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We study Jacobi–Lie Hamiltonian systems admitting Vessiot–Guldberg
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1. Introduction

A Lie system is a t-dependent system of first-order ODEs that possesses a
superposition rule [5, 6, 16]. In other words, the Lie system amounts to a t-
dependent vector field that takes values in a finite-dimensional real Lie algebra
of vector fields, the so-called Vessiot–Guldberg Lie algebra (V G Lie algebra) of
the system.

The analysis of Lie systems dates back to the end of the 19th century, when
Lie, Vessiot, Guldberg, Köningsberger and others [9, 13, 16, 23] pioneered the
study of systems of ODEs admitting superposition rules. For almost a century,
the study of this problem was not considered. After the work of Winternitz [24],
many authors investigated this problem [3–9, 13, 17, 23, 24]. Some results were
obtained for Lie systems admitting a V G Lie algebra of Hamiltonian vector fields
relative to symplectic and Poisson structures [7].

A particular class of Lie systems on Poisson manifolds, the so-called Lie–
Hamilton systems, that admits a V G Lie algebra of Hamiltonian vector fields
with respect to a Poisson structure was studied in [7]. Indeed, Lie–Hamilton
systems are a generalization of t-dependent Hamiltonian systems. Lie systems
possessing V G Lie algebras of Hamiltonian vector fields with respect to Jacobi
structures [11,12,15], referred to as Jacobi–Lie systems, were studied and exactly
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introduced in [10]. In our previous work [2], we studied Jacobi–Lie Hamiltonian
systems on real low-dimensional Lie groups.

It is well known that the symplectic manifold is a particular case of the Pois-
son manifold because the Poisson bracket is not necessarily assumed to be non-
degenerate. Since the Jacobi bracket is not necessarily a derivation, the Jacobi
manifold is a generalization of the Poisson manifold [12,15].

In this work, we study Lie systems with V G Lie algebras of Hamiltonian vector
fields with respect to Jacobi–Lie groups [11] especially on real two- and three-
dimensional Jacobi–Lie groups [20,21]. Moreover, we find all possible Jacobi–Lie
Hamiltonian systems on real low-dimensional Jacobi-Lie groups and we present
Lie symmetries for Jacobi–Lie Hamiltonian systems.

The outline of the paper is as follows: In Section 2, we recall several definitions
and results on Lie and Lie–Hamilton systems, Jacobi structures on Jacobi–Lie
groups [11], and Jacobi–Lie Hamiltonian systems [10]. In Section 3, we exemplify
the results of Section 2 on real two- and three-dimensional Jacobi–Lie groups [20,
21] and find all possible examples. Finally, in Section 4, we study Lie symmetries
of Jacobi–Lie Hamiltonian systems with good Hamiltonian functions on VIII =
SL(2,R).

2. Definitions and notations on Lie and Jacobi–Lie Hamilto-
nian systems

Throughout the paper, we assume that all functions and geometric structures
are real, smooth and globally defined. To highlight the main aspects of our
results, let us omit minor technical problems. Here, for self-containment of the
paper, we review some basic concepts of Lie, Lie–Hamilton [7,17] and Jacobi–Lie
Hamiltonian systems [10].

2.1. Lie systems and Lie–Hamilton systems. Let a and b be two vector
subsets of Lie algebra g, and let [a, b] denote the vector space spanned by the
Lie brackets between the elements of a and b. We define Lie(a, g, [·, ·.]) to be the
smallest Lie subalgebra of (g, [·, ·]) containing a and represent it by Lie(a).

Definition 2.1. A t-dependent vector field on a manifold M is a map

X : R×M → TM, (t, x) 7→ X(t, x),

satisfying τM ◦ X = π2, where π2 and τM are the projections from R ×M and
TM onto M, respectively.

Using this definition, we can identify every t-dependent vector field with a
family {Xt}t∈R of vector fields Xt : M → TM, x 7→ Xt(x) = X(t, x), and vice
versa.

Definition 2.2. The minimal Lie algebra of X on a manifold M is the small-
est real Lie algebra gX containing the vector fields {Xt}t∈R. In other words, gX =
Lie
(
{Xt}t∈R

)
.



Jacobi–Lie Hamiltonian Systems on Real Low-Dimensional Jacobi–Lie Groups 35

Definition 2.3 ([1]). An integral curve of X is an integral curve α : R →
R×M , t 7→ (t, x(t)), of the suspension of X, i.e., for the vector field

X̃ : R×M → T (R×M) ' TR⊕ TM, (t, x) 7→ ∂

∂t
+X(t, x),

we have dx(t)
dt = X(t, x(t)).

Note that we are identifying X with its associated system of differential equa-
tions dx(t)

dt = X(t, x(t)).

Definition 2.4 ([17]). A Lie system is a system X on a manifold M whose
gX is finite dimensional.

Definition 2.5 ([16]). A superposition rule depending on n particular so-
lutions for a system X on a manifold M is a function Ψ : Mn × M → M,
(x(1), . . . , x(n); k) 7→ x, such that the general solution x(t) of X can be written as

x(t) = Ψ(x(1)(t), . . . , x(n)(t); k),

where x(1)(t), . . . , x(n)(t) is any generic collection of particular solutions to X and
k = (k1, . . . , km) is a point of M to be related to the initial conditions of X.

Theorem 2.6 (Lie–Scheffers [6, 16]). A system X on a manifold M admits
a superposition rule if and only if it can be written in the form

X(t, x) =

r∑
i=1

bi(t)Xi(x)

for a set b1(t), . . . , br(t) of t-dependent functions and a family of vector fields
X1, . . . , Xr on M spanning an r-dimensional real Lie algebra: a VG Lie algebra
of X. In other words, a system X on a manifold M possesses a superposition rule
if and only if it is a Lie system.

Definition 2.7 ( [22]). A manifold M endowed with a bivector field P ∈
Γ(
∧2TM) satisfying [P, P ] = 0 is called a Poisson manifold (M,P ), where [·, ·] is

the Schouten–Nijenhius bracket and Γ(
∧2 TM) is the space of sections of

∧2 TM
over M .

Note that for general p-vector fields P = X1 ∧ · · · ∧ Xp and q-vector fields
Q = Y1∧ · · · ∧Yq, the Schouten–Nijenhius bracket is given by [P,Q] = [X1∧ · · · ∧

Xp, Y1 ∧ · · · ∧ Yq] =
p∑

i=1

q∑
j=1

(−1)i+j [Xi, Yj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xp ∧ Y1 ∧ · · · ∧

Ŷj ∧ · · · ∧ Yq, for all Xi, Yi ∈ X(M), where [Xi, Yj ] denotes the Lie bracket of the
two vector fields Xi, Yj on M.

We call P a Poisson bivector of the Poisson manifold (M,P ). The Poisson
bivector P induces a bundle morphism P# : T ∗M → TM such that

β(P#α) = P (α, β), α, β ∈ T ∗M.
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Definition 2.8. A vector field X on M with the Poisson bivector P is said
to be a Hamiltonian vector field if it can be written as X = P#(df), where f is a
function on M called Hamiltonian function. Conversely, every function f is called
a Hamiltonian function of a unique Hamiltonian vector field Xf .

Definition 2.9 ([7]). A Lie–Hamilton system on a Poisson manifold M is a
Lie system X whose gX consists of Hamiltonian vector fields relative to a Poisson
bivector P .

2.2. Jacobi and Jacobi–Lie structures. Jacobi manifolds were studied
by Lichnerowicz and Kirillov [12,15].

Definition 2.10. A Jacobi manifold is a triple (M,Λ, E), where Λ is a bivec-
tor field, i.e., Λ ∈

∧2X(M), and E is a vector field on M , i.e., E ∈ X(M), (called
the Reeb vector field) such that

[Λ,Λ] = 2E ∧ Λ, LEΛ = [E,Λ] = 0,

where [·, ·] is the Schouten–Nijenhuis bracket, and LE is the Lie derivative relative
to the vector field E.

