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In this paper, an n-dimensional thermo-viscoelastic system with second
sound with a weak frictional damping is considered. We establish an explicit
and general decay rate result using some properties of convex functions. Our
result is obtained without imposing any restrictive growth assumptions on
the frictional damping term.
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1. Introduction

In this paper, we are concerned with the following problem:
g — ko D u(t) — (u+ AV (divu)

+/Og(tS)Au(s)derﬁVHJra(t)w(ut):O in Q x (0,00), (1.1)

ety + kdivg+ fdivu =0 in 2 x (0,00), (1.2)
Toqt +q+kVO =0 in 2 x (0,00),
t
kogu—I-(/J,—i-)\)diVUXl/—/g(t—S)(VU(S))XVdS
v 0
+h(u) =0 onTyx(0,00), (14)
U(,O) = Ug, Ut (50) = Uy, 0 (70) = QOa Q(70) = qo in Qv (15)
u=0 on 'y x (0,00), (1.6)
0=0 on 09 x (0,00), (1.7)

where 2 is a bounded domain of R™ (n > 1) with a smooth boundary 92, such
that {ToUT1} is a partition of 99, with meas (I'y) > 0, v is the unit outward
normal to 09, u = u (x,t) € R™ is the displacement vector, § = 0 (x,t) is the dif-
ference temperature, ¢ = ¢ (x,t) € R" is the heat flux vector and «, w are specific
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positive functions. The coefficients kg, 3, ¢, u, A, 79 are positive constants, where
70 is the thermal relaxation time, k is the heat conductivity and p, A are Lame
moduli. The relaxation function g is a positive and uniformly decaying function,
h is a function satisfying some conditions given in (G3). The third equation of
system (1.1)—(1.7) represents Cattaneo’s law of heat conduction modeling ther-
mal disturbances as wave-like pulses traveling at finite speed. In this work, we
study the decay properties of the solutions of (1.1)—(1.7).

This type of problem without viscoelastic term in the first equations (ther-
moelastic system with second sound) has been considered by many mathemati-
cians during the past decades and many results have been established. In this
regard, Racke [19] established the existence result for the following n-dimensional
problem:

up — pAu — (p+ A)V(divu) + V8 =0 in 2 x (0, +00), (1.8)
0y +~vdivg+ddivu, =0 in © x (0, +00), (1.9)
Tq +q+rkVE =0 in 2 x (0,+00), (1.10)
u(+,0) = ug, ut(+,0) =u1, 0(-,0) = b, q(-,0) =qo in Q, (1.11)
u=0=0 on 0 x [0, +00), (1.12)

where ) is a bounded domain of R"” with a smooth boundary 992, u = u(x,t),
q=q(x,t) € R" and u, A\, 8, v, d, 7, Kk, are positive constants, where p, \ are
Lame moduli and 7 is the relaxation time, a small parameter compared to the
others. He also proved, under the conditions rotu = rotq = 0, an exponential
decay result for (1.8)—(1.12). This result is applied automatically to the radially
symmetric solution since it is only a special case. Messaoudi [12] considered
(1.8)—(1.12) in the presence of a source term and proved a blow up result for
solutions with negative initial energy. This result was extended later to certain
solutions with positive energy by Messaoudi and Said-Houari [15]. It is also worth
mentioning the work of Messaoudi and Madani [13] in which they considered a
system similar to (1.8)—(1.12) in the presence of a viscoelastic term acting in the
domain and established a general uniform stability result for kernels of general
decay type for which the usual exponential and polynomial decays are special
cases.

Concerning stabilization by boundary feedback, we mention the recent work
by Messaoudi and Al-Shehri [16], where a system of the form

up — pAu — (p+ A)V(divu) + VI =0 in Q x (0,+00), (1.13)
cty + kdivg + Bdivuy =0 in 2 x (0,+00), (1.14)
Toqt +q+ KkVO =0 in 2 x (0,+00), (1.15)
u(-,0) = ug, ue(-,0) =wuq, 0(-,0) =6, q(-,0) =¢qo  in £, (1.16)
u=0 on I'g x [0, 4+00), (1.17)

u(z,t) = _/0 gt — s)(u% + (u+ A)(divu)r)(s)ds on I'y x [0,4+00), (1.18)

0=0 on 99 x [0,+00) (1.19)
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was considered. Here {I'g, I'1} is a partition of 9f2, v is the outward normal to
00 and the kernel g is the relaxation function, which is positive and of general
decay. Under suitable conditions on the boundary and for kernels of general type,
a general decay result was established.

Drabla et al. [7] analyzed the behavior of the solution of the system

up — pAu — (p+ AN)V(divu) + VO + a(t)g(ur) =0 in Q x (0,+00), (1.20)
cby + kdivg + Bdivuy =0 in Q x (0,+00), (1.21)
Toqt +q+kVO =0 in Q x (0,+00), (1.22)
u(-,0) = ug, ue(-,0) =wuq, 6(-,0) =6, q(-,0) =¢q0 in Q, (1.23)
u=60=0 on 90 x [0,+00). (1.24)

