)0y N0,
(VIg, X3, (I11.vii,— X1 — X5)) (1 )0, A 2,
+(1—e )9, N D,
E =20,

A=(1+y—e2)d, Ad,

(VIy, X3, (VIg.ii,— X1 + X5))

+e #sinh(z)0, A 0,
+(1 — e *cosh(z))0y A O,
E =0, — 0,

A =2z + )0 A D,

((VIOa 72)23)’
(VIo.i6,2X) — 2X5))

E = —20, + 20,

A= —(z+4+y)0; N0y
+(1 —e3)0, A 0,
—(1—¢e*)o, N O,

1
+
+ore VT (1 —a)(y -

~ E=0,—
(VIg, X3), (VIg.iii, — X1 + X3)) i 2 %
- E=0,—
(V1o X%), (VI,iv,~X; + X2)) == %
E = 20: — 210,
(VIo, 2 X3), A=—(z+y)0: N0y
(V 1, — 21 (X1 — X5))) +(1- ei;‘?’ )0y A 0,
—(1— e = #)oy N 0,
E= oz—%—l8 + a—?—l8
(VIp,—2:X3), A=—(z+ y)83 A Oy
at
(VIgiv, 725 (X1 — X2))) +(1—eer1)dy A D,
—(1 = e#H1%)d, A D.
E = %e(mrl)way + %e(a+1)xaz
(Va4 —(a—1XY), A = A (eletr — ele=Dm)g A,
(IH.u, — 41 (X2 + X3))) A (elatDr — ela=Dz)g A9,

)0y A 0.
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((Va,

~(a+ DX,
(II1.v,

=1 (X2 — aX3)))

——e*(—cosh(z) + asinh(z))0,
e‘”(— sinh(x) + a cosh(x))d,
“ sinh(x)0, A 0y

e cosh(x) — el@tD¥)9, A 0,

L( 2ax

—elet T+ ay + 2))9, A O,

+ z:
\HH
AN

(VIq

7_(a - 1))21)
(IT1.v

(X2 —aX3)))

7+1

E = 1-¢e%%(— cosh(z) + asinh(z))d,
+ 477 (—sinh(z) + a cosh(z))0,
“ sinh(x)0, A 0y
o cosh(z) — el@1
L(GQGAB
—ela—1

)Y, A D,

(1 + ay + 2))9, A 0.

(Vq,

—(a+ 1)XY),

([11.z,— 5 (X2 — X3)))

z

e(a—l)m e(a—i-l)a:)ax A ay
(e(a+1) e(afl)m)air A D,
+ﬁ (@ D2(1 + a) (y + 2)9y A 0.

_atl_(a—1)z
a—1¢ 9

a—l

((Vfa, _(a + 1))21)7 E = e(a—i—l)aza + e(a—l—l)zaz
(VI[,.U, —X2 — Xg)) A= — )6(a+1) ( - z)é?y A 6Z
VIaa —(a+1 Xl ’ E = 6(““)9”8 + 6(a+1)xaz
y
(VIyvi,—Xo + X3)) A= — iy et (y — 2)0, N 0.
(VIg,—(a—1)X1), E =elabrg, — ela=Drg,
(V Iyvii, — X 4+ X3)) A= —2e ™ Dy + 2)0y N O,
(VIg,—(a—1)X"Y), E= e<a—1>$a ela=1zg,
(VIb.m'ii, —X9 + Xg)) A= (b+1) e(a Dz (y + Z)ay A0,
B — 2(ab+1) (a_,_l)xa
(a+1)(b—1 Y
_|_( _é;’ar)l))l)e(aﬁ—l)xa
(VI ~ 2G5 X), _ 1 (elatne _ 2
2(abt1) A= (e —e 1 ")y AN Dy,
(ViIpv, —Gineen (X2 + X3))) (asn)e 2o,
+a+1 (e —e -1 MO, N O,
2(ab+1)
+Lre i1 (1 —a)(y — 2)9, A D,
= 2(ab—-1) e(aJrl)xay
_|(_a+21()ﬁ(l?’t?) e(a+1)aza
VI 2(ab— l)Xl (a+1)(b+1)
(Vg — b+1 ); A= ( (a+1)z (b+1 )8 A Oy
(VIpwi,— B (X + X3)) | a+1 o e
+i9 (e(‘”'l) e )0z N 0,
1 2(ab71)