The space (C∞(M), {·, ·}Λ,E) is a local Lie algebra in the sense of Kirillov [12]
with the following Jacobi bracket:

{f, g}Λ,E = Λ(df, dg) + fEg − gEf, f, g ∈ C∞(M).

This Lie bracket is a Poisson bracket if and only if the vector field E identically
vanishes.

Definition 2.11. A Jacobi–Lie bialgebra is a pair ((g, φ0), (g∗, X0)), where g
is a finite-dimensional real Lie algebra with the Lie bracket [·, ·]g and g∗ is a dual
space of g with the Lie bracket [·, ·]g∗ ; also, φ0 ∈ g∗ and X0 ∈ g are 1-cocycles on
g and g∗, respectively, such that for all X,Y ∈ g satisfy the following properties:

d∗X0 [X,Y ]g = [X, d∗X0Y ]gφ0 − [Y, d∗X0X]gφ0 ,

φ0(X0) = 0,

iφ0(d∗X) + [X0, X]g = 0,

where
iφ0 : ∧ kg→ ∧k−1g, P 7→ iφ0P.

Moreover, d∗, being the Chevalley–Eilenberg differential of g∗ acting on g and
d∗X0 , is its generalization such that we have

∀X,Y ∈ g d∗XoY = d∗Y +Xo ∧ Y.

In addition, [·, ·]gφ0 is the φ0-Schouten–Nijenhuis bracket with the following prop-
erties:

∀P ∈ ∧kg ∀P ′ ∈ ∧k′g
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[P, P ′]φo = [P, P ′] + (−1)k+1(k − 1)P ∧ iφoP ′ − (k′ − 1)iφoP ∧ P ′, (2.1)

[P, P ′]φo = (−1)kk
′
[P ′, P ]φo . (2.2)

If ((g, φo), (g
∗, Xo)) is a Jacobi–Lie bialgebra, then ((g∗, Xo), (g, φo)) is also a

Jacobi–Lie bialgebra. For this case, we have d as the Chevalley–Eilenberg differ-
ential of g acting on g∗ and it has the following φ0 ∈ g∗ generalization:

∀ω ∈ ∧kg∗ dφoω = dω + φo ∧ ω. (2.3)

In the above definition, X0 and φo are 1-cocycles on g∗ and g, respectively,
i.e., we must have

d∗Xo = 0, dφo = 0. (2.4)

Definition 2.12 ([11]). A bivector Λ on a connected Lie group G is said to
be σ−multiplicative if Λ satisfies the relation

Λ(gh) = (Rh)∗(Λ(g)) + e−σ(g)(Lg)∗(Λ(h)), g, h,∈ G,

where σ : G → R is a multiplicative function. Meanwhile, (Lg)∗
(
respectively,

(Rh)∗
)

is the pullback of the left (respectively, the right) invariant action of G
on itself.

Definition 2.13 ( [11]). A Jacobi–Lie group is a connected Lie group G
together with a Jacobi structure (Λ, E) on G such that:

i) Λ is σ−multiplicative.

ii) E is a right invariant vector field, E(e) = −X0 and Λ#(dσ) = X̃0 − e−σX̄0,

where E = −X̃0 and e is the identity element of G; in addition, X̃ and X̄ are the
right and the left invariant vector fields, respectively, such that X̃0(e) = X̄0(e) =
X0.

Iglesias and Marrero proved in [11] that if G is a connected and simply con-
nected Lie group with Lie algebra g and the pair ((g, φ0), (g∗, X0)) is a Jacobi–Lie
bialgebra, then G is a Jacobi–Lie group and it has a special Jacobi structure.

Theorem 2.14 ([11]). Let the pair
(
(g, φ0), (g∗, X0)

)
be a Jacobi–Lie bial-

gebra and let G be a connected and simply connected Lie group with Lie algebra
g. Then there exists a unique multiplicative function σ : G → R and a unique
σ-multiplicative bivector Λ on G satisfying (dσ)(e) = φ0 and the intrinsic deriva-
tive of bivector at e is −d∗X0, that is, deΛ = −d∗X0 . Furthermore, the following
identity holds:

Λ#(dσ) = X̃0 − e−σX̄0,

and the pair (Λ, E) is a Jacobi structure on G.

Definition 2.15. A coboundary Jacobi–Lie bialgebra is a Jacobi–Lie bialge-
bra such that d∗X0 is a 1-coboundary, that is, there exists r ∈ ∧2g satisfying

d∗X0X = ad(φ0,1)(X)(r), ∀X ∈ g, (2.5)

(for more details, see [11]).
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A Jacobi structure on G was determined in [11,20] as follows:

Λ = r̃ − e−σ r̄, E = −X̃0, (2.6)

where both r̃ and r̄
(
∀g ∈ G r̃(g) = (Rg)∗r and r̄(g) = (Lg)∗r

)
are the right

and the left invariant bivectors on the Lie group G (i.e., the pullback of the r-
matrix r ∈ ∧2g) as well as X̃0 is a right invariant vector field on G. Furthermore,
(dσ)(e) = φ0.

The relation (2.6) can be expressed in terms of the local coordinates xµ on G
as follows [20]:

Λ =
1

2
rij(XRµ

i XRν
j − e−σX

Lµ
i XLν

j )∂µ ∧ ∂ν , (2.7)

and

E = −αiXRµ
i ∂µ, (2.8)

where both XRµ
i and XLν

i are the ith components of the right and the left in-

variant vector fields on the Lie group G [20]; namely XR
i = XRµ

i ∂µ and XL
i =

XLµ
i ∂µ. Furthermore, we have that

[XR
i , X

R
j ] = fkijX

R
k , [XL

i , X
L
j ] = −fkijXL

k ,

where fkij are the structure constants of the Lie algebra g of the Lie group G.
Moreover, rij is the component of the skew-symmetric tensor r = 1

2r
ijXi ∧Xj,

and the multiplicative function σ : G → R is defined as (dσ)(e) = φ0 as well
as αi is obtained from the relation X0 = αiXi, where {Xi} is the basis of the
Lie algebra g. Now, using the results from [20] and the relations (2.7) and (2.8),
one can calculate the vector field E and the bivector Λ related to the real two-
and three-dimensional Jacobi–Lie bialgebras [20]. Our results are listed in Tables
5.1–5.3. The first column gives the names of the real two- and three-dimensional
Jacobi–Lie bialgebras according to [20], and the second column gives the Jacobi
structure (Λ, E) on the Lie group G related to the Lie algebra g. Note that
the elements of the real two-dimensional Jacobi–Lie group G are given by g =
exX1eyX2 for all g ∈ G. Additionally, for the real three-dimensional Jacobi–Lie
group G, we assume that g = exX1eyX2ezX3 for all g ∈ G.

Definition 2.16 ([20]). A bi-r-matrix Jacobi–Lie bialgebra is a Jacobi–Lie
bialgebra possessing classical r-matrices r ∈ ∧2g and r̃ ∈ ∧2g∗.

Definition 2.17 ([20]). A coboundary Jacobi–Lie bialgebra is a Jacobi–Lie
bialgebra admitting the classical r-matrix r ∈ ∧2g or r̃ ∈ ∧2g∗.

In [20], real two- and three-dimensional bi-r-matrix Jacobi–Lie bialgebras and
coboundary Jacobi–Lie bialgebras have been classified, and here we apply those
classifications to obtain the results of Tables 5.1–5.3.
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2.3. Jacobi–Lie Hamiltonian systems. Jacobi–Lie Hamiltonian sys-
tems were introduced in [10]. In other words, Lie systems possessing a Vessiot–
Guldberg Lie algebra of Hamiltonian functions with respect to a Jacobi structure.
One of the most useful constructions on Jacobi manifolds is in a sense analogue
of the gradient defined as follows.

Definition 2.18. A vector field X on the manifold M is Hamiltonian rela-
tive to a Jacobi structure (M,Λ, E) if there exists a function f, referred to as
Hamiltonian, such that

Xf = [Λ, f ] + fE = Λ#(df) + fE.

Let f be a smooth function on the Jacobi manifold M . Then there exists a
unique vector field Xf on M , referred to as a Hamiltonian vector field associated
with f, such that the following equality is satisfied:

{f, g}Λ,E = Xfg − g Ef, g ∈ C∞(M).

A vector field Xf can possess several Hamiltonian functions. Obviously,
(Ham(M,Λ, E), [·, ·) is a Lie algebra, where the bracket is the one concerning
vector fields and Ham(M,Λ, E) is the space of Hamiltonian vector fields of the
Jacobi manifold. If Ef = 0 (that is, the derivative of the function f in the direc-
tion of the vector field E is equal to zero), then the function f is called a good
Hamiltonian function and Xf , a good Hamiltonian vector field [10].

Definition 2.19 ([10]). A Jacobi–Lie system is a quadruple (M,Λ, E,X),
where (M,Λ, E) is a Jacobi manifold and X is a Lie system such that gX ⊂
Ham(M,Λ, E).

Definition 2.20 ( [10]). A Jacobi–Lie Hamiltonian system is a quadruple
(M,Λ, E, f), where (M,Λ, E) is a Jacobi manifold and f : R×M →M, (t, x) 7→
ft(x) is a t-dependent function and Lie({ft}t∈R, {·, ·}Λ,E) is finite dimensional.
The system X on M is said to be Jacobi–Lie Hamiltonian system related to
(M,Λ, E, f) if Xt is a Hamiltonian vector field with the Hamiltonian function ft
(relative to the Jacobi manifold) for all t ∈ R.

Theorem 2.21 ( [10]). If (M,Λ, E, f) is a Jacobi–Lie Hamiltonian sys-
tem, then the system X of the form Xt = Xft ,∀t ∈ R, is a Jacobi–Lie system
(M,Λ, E,X). If X is a Lie system whose {Xt}t∈R are good Hamiltonian vector
fields, then X possesses a Jacobi–Lie Hamiltonian.

3. Jacobi–Lie Hamiltonian systems on real low-dimensional
Jacobi–Lie groups

Now we consider some Jacobi structures obtained by using the real two- and
three-dimensional Jacobi-Lie groups related to the Jacobi–Lie bialgebras (see Ta-
bles 5.1, 5.3 below). In these examples, we consider the Lie group G related to
the Jacobi–Lie bialgebra ((g, φ0), (g∗, X0)). For these examples, we use the for-
malisms mentioned in the previous section for calculating Jacobi–Lie Hamiltonian
systems on real low-dimensional Jacobi–Lie groups.
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Example 3.1. Consider the real two-dimensional bi-r-matrix Jacobi–Lie bial-
gebra ((g, φ0), (g∗, X0)) = ((A2, bX̃

2), (A2.i,−bX1)), where X0 = −bX1 =
αiXi ⇒ α1 = −b, α2 = 0.

In view of the results obtained in [20], we see that the Lie group A2 with Lie
algebra A2 is XR

1 = ∂x, X
R
2 = −x∂x + ∂y, X

L
1 = e−y∂x, and XL

2 = ∂y, where XR
i

and XL
i are the ith components of the right and the left invariant vector fields

on the Lie group A2. Moreover, r = 1
2r
ijXi ∧ Xj = X1 ∧ X2 ⇒ r12 = 2 and

σ = by [20]. Meanwhile, consider the Lie group A2 with the coordinates x and
y related to the Lie algebra A2. Hence, using the relations (2.7), (2.8), one can
show that the Jacobi bivector field and the Reeb vector field have the following
forms (see Table 5.1):

ΛA2 = (1− e−(b+1)y)∂x ∧ ∂y, EA2 = b∂x. (3.1)

Simple calculations show that they satisfy

[ΛA2 ,ΛA2 ] = 2EA2 ∧ ΛA2 = 0, [EA2 ,ΛA2 ] = 0.

Thus, (A2,ΛA2 , EA2) is a Jacobi manifold. Now, using the above results and the
bundle morphism

Λ# : T ∗M → TM

dg(Λ#(df)) = Λ(df, dg), ∀df, dg ∈ T ∗M, (3.2)

we see that

Λ#
A2

(df) = (1− e−(b+1)y)

(
−∂f
∂y
,
∂f

∂x

)
. (3.3)

This morphism allows us to relate for every function f ∈ C∞(M) an associated
Hamiltonian vector field Xf through the relation

Xf = Λ#(df) + fE. (3.4)

Substituting (3.3) and EA2 = b∂x in (3.4), we obtain

Xf =

(
−(1− e−(b+1)y)

∂f

∂y
+ bf

)
∂x +

(
1− e−(b+1)y

) ∂f
∂x
∂y. (3.5)

Since every Hamiltonian function fi induces a unique Hamiltonian vector field,
it makes sense to represent it by XH

i . Thus, one has that

Xf1 = XH
1 =

(
−
(

1− e−(b+1)y
) ∂f1

∂y
+ bf1

)
∂x +

(
1− e−(b+1)y

) ∂f1

∂x
∂y,

Xf2 = XH
2 =

(
−
(

1− e−(b+1)y
) ∂f2

∂y
+ bf2

)
∂x +

(
1− e−(b+1)y

) ∂f2

∂x
∂y.

Here, the Hamiltonian vector fields XH
1 , X

H
2 are linearly independent over A2 and

they form a basis for the Lie algebra A2 with non-zero commutators [XH
1 , X

H
2 ] =
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XH
1 . Note that the Hamiltonian vector fields need not be linearly independent on

a Lie group. It is easy to check that

XH
1 = b e

−x
b ∂x +

(−1 + e−(1+b)y)e
−x
b

b
∂y, XH

2 = b∂x,

span the Lie algebra A2 of Hamiltonian vector fields on A2, i.e., [XH
1 , X

H
2 ] = XH

1 .
Consider now the system on A2 defined by

dα2

dt
=

2∑
i=1

bi(t)X
H
i (α2), α2 ∈ A2, (3.6)

for arbitrary t-dependent functions bi(t). X
A2 is a Lie system since the associated

t-dependent vector field XA2 =
∑2

i=1 bi(t)X
H
i takes values in the Lie algebra

〈XH
1 , X

H
2 〉, where [XH

1 , X
H
2 ] = XH

1 , namely the Lie algebra A2.
We now illustrate that the Lie system (3.6) is a Jacobi–Lie system. Indeed,

XH
1 and XH

2 are Hamiltonian vector fields with respect to (A2,ΛA2 , EA2) with the

Hamiltonian functions f1 = e
−x
b and f2 = 1, respectively (i.e., XH

i = Λ#(dfi) +
fiE), and thus (A2,ΛA2 , EA2 , X

A2) is a Jacobi–Lie system.

Since f =
∑2

i=1 bi(t)fi = b1(t)e
−x
b + b2(t) is a Hamiltonian function of XA2

for every t ∈ R and the functions f1 and f2 satisfy the commutation relation
{f1, f2}ΛA2,EA2

= f1, then the functions {ft}t∈R span a finite-dimensional real Lie

algebra of functions with respect to the Lie bracket induced by (3.1). Conse-
quently, XA2 admits a Jacobi–Lie Hamiltonian system (A2,ΛA2 , EA2 , f).