+ogqe (1—a)(y—2)0y A0,
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E = 2(ab—T) e(a—l)xa

“alob ) (o
a a— ma
ab-1) 3 ( DICN §
“VIW‘ﬁ%EQEXB’ A= (el — H5TT)9, A
VIywii, — 55—y (X2 — X = wony
(VIyvit, = ayyny (X2 — X3))) L (Celate 4 2P0 g,

(a
+ 1le2bb1 1+a)(y+2)0y N0,
E = 2(ab+1) ela— l)may

iy
(VI - 220X, ( “Dern e bea D
ab+
(VIy.wviii, A= Lo(elamDr — 7o “)&TAay
- 2(ab+1) (X —X))) ( ) 2(ab+1)
(@-D)(6+1) 2 T 43 (—el* ™% e iy “)0x N 0

2(abt1)

1
a—1
¢ " (L +a)(y +2)3y A9,

++s=

Table 5.3: Reeb vector field and Jacobi bivector field related to real three-
dimensional coboundary Jacobi-Lie bialgebras.

((9, ¢0), (8%, X0)) Reeb vector field £ and Jacobi bivector
field A
E =0,
1,0),(V,-X
(10), (V. ~x2) s
E =20,

(II,—X? + X3),(II1,-2X})) A= (=1+e¥2)3, AD,
+(1— eV )3, A D,
_e2xay _ eQzaz
(e 4 e¥=%)0, A O,

(111, —X*+ X3),
(I11.iii, Xy + X3))

I
s>
|
o>

Yy z

(y + 2)0y N\ O,

e®o,
—(y+1—e%)e"0y N0,
e*o,

((I11,0),(I11.2,—X2+ X3))

(IV,=X"), (IIT.v, —X3))

IV, —2XY), (V.ii,—2X
( ), (Vi =2X3)) 20)9, A D, — e, A O

I
—
9]

8
[
9]

— _2a xaz
((IV, =20 XYY, (V,.i, — 25 X3)) a—1°
= (e* — e 170, ND, —yea—T1"0y N O
1v,-2oX1 = 2Le"0,
(( ) a+1 ) a+1e )

(VI .Z'L, _aLHX:s))

Il
@

8
&

(V,=X1), (VIo.i,—X3))

I ol = ol = ol E= Sl = o)
Il
[\

Il

|
DO
<
]
8
mQJ
>
N
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- E = €%0,
((V, =X, (VIoid, —X3)) €0
A= Zye®0y N0,
- E = €%0,
(V, = XYY, (VIn.ii, —X3)) c 82 )
= —rﬂye 8y A az
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T'aminpronoBi cucremu Axobi—JIi Ha gificHux
MaJioBUMipHux rpymnax Axkob6i—JIi Ta ix cumerpii JIi

H. Amirzadeh-Fard, Gh. Haghighatdoost, and A. Rezaei-Aghdam

Mu BuBuaemo raminbroHOBI cucremu Axobi-JIi, skl momyckaorh asre-
6pu JIi Beccio—I'yibabepra ramMibTOHOBUX BEKTOPHUX IIOJIiB OB’ sI3aHUX 31
crpykrypamu kob6i Ha gilicHux MajioBuMipaux rpymax Akobi—JIi. Takoxk
ME 3HaXOIUMO BCl MOXKJINBI IPHUKJIAIN TaMiILTOHOBUX cucTteM Axobi—JIi ma
mificHux mBo- 1 TpuBuMipHUX rpymax fAkobi-JIi. Haocranok mu mpeacraBiis-
emo cumetpil JIi ramismpronoBux cucrem Akobi-JIi ma aificuiit TpuBmMipHii

rpyui JIi SL(2,R).

Kirrouosi ciioBa: rpyna Axobi—JIi, muorosun Akobi, cucrema JIi, ramian-
ToHoBa cucrema fAkobi—JIi, cumerpis JIi
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