Example 3.2. Consider the real three-dimensional bi-r-matrix Jacobi–Lie bial-
gebra ((g, φ0), (g∗, X0)) = ((III,−bX̃2 +bX̃3), (III.iv, bX1)), where X0 = bX1 =
αiXi ⇒ α1 = b, α2 = 0, α3 = 0. In view of the results of [20], we see that the Lie
group III with Lie algebra III isXR

1

XR
2

XR
3

 =

 ∂x
e2x+1

2 ∂y + e2x−1
2 ∂z

e2x−1
2 ∂y + e2x+1

2 ∂z

 ,

XL
1

XL
2

XL
3

 =

∂x + (y + z)(∂y + ∂z)
∂y
∂z

 , (3.7)

where XR
i and XL

i are the ith components of the right and the left invariant
vector fields on the Lie group III. Moreover, r = 1

2r
ijXi ∧ Xj = 1

2X1 ∧ X2 −
1
2X1 ∧X3 ⇒ r12 = 1, r13 = −1 and σ = −b(y − z) [20]. Meanwhile, consider the
Lie group III with the coordinates x, y and z related to Lie algebra III. Hence,
using the relations (2.7), (2.8), one can show that the Jacobi bivector field and
the Reeb vector field have the following forms (see Table 2):

ΛIII =
1

2
(1− eb(y−z))∂x ∧ ∂y −

1

2
(1− eb(y−z))∂x ∧ ∂z + (y + z)eb(y−z)∂y ∧ ∂z,

EIII = −b∂x. (3.8)

Obviously, [ΛIII,ΛIII] = 2EIII∧ΛIII = −2b(y+z)eb(y−z)∂x∧∂y∧∂z and [EIII,ΛIII] =
0. As a result, (III,ΛIII, EIII) is a Jacobi manifold. Now, using the above results
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and (3.2), it follows that

Λ#
III(df) =

(
−
(
1− eb(y−z)

)
2

∂f

∂y
+

(
1− eb(y−z)

)
2

∂f

∂z

)
∂x

+

((
1− eb(y−z)

)
2

∂f

∂x
− (y + z) eb(y−z)

∂f

∂z

)
∂y

+

((
1− eb(y−z)

)
2

∂f

∂x
− (y + z) eb(y−z)

∂f

∂z

)
∂z (3.9)

Substituting (3.9) and EIII = −b∂x in (3.4), we obtain

Xf =

(
−
(
1− eb(y−z)

)
2

∂f

∂y
+

(
1− eb(y−z)

)
2

∂f

∂z
− bf

)
∂x

+

((
1− eb(y−z)

)
2

∂f

∂x
− (y + z) eb(y−z)

∂f

∂z

)
∂y

+

((
1− eb(y−z)

)
2

∂f

∂x
− (y + z) eb(y−z)

∂f

∂z

)
∂z

Since every Hamiltonian function fi induces a unique Hamiltonian vector field,
it makes sense to represent it by XH

i . Thus, one has that XH
1 = Xf1 , X

H
2 =

Xf1 and XH
3 = Xf3 . The Hamiltonian vector fields XH

1 , X
H
2 and XH

3 are linearly
independent over III and they form a basis for the Lie algebra II with non-zero
commutators [XH

2 , X
H
3 ] = XH

1 .

It is straightforward to verify that the Lie algebra II of Hamiltonian vector
fields on III is spanned by

XH
1 = −b ∂x,

XH
2 =

(
−1

2
+

1

2
eb(y−z) − by

)
∂x + (y + z)eb(y−z) ∂z,

XH
3 = Ei(1,−b(y + z))e−b(y+z)b∂x − ∂y

+
(

2 b (y + z) Ei (1,−b (y + z)) e−b(y+z) + 1
)
∂z,

where Ei (1,−b (y + z)) =
∫∞
−b(y+z)

e−x

x dx. The system on III can be defined as

dγ

dt
=

3∑
i=1

bi(t)X
H
i (γ), γ ∈ III, (3.10)

for arbitrary t-dependent functions bi(t).

As the associated t-dependent vector field XIII =
∑3

i=1 bi(t)X
H
i takes values

in the Lie algebra II, that is, [XH
2 , X

H
3 ] = XH

1 , then XIII is a Lie system. We
now manifest that (III,ΛIII, EIII, X

III) is a Jacobi–Lie system. In fact, XH
1 , X

H
2
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and XH
3 are Hamiltonian vector fields relative to (III,ΛIII, EIII) with good Hamil-

tonian functions f1 = 1, f2 = y, and f3 = −e−2byEi(1,−b(y + z), respectively,(
i.e., XH

i = Λ#(dfi) + fiE
)
, and thus (III,ΛIII, EIII, X

III) is a Jacobi–Lie system.

Because f =
∑2

i=1 bi(t)fi = b1(t) + b2(t)y− b3(t)e−2byEi(1,−b(y+ z) is a Hamil-
tonian function of XIII for every t ∈ R, and the functions f1, f2, and f3 satisfy
the commutation relations {f2, f3}ΛIII,EIII

= f1, then the functions {ft}t∈R span
a finite-dimensional real Lie algebra of functions with respect to the Lie bracket
induced by (3.8). Consequently, XIII admits a Jacobi–Lie Hamiltonian system
(III,ΛIII, EIII, f).

Example 3.3. Consider the real three-dimensional bi-r-matrix Jacobi–Lie bial-
gebra ((g, φ0), (g∗, X0)) = ((III, 0), (III.v, 1

2X2 − 1
2X3)), where X0 = 1

2X2 −
1
2X3 = αiXi ⇒ α1 = 0, α2 = 1

2 and α3 = −1
2 .

In view of the results of [20], we see that the Lie group III with Lie algebra
III isXR

1

XR
2

XR
3

 =

 ∂x
e2x+1

2 ∂y + e2x−1
2 ∂z

e2x−1
2 ∂y + e2x+1

2 ∂z

 ,

XL
1

XL
2

XL
3

 =

∂x + (y + z)(∂y + ∂z)
∂y
∂z

 , (3.11)

where XR
i and XL

i are the ith components of the right and the left invariant
vector fields on the Lie group III. Moreover, r = 1

2r
ijXi ∧ Xj = 1

2X1 ∧ X3 +
1
2X2 ∧X3 ⇒ r13 = 1, r23 = 1 and σ = 0 [20]. Meanwhile, consider the Lie group
III with the coordinates x, y and z related to the Lie algebra III. Hence, using
the relations (2.7), (2.8), one can show that the Jacobi bivector field and the
Reeb vector field have the following forms (see Table 5.2):

ΛIII =
e2x − 1

4
∂x ∧ ∂y +

e2x − 1

4
∂x ∧ ∂z −

1

2
(y + z + 1− e2x)∂y ∧ ∂z,

EIII = −1

2
∂y +

1

2
∂z. (3.12)

One can show that

[ΛIII,ΛIII] = 2EIII ∧ ΛIII =
e2x − 1

2
∂x ∧ ∂y ∧ ∂z, [EIII,ΛIII] = 0.

Hence, (III,ΛIII, EIII) is a Jacobi manifold. Now, using the above results and
(3.2), it follows that

Λ#
III(df) =

((
1− e2x

)
4

∂f

∂y
+

(
1− e2x

)
4

∂f

∂z

)
∂x

+

((
−1 + e2x

)
4

∂f

∂x
+

(
y + z + 1− e2x

)
2

∂f

∂z

)
∂y

+

((
−1 + e2x

)
4

∂f

∂x
−
(
y + z + 1− e2x

)
2

∂f

∂y

)
∂z. (3.13)
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Substituting (3.13) and EIII = −1
2∂y + 1

2∂z in (3.4), we obtain

Xf =

((
1− e2x

)
4

∂f

∂y
+

(
1− e2x

)
4

∂f

∂z

)
∂x

+

((
−1 + e2x

)
4

∂f

∂x
+

(
y + z + 1− e2x

)
2

∂f

∂z
− f

2

)
∂y

+

((
−1 + e2x

)
4

∂f

∂x
−
(
y + z + 1− e2x

)
2

∂f

∂y
+
f

2

)
∂z.

Since every Hamiltonian function fi induces a unique Hamiltonian vector field, it
makes sense to represent it by XH

i . Thus, one has that XH
1 = Xf1 , XH

2 = Xf1 ,
and XH

3 = Xf3 . The Hamiltonian vector fields XH
1 , XH

2 , and XH
3 are linearly

independent over III and they form a basis for the Lie algebra III with non-zero
commutators [XH

1 , X
H
2 ] = −(XH

2 +XH
3 ), [XH

1 , X
H
3 ] = −(XH

2 +XH
3 ).

A simple calculation shows that

XH
1 = −1

2
(2x− 3 y − z − 2)

(
−1 + e2x

)
∂x

+

(
3

2
e2xy +

1

2
e2xz + e2x +

y

2
− z

2
− 1− e2xx− x

)
∂y

+

(
−3

2
e2xy − 1

2
e2xz − e2x +

3

2
y +

5

2
z

+ 1 + e2xx+ y2 + 2 yz + z2 + x

)
∂z,

XH
2 =

(1

2
− 1

2
e2x
)
∂x −

1

2
e2x ∂y +

1

2
e2x ∂z,

XH
3 = −1

2
∂y +

1

2
∂z,

span the Lie algebra III of Hamiltonian vector fields on III.
The system on III can be written as

dγ

dt
=

3∑
i=1

bi(t)X
H
i (γ), γ ∈ III,

for arbitrary t-dependent functions bi(t). Since the associated t-dependent vec-
tor field XIII =

∑3
i=1 bi(t)X

H
i takes values in the Lie algebra III, that

is, [XH
1 , X

H
2 ] = −(XH

2 + XH
3 ), [XH

1 , X
H
3 ] = −(XH

2 + XH
3 ), then XIII is a Lie

system.

We now prove that (III,ΛIII, EIII, X
III) is a Jacobi–Lie system. As a matter of

the fact, XH
1 , X

H
2 and XH

3 are Hamiltonian vector fields relative to (III,ΛIII, EIII)
with the Hamiltonian functions f1 = 2 (y + z + 2) (−y + x) , f2 = 1 + y + z and
f3 = 1, respectively, (i.e., XH

i = Λ#(dfi) + fiE), and thus (III,ΛIII, EIII, , X
III) is

a Jacobi–Lie system.
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Using the Lie bracket induced by ΛIII and EIII of the Lie group III, we
can write {f1, f2}ΛIII, EIII

= −f2 − f3, {f1, f3}ΛIII, EIII
= −f2 − f3. Therefore,

(III,ΛIII, EIII, f =
∑3

i=1 bi(t)fi) for XIII is a Jacobi–Lie Hamiltonian system,
where ΛIII and EIII are those appearing in (3.12).

Example 3.4. Consider the real three-dimensional bi-r-matrix Jacobi–Lie bial-
gebra ((g, φ0), (g∗, X0)) = ((IV ,−X̃1), (III.vi,−X2 −X3)), where X0 = −X2 −
X3 = αiXi ⇒ α1 = 0, α2 = −1 and α3 = −1.

In view of the results of [20], we see that the Lie group IV with Lie algebra
IV is XR

1

XR
2

XR
3

 =

 ∂x
ex∂y − xex∂z

ex∂z

 ,

XL
1

XL
2

XL
3

 =

∂x + y∂y − (y − z)∂z
∂y
∂z

 ,

where XR
i and XL

i are the ith components of the right and the left invariant
vector fields on the Lie group IV. Moreover, r = 1

2r
ijXi ∧Xj = X1 ∧X2 +X2 ∧

X3 ⇒ r12 = 2, r23 = 2 and σ = −x [20]. Meanwhile, consider the Lie group IV
with the coordinates x, y and z related to the Lie algebra IV . Hence, using the
relations (2.7), (2.8), one can show that the Jacobi bivector field and the Reeb
vector field have the following forms (see Table 5.2):

ΛIV = −xex∂x∧∂z+ex(z−y−1+ex)∂y∧∂z, EIV = ex∂y+ex(1−x)∂z, (3.14)

Then one can show that

[ΛIV,ΛIV] = 2xe2x∂x ∧ ∂y ∧ ∂z = 2EIV ∧ ΛIV, [EIV,ΛIV] = 0.

Hence (IV,ΛIV, EIV) is a Jacobi manifold. Now, using the above results and (3.2),
it follows that

Λ#
IV(df) =

(
xex

∂f

∂z

)
∂x +

(
−ex (z − y − 1 + ex)

∂f

∂z

)
∂y

+

(
−xex∂f

∂x
+ ex (z − y − 1 + ex)

∂f

∂y

)
∂z. (3.15)

Substituting (3.15) and EIV = ex∂y + ex(1− x)∂z in (3.4), we obtain

Xf =

(
xex

∂f

∂z

)
∂x +

(
−ex (z − y − 1 + ex)

∂f

∂z
+ fex

(
)∂y

+

(
−xex∂f

∂x
+ ex (z − y − 1 + ex)

∂f

∂y
+ ex (1− x) f

)
∂z.

Since every Hamiltonian function fi induces a unique Hamiltonian vector field, it
makes sense to represent it by XH

i . Thus, one has that XH
1 = Xf1 , XH

2 = Xf1 ,
and XH

3 = Xf3 . The Hamiltonian vector fields XH
1 , XH

2 , and XH
3 are linearly

independent over IV and they form a basis for the Lie algebra IV with non-zero
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commutators [XH
1 , X

H
2 ] = −(XH

2 −XH
3 ), [XH

1 , X
H
3 ] = −XH

3 . A short calculation
shows that

XH
1 = −∂x +

y − 1 + ex

x
∂y +

2 ex + 2 y − 2

x
∂z,

XH
2 = ex ∂y + ex(1− x) ∂z,

XH
3 = −e

x

x
∂y +

ex (x− 2)

x
∂z,

span the Lie algebra IV of Hamiltonian vector fields on IV. The system on IV
can be considered as

dδ

dt
=

3∑
i=1

bi(t)X
H
i (δ), ∀δ ∈ IV,

for arbitrary t-dependent functions bi(t). Since the associated t-dependent vector
field XIV =

∑3
i=1 bi(t)X

H
i takes values in the Lie algebra IV , that is, [XH

1 , X
H
2 ] =

−(XH
2 − XH

3 ), [XH
1 , X

H
3 ] = −XH

3 , then XIV is a Lie system. We now exhibit
that (IV,ΛIV, EIV, X

IV) is a Jacobi–Lie system. Actually, XH
1 , XH

2 , and XH
3

are the Hamiltonian vector fields relative to (IV,ΛIV, EIV) with the Hamiltonian

functions f1 = (2 y−z)e−x

x , f2 = 1, and f3 = − 1
x respectively ( i.e., XH

i = Λ#(dfi)+
fiE), and thus (IV,ΛIV, EIV, X

IV) is a Jacobi–Lie system.
Using the Lie bracket induced by ΛIV and EIV of the Lie group IV, the func-

tions f1, f2, and f3 satisfy the commutation relations {f1, f2}ΛIV, EIV
= −f2 +

f3, {f1, f3}ΛIV, EIV
= −f3. Therefore, (IV,ΛIV, EIII, f =

∑3
i=1 bi(t)fi) for XIV is a

Jacobi–Lie Hamiltonian system, where ΛIV and EIV are those appearing in (3.14).

4. Lie symmetry for Jacobi–Lie Hamiltonian systems

We now give an example of Jacobi–Lie Hamiltonian systems with good Hamil-
tonian functions on the Lie group VIII = SL(2,R) whose distribution associated
with this system is of dimension two. Then we obtain a t-independent Lie sym-
metry [7] for this system to illustrate our procedure.

Let X be a t-dependent vector field on M, the associated distribution of X
is the generalized distribution ∆X on M spanned by the vector fields of gX . In
other words,

∆X
x =

{
Zx | Z ∈ gX

}
⊂ TxM,

and the associated co-distribution of X is the generalized co-distribution (∆X)⊥

on M of the form

(∆X
x )⊥ =

{
ν ∈ T ∗xM | ∀Yx ∈ ∆X

x ν(Yx) = 0
}
⊂ T ∗xM,

where (∆X
x )⊥ is the annihilator of ∆X

x .
The function ρX : M → N ∪ {0}, x 7→ dim ∆X

x is lower semicontinuous at x
since it cannot decrease in the neighborhood of x. In addition, ρX(x) is constant
on the connected components of a dense and open subset UX of M (cf. [22, p. 19]),
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where ∆X becomes a regular involutive distribution. Also, (∆X
x )⊥ becomes a

regular co-distribution on each connected component since dim (∆X
x )⊥= dimM−

ρX(x).

Theorem 4.1. A function h : UX → R is a local t-independent constant of
motion for a t-dependent vector field X if and only if dh ∈ (∆X

x )⊥|UX .

The proof is given in [7].

Definition 4.2. Let X be a Jacobi–Lie system with a Jacobi–Lie Hamiltonian
structure (M,Λ, E, f). Then one can define its symmetry distribution as follows:
(SXΛ,E)x = Λ#(dhi) + hiE ∈ TxM, where dhi ∈ (∆X

x )⊥|U .

Now, using the symmetry distribution, we study the t-independent Lie sym-
metries of Jacobi–Lie Hamiltonian systems with good Hamiltonian functions on
real low-dimensional Lie groups. In the following theorem, we state the result
not giving the proof of the theorem [10].

Theorem 4.3. Let X be a Jacobi–Lie system possessing a Jacobi–Lie Hamil-
tonian structure (M,Λ, E, f) with good Hamiltonian functions {ft}t∈R. The
smooth function h on the Jacobi manifold M is a t-independent constant of mo-
tion for X if and only if h commutes with all elements of Lie({ft}t∈R, {·, ·}Λ,E)
relative to {·, ·}Λ,E.

Lemma 4.4. The mapping

ϕ : (C∞(M), {·, ·}Λ,E)→ (Ham(M,Λ, E), [·, ·])

is a homomorphism Lie algebras, i.e., ϕ{f, g}Λ,E = [Xf , Xg].

Theorem 4.5. Let X be a Jacobi–Lie system admitting a Jacobi–Lie Hamil-
tonian structure (M,Λ, E, f) with good Hamiltonian functions {ft}t∈R. If h is a t-
independent constant of motion for X, then Xh = Λ#(dh)+hE is a t-independent
Lie symmetry of X.

Proof. In view of Lemma 4.4, we have

[Xh, Xft ] = [Λ#(dh) + hE,Λ#(dft) + ftE] = ϕ{h, ft}Λ,E
= −ϕ{ft, h}Λ,E = −ϕ(Xth− hEft) = −ϕ(Xth) = 0, t ∈ R.

Example 4.6. As an example of the above result, let us consider the Lie group
VIII = SL(2,R) with the following Jacobi structure:

ΛVIII = xy∂x ∧ ∂y − (1 + yz)∂y ∧ ∂z, EVIII = x∂x − y∂y + z∂z, (4.1)

where x, y and z are the local coordinates on the Lie group V III (see [10]).

A simple calculation shows that XH
1 = −x∂z and XH

2 = −y∂y + z∂z span the
Lie algebra A2 of Hamiltonian vector fields on VIII.
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The system on VIII can be written as

dγ

dt
=

2∑
i=1

bi(t)X
H
i (γ), γ ∈ VIII,

for arbitrary t-dependent functions bi(t). Since the associated t-dependent vec-
tor field XVIII =

∑2
i=1 bi(t)X

H
i takes values in the Lie algebra A2, that

is, [XH
1 , X

H
2 ] = XH

1 , then XVIII is a Lie system.
We now prove that (VIII,ΛVIII, EVIII, X

VIII) is a Jacobi–Lie system. As
a matter of the fact, XH

1 and XH
2 are Hamiltonian vector fields relative to

(VIII,ΛVIII, EVIII) with good Hamiltonian functions f1 = xy and f2 = −yz.
Note that these functions are first integrals of XH

i and EVIII for i = 1, 2, re-
spectively. Subsequently, (VIII,ΛVIII, EVIII, X

VIII) is a Jacobi–Lie system. Us-
ing the Lie bracket induced by ΛVIII and EVIII of Lie group VIII, we can write
{f1, f2}ΛVIII,EVIII = f1; therefore, (VIII,ΛVIII, EVIII, f =

∑2
i=1 bi(t)fi) for XVIII is

a Jacobi–Lie Hamiltonian system.
It is easy to check that h = 1 is a t-independent constant of motion. One can

show that
{h , fα}ΛVIII,EVIII = 0, α = 1, 2.

Then the function h always Jacobi commutes with the whole Lie algebra
Lie({ft}t∈R, {·, ·}ΛIII,EIII), as expected.

By applying Theorem 4.5, Xh = Λ#(dh) + hE must be a Lie symmetry for
this system. A short calculation shows that Xh = x∂x − y∂y + z∂z. It is easy to
check that Xh commutes with XH

1 , X
H
2 , and thus commutes with every Xft , with

t ∈ R, i.e., Xh is a Lie symmetry for XVIII.

5. Concluding remarks

Using the realizations [18] of the complete list of Jacobi structures on real two-
and three-dimensional Jacobi–Lie groups [20], we have obtained Hamiltonian vec-
tor fields and achieved Jacobi–Lie Hamiltonian systems on real low-dimensional
Jacobi–Lie groups. Then we have presented Lie symmetries for Jacobi–Lie Hamil-
tonian systems with good Hamiltonian functions.

Table 5.1: Reeb vector field and Jacobi bivector field related to real two-
dimensional bi-r-matrix Jacobi–Lie bialgebras.

((g, φ0), (g∗, X0)) Reeb vector field E and Jacobi bivector field Λ

((A1, X̃
1), (A1, X2)) E = −∂y

Λ = (1− e−x)∂x ∧ ∂y
((A2, bX̃

2), (A2.i,−bX1)) E = b∂x

Λ = (1− e−(b+1)y)∂x ∧ ∂y
((A1, 0), (A2,−X2)) E = ∂y

Λ = 0
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Table 5.2: Reeb vector field and Jacobi bivector field related to real three-
dimensional bi-r-matrix Jacobi–Lie bialgebras.

((g, φ0), (g∗, X0)) Reeb vector field E

and Jacobi bivector field Λ

((I,−X̃2 + X̃3), (III,−2X1))

E = 2∂x

Λ = (−1 + ey−z)∂x ∧ ∂y
+(1− ey−z)∂x ∧ ∂z

((II, 0), (I,X1))
E = −∂x
Λ = −y∂x ∧ ∂y − z∂x ∧ ∂z

((II, 0), (V, bX1))

E = −b∂x
Λ = −(1 + b)y∂x ∧ ∂y
−(1 + b)z∂x ∧ ∂z

((III, bX̃1), (III.i,−X2 +X3))

E = ∂y − ∂z
Λ = −1

b (1− e
−bx)∂x ∧ ∂y

+1
b (1− e

−bx)∂x ∧ ∂z
−2
b (y + z)e−bx∂y ∧ ∂z

((III,−bX̃2 + bX̃3), (III.iv, bX1))

E = −b∂x
Λ = 1

2(1− eb(y−z))∂x ∧ ∂y
−1

2(1− eb(y−z))∂x ∧ ∂z
+(y + z)eb(y−z)∂y ∧ ∂z

((III, 0), (III.v, 1
2X2 − 1

2X3))

E = −1
2∂y + 1

2∂z

Λ = e2x−1
4 ∂x ∧ ∂y + e2x−1

4 ∂x ∧ ∂z
−1

2(y + z + 1− e2x)∂y ∧ ∂z

((III, 0), (IV .iv,X2 −X3))
E = −∂y + ∂z

Λ = 1
2(e2x − 1)∂y ∧ ∂z

((III,−2X̃1), (V.i,−X2 −X3))
E = e2x∂y + e2x∂z

Λ = 0

((III, 0), (V I0.iv,X2 −X3))
E = −∂y + ∂z

Λ = −2(y + z)∂y ∧ ∂z

((III, 0), (V Ia.vii,−X2 +X3))
E = ∂y − ∂z
Λ = −2

a−1(y + z)∂y ∧ ∂z

((III, 0), (V Ia.viii,−X2 +X3))
E = ∂y − ∂z
Λ = 2

a+1(y + z)∂y ∧ ∂z

((IV ,−X̃1), (III.vi,−X2 −X3))

E = ex∂y + ex(1− x)∂z

Λ = −xex∂x ∧ ∂z
+ex(z − y − 1 + ex)∂y ∧ ∂z



50 H. Amirzadeh-Fard, Gh. Haghighatdoost, and A. Rezaei-Aghdam

((IV ,−X̃1), (IV .i,−bX3))
E = bex∂z

Λ = ex(ex − 1)∂y ∧ ∂z

((IV ,−X̃1), (IV .ii,−bX3))
E = bex∂z

Λ = −ex(ex − 1)∂y ∧ ∂z

((IV ,−X̃1), (V I0.i,−X3))
E = ex∂z

Λ = −2yex∂y ∧ ∂z

((IV ,−X̃1), (V Ia.i,−X3))
E = ex∂z

Λ = 2
a−1ye

x∂y ∧ ∂z

((IV ,−X̃1), (V Ia.ii,−X3))
E = ex∂z

Λ = − 2
a+1ye

x∂y ∧ ∂z

((V,−2X̃1), (V.i,−2X2 − 2X3))

E = 2ex∂y + 2ex∂z

Λ = ex(1− ex)∂x ∧ ∂y
+ex(1− ex)∂x ∧ ∂z
+e2x(z − y)∂y ∧ ∂z

((V,− 2a
a−1X̃

1), (V Ia.i,− 2a
a−1X3))

E = 2a
a−1e

x∂z

Λ = (ex − e
2a
a−1

x)∂x ∧ ∂z
−ye

2a
a−1

x∂y ∧ ∂z

((V,− 2a
a+1X̃

1), (V Ia.ii,− 2a
a+1X3))

E = 2a
a+1e

x∂z

Λ = (ex − e
2a
a+1

x)∂x ∧ ∂z
−ye

2a
a+1

x∂y ∧ ∂z

((IV ,−X̃1), (IV .i,−bX3))
E = bex∂z

Λ = ex(ex − 1)∂y ∧ ∂z

((IV ,−X̃1), (IV .ii,−bX3))
E = bex∂z

Λ = −ex(ex − 1)∂y ∧ ∂z

((IV ,−X̃1), (V I0.i,−X3))
E = ex∂z

Λ = −2yex∂y ∧ ∂z

((IV ,−X̃1), (V Ia.i,−X3))
E = ex∂z

Λ =
2

a− 1
yex∂y ∧ ∂z

((IV ,−X̃1), (V Ia.ii,−X3))
E = ex∂z

Λ = − 2

a+ 1
yex∂y ∧ ∂z

((V,−2X̃1), (V.i,−2X2 − 2X3))

E = 2ex∂y + 2ex∂z

Λ = ex(1− ex)∂x ∧ ∂y
+ex(1− ex)∂x ∧ ∂z
+e2x(z − y)∂y ∧ ∂z
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((V,− 2a
a−1X̃

1), (V Ia.i,− 2a
a−1X3))

E = 2a
a−1e

x∂z

Λ = (ex − e
2a
a−1

x)∂x ∧ ∂z
−ye

2a
a−1

x∂y ∧ ∂z

((V,− 2a
a+1X̃

1), (V Ia.ii,− 2a
a+1X3))

E = 2a
a+1e

x∂z

Λ = (ex − e
2a
a+1

x)∂x ∧ ∂z
−ye

2a
a+1

x∂y ∧ ∂z

((V I0, X̃
3), (III.vii,−X1 −X2))

E = ∂x + ∂y

Λ = (y − x)∂x ∧ ∂y
+(1− e−2z)∂x ∧ ∂z
+(1− e−2z)∂y ∧ ∂z

((V I0, X̃
3), (III.ix,−X1))

E = ∂x

Λ = (1 + y − e−z)∂x ∧ ∂y
+e−z sinh(z)∂x ∧ ∂z
+(1− e−z cosh(z))∂y ∧ ∂z

((V I0, X̃
3), (V I0.ii,−X1 +X2))

E = ∂x − ∂y
Λ = 2(x+ y)∂x ∧ ∂y

((V I0,−2X̃3),

(V I0.ii, 2X1 − 2X2))

E = −2∂x + 2∂y

Λ = −(x+ y)∂x ∧ ∂y
+(1− e3z)∂x ∧ ∂z
−(1− e3z)∂y ∧ ∂z

((V I0, X̃
3), (V Ia.iii,−X1 +X2))

E = ∂x − ∂y
Λ = − 2

a−1(x+ y)∂x ∧ ∂y

((V I0, X̃
3), (V Ia.iv,−X1 +X2))

E = ∂x − ∂y
Λ = 2

a+1(x+ y)∂x ∧ ∂y

((V I0,
2

a−1X̃
3),

(V Ia.iii,− 2
a−1(X1 −X2)))

E = 2
a−1∂x −

2
a−1∂y

Λ = −(x+ y)∂x ∧ ∂y
+(1− e

a−3
a−1

z)∂x ∧ ∂z
−(1− e

a−3
a−1

z)∂y ∧ ∂z

((V I0,− 2
a+1X̃

3),

(V Ia.iv,
2

a+1(X1 −X2)))

E = − 2
a+1∂x + 2

a+1∂y

Λ = −(x+ y)∂x ∧ ∂y
+(1− e

a+3
a+1

z)∂x ∧ ∂z
−(1− e

a+3
a+1

z)∂y ∧ ∂z

((V Ia,−(a− 1)X̃1),

(III.ii,−a−1
a+1(X2 +X3)))

E = a−1
a+1e

(a+1)x∂y + a−1
a+1e

(a+1)x∂z

Λ = 1
a+1(e(a+1)x − e(a−1)x)∂x ∧ ∂y
+ 1
a+1(e(a+1)x − e(a−1)x)∂x ∧ ∂z

+ 1
a+1e

(a−1)x(1− a)(y − z)∂y ∧ ∂z
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((V Ia,−(a+ 1)X̃1),

(III.v, 1
a−1(X2 − aX3)))

E = 1
a−1e

ax(− cosh(x) + a sinh(x))∂y

+ 1
a−1e

ax(− sinh(x) + a cosh(x))∂z

Λ = 1
a−1e

ax sinh(x)∂x ∧ ∂y
+ 1
a−1(eax cosh(x)− e(a+1)x)∂x ∧ ∂z

+ 1
a−1(e2ax

−e(a+1)x(1 + ay + z))∂y ∧ ∂z

((V Ia,−(a− 1)X̃1),

(III.v, 1
a+1(X2 − aX3)))

E = 1
a+1e

ax(− cosh(x) + a sinh(x))∂y

+ 1
a+1e

ax(− sinh(x) + a cosh(x))∂z

Λ = 1
a+1e

ax sinh(x)∂x ∧ ∂y
+ 1
a+1(eax cosh(x)− e(a−1)x)∂x ∧ ∂z

+ 1
a+1(e2ax

−e(a−1)x(1 + ay + z))∂y ∧ ∂z

((V Ia,−(a+ 1)X̃1),

(III.x,−a+1
a−1(X2 −X3)))

E = a+1
a−1e

(a−1)x∂y − a+1
a−1e

(a−1)x∂z

Λ = 1
a−1(e(a−1)x − e(a+1)x)∂x ∧ ∂y
+ 1
a−1(e(a+1)x − e(a−1)x)∂x ∧ ∂z

+ 1
a−1e

(a+1)x(1 + a)(y + z)∂y ∧ ∂z
((V Ia,−(a+ 1)X̃1),

(V Ib.v,−X2 −X3))

E = e(a+1)x∂y + e(a+1)x∂z

Λ = 2
(b−1)e

(a+1)x(y − z)∂y ∧ ∂z
((V Ia,−(a+ 1)X̃1),

(V Ib.vi,−X2 +X3))

E = e(a+1)x∂y + e(a+1)x∂z

Λ = − 2
(b+1)e

(a+1)x(y − z)∂y ∧ ∂z
((V Ia,−(a− 1)X̃1),

(V Ib.vii,−X2 +X3))

E = e(a−1)x∂y − e(a−1)x∂z

Λ = − 2
(b−1)e

(a−1)x(y + z)∂y ∧ ∂z
((V Ia,−(a− 1)X̃1),

(V Ib.viii,−X2 +X3))

E = e(a−1)x∂y − e(a−1)x∂z

Λ = 2
(b+1)e

(a−1)x(y + z)∂y ∧ ∂z

((V Ia,−2(ab+1)
b−1 X̃1),

(V Ib.v,− 2(ab+1)
(a+1)(b−1)(X2 +X3)))

E = 2(ab+1)
(a+1)(b−1)e

(a+1)x∂y

+ 2(ab+1)
(a+1)(b−1)e

(a+1)x∂z

Λ = 1
a+1(e(a+1)x − e

2(ab+1)
b−1

x)∂x ∧ ∂y
+ 1
a+1(e(a+1)x − e

2(ab+1)
b−1

x)∂x ∧ ∂z
+ 1
a+1e

2(ab+1)
b−1

x(1− a)(y − z)∂y ∧ ∂z

((V Ia,−2(ab−1)
b+1 X̃1),

(V Ib.vi,− 2(ab−1)
(a+1)(b+1)(X2 +X3)))

E = 2(ab−1)
(a+1)(b+1)e

(a+1)x∂y

+ 2(ab−1)
(a+1)(b+1)e

(a+1)x∂z

Λ = 1
a+1(e(a+1)x − e

2(ab−1)
b+1

x)∂x ∧ ∂y
+ 1
a+1(e(a+1)x − e

2(ab−1)
b+1

x)∂x ∧ ∂z
+ 1
a+1e

2(ab−1)
b+1

x(1− a)(y − z)∂y ∧ ∂z
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((V Ia,−2(ab−1)
b−1 X̃1),

(V Ib.vii,− 2(ab−1)
(a1)(b−1)(X2 −X3)))

E = 2(ab−1)
(a−1)(b−1)e

(a−1)x∂y

− 2(ab−1)
(a−1)(b−1)e

(a−1)x∂z

Λ = 1
a−1(e(a−1)x − e

2(ab−1)
b−1

x)∂x ∧ ∂y
+ 1
a−1(−e(a−1)x + e

2(ab−1)
b−1

x)∂x ∧ ∂z
+ 1
a−1e

2(ab−1)
b−1

x(1 + a)(y + z)∂y ∧ ∂z

((V Ia,−2(ab+1)
b+1 X̃1),

(V Ib.viii,

− 2(ab+1)
(a−1)(b+1)(X2 −X3)))

E = 2(ab+1)
(a−1)(b+1)e

(a−1)x∂y

− 2(ab+1)
(a−1)(b+1)e

(a−1)x∂z

Λ = 1
a−1(e(a−1)x − e

2(ab+1)
b+1

x)∂x ∧ ∂y
+ 1
a−1(−e(a−1)x + e

2(ab+1)
b+1

x)∂x ∧ ∂z
+ 1
a−1e

2(ab+1)
b+1

x(1 + a)(y + z)∂y ∧ ∂z

Table 5.3: Reeb vector field and Jacobi bivector field related to real three-
dimensional coboundary Jacobi–Lie bialgebras.

((g, φ0), (g∗, X0)) Reeb vector field E and Jacobi bivector
field Λ

((I, 0), (V,−X1))
E = ∂x

Λ = 0

((II,−X̃2 + X̃3), (III,−2X1))

E = 2∂x

Λ = (−1 + ey−z)∂x ∧ ∂y
+(1− ey−z)∂x ∧ ∂z

((III,−X̃2 + X̃3),

(III.iii,X2 +X3))

E = −e2x∂y − e2x∂z

Λ = (−e2x + ey−z)∂y ∧ ∂z

((III, 0), (III.x,−X2 +X3))
E = ∂y − ∂z
Λ = (y + z)∂y ∧ ∂z

((IV ,−X̃1), (III.v,−X3))
E = ex∂z

Λ = −(y + 1− ex)ex∂y ∧ ∂z

((IV ,−2X̃1), (V.ii,−2X3))
E = 2ex∂z

Λ = (ex − e2x)∂x ∧ ∂z − ye2x∂y ∧ ∂z

((IV ,− 2a
a−1X̃

1), (V Ia.i,− 2a
a−1X3))

E = 2a
a−1e

x∂z

Λ = (ex − e
2a
a−1

x)∂x ∧ ∂z − ye
2a
a−1

x∂y ∧ ∂z
((IV ,− 2a

a+1X̃
1),

(V Ia.ii,− 2a
a+1X3))

E = 2a
a+1e

x∂z

Λ = (ex − e
2a
a+1

x)∂x ∧ ∂z − ye
2a
a+1

x∂y ∧ ∂z

((V,−X̃1), (V I0.i,−X3))
E = ex∂z

Λ = −2yex∂y ∧ ∂z
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((V,−X̃1), (V Ia.i,−X3))
E = ex∂z

Λ = 2
a−1ye

x∂y ∧ ∂z

((V,−X̃1), (V Ia.ii,−X3))
E = ex∂z

Λ = − 2
a+1ye

x∂y ∧ ∂z

((V I0, X̃
3), (III.viii,−X1 +X2))

E = ∂x − ∂y
Λ = (x+ y)∂x ∧ ∂y

((V Ia,−(a+ 1)X̃1),

(III.ii,−X2 −X3))

E = e(a+1)x∂y + e(a+1)x∂z

Λ = −(y − z)e(a+1)x∂y ∧ ∂z
((V Ia,−(a− 1)X̃1),

(III.x,−X2 +X3))

E = e(a−1)x∂y + e(a−1)x∂z

Λ = (y + z)e(a−1)x∂y ∧ ∂z
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[4] A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas, and C. Sardón, From
constants of motion to superposition rules for Lie–Hamilton systems, J. Phys. A 46
(2013), 285203.
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Гамiльтоновi системи Якобi–Лi на дiйсних
маловимiрних групах Якобi–Лi та їх симетрiї Лi
H. Amirzadeh-Fard, Gh. Haghighatdoost, and A. Rezaei-Aghdam

Ми вивчаємо гамiльтоновi системи Якобi–Лi, якi допускають алге-
бри Лi Вессiо–Гульдберга гамiльтонових векторних полiв пов’язаних зi
структурами Якобi на дiйсних маловимiрних групах Якобi–Лi. Також
ми знаходимо всi можливi приклади гамiльтонових систем Якобi–Лi на
дiйсних дво- i тривимiрних групах Якобi–Лi. Наостанок ми представля-
ємо симетрiї Лi гамiльтонових систем Якобi–Лi на дiйснiй тривимiрнiй
групi Лi SL(2,R).

Ключовi слова: група Якобi–Лi, многовид Якобi, система Лi, гамiль-
тонова система Якобi–Лi, симетрiя Лi
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