They established an explicit and general decay result depending on g and «, for
which the optimal exponential and polynomial decay rate estimates are only spe-
cial cases. For more results, we refer the reader to Mustafa [17] and Boulanouar
and Drabla [4]. Our aim in this work is to study (1.1)—(1.7), in which the fric-
tional damping considered is modulated by a time dependent coefficient «(t).
More precisely, we intend to obtain a general relation between the decay rate for
the energy (when ¢ goes to infinity) and the functions w and « without imposing
any restrictive growth assumptions on the frictional damping term. The result of
this paper provides an explicit energy decay formula that allows a larger class of
functions w and « for which the energy decay rates are not necessarily of expo-
nential or polynomial types (see the examples in Section 3). The proof is based
on the multiplier method and makes use of some properties of convex functions
including the use of the general Young’s inequality and Jensen’s inequality. These
convexity arguments were introduced and developed by Lasiecka et al. ( [6], [8]-
[10]) and used by Liu and Zuazua [11] and Alabau-Boussouira [1]. The paper
is organized as follows. In Section 2, we present some notations and material
needed for our work. The statement and the proof of our main result are given
in Section 3.

2. Preliminaries

As in [3], we consider the following hypotheses:

(G1) g:RT — R* is a C! function satisfying
g(0) >0, ko—/ g(s)ds=1>0. (2.1)
0
(G2) a:Ry — R, is a nonincreasing differentiable function such that
g 1)< -ag(t), t=0. (2:2)

(G3) h:R — R is a nondecreasing function with

h(s)s>als]?, s € R, (2.3)
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[h(s)] <~lsl, sER, (2.4)
where «a, v are positive constants.

(G4) w: R — R is a nondecreasing C° function such that there exist constants
€, c1, ¢ > 0, and an increasing function G € C* ([0, +00)), with G (0) = 0,
and G is a linear or strictly convex C? function on [0, £) such that

c |s] < Jw (s)] < comin{|s], [s|P} if |s| > e,
2+ w?(s) <G (sw(s)) if |s] <e, (2.5)

and p satisfies

n -+ 2
n—2’
1<p<oo, n=12

1<p<

Remark 2.1. Hypothesis (G4) implies that sw(s) > 0 for all s # 0.

Theorem 2.2. Let hypotheses (G1), (G3) hold, in the sequel we assume that
(uo,u1,00,q0) € H = [H*(Q) OH%O]n x [H3(Q)] x W, where

W= {ve[L?(Q)]" |dive e L*(Q)}.
Then there exists a strong unique solution u of (1.1)—(1.7) satisfying

u € [C([0,400); H* () N HE,)]" N [C([0,+00) ; HE, ()],
0 € C([0,+00); Hy (2)) N C* ([0, +00) ; L? () ,
qe CH([0,T);L* ().

Proof. We can use [18, p. 185, Theorem 1.4]. ]
Lemma 2.3 ([13]). Let v € [L? (Q)}n Then |[div vl g-1(0) < [l 12(q) -
As in [13], let ¢ be the solution of the problem
Ap=60 in Q, w=0 on 0.
Since 6 € C* ([0,400); L? (2)) , then ¢ € C* ([0, +00) ; H* (Q) N Hj (2)) and
IOl gy < €010 ¢ )2y (26)
3. Decay of solutions

In this section, we focus our attention on the uniform decay of solutions to
problem (1.1)—(1.7). For this purpose, we introduce the energy functional

L+
2

1. 9 o2, Cyan2, O 12
E(t) = 5 lludl} + Il + 10113 + 5 llall
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5 (- [a@as) v+ jevae. G

where .
(gov)(t) = /O g(t—s)llv(t)—v(s)5 ds. (3.2)
Adopting the proof of [20], we still have the following results.
Lemma 3.1. For any u € C*' ([0,400); H' (), we have

// g(t—s)Vu(s)Vutdsd:r——l/g(t)|Vu(t)]2dx+;(g’oVu) )
QJo

1 d )
—th{goVu // §)ds |Vu(t)Pde|. (3.3)

Lemma 3.2. Let u be the solution of (1.1)—~(1.7) under assumptions (G1)-
(G4). Then the energy functional satisfies

B (1) = —;/ﬂg(t) IV (8)]? d + % (¢ o V) (1)

- a(t)/Qutw (ut) dz — /Q g dz — /uth(ut)df‘ <0. (3.4)
'

Proof. Multiplying (1.1) by w, (1.2) by 6, and (1.3) by ¢ and integrating over
Q, using integration by parts and the boundary condition, hypotheses (G1)—(G4)
and (3.3), we obtain ((3.4)). O

Now we will study the asymptotic behavior of the energy functional F ().
First, we define some functionals and establish Lemma 3.3. Let

F(t)=NE®{)+®(t)+ U (t), (3.5)

B (1) = /Q u<ut—ﬁg)q> da, (3.6)

——/Qut/otg(t—s) (u(t) —u(s))ds da:—To/Qquod% (3.7)

and N is a positive constant to be specified later.

Lemma 3.3. There exist two positive constants 1 and B such that the
relation

PLE(t) < F(t) < BE(t). (3.8)

Proof. By Hélder’s inequality, Young’s inequality, Poincaré’s inequality and
(2.6), we deduce that

BTo

| ()\<*HUtll2+BQIIVUHQ+ Nl (3.9)
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2

t
w4y [ ([ae-9w-ue) i) d
+ 2 gl + 5 1Vl

1 , 1 [t t )
sluli+s [a@as [ [gt=shu®-u@ asi

IN

2
70 2 B 2
+§||Q|’2+7”9||2

(ko — 1) B?

) B2
S (govu) () + gl + - 101 (3.10)

1 2
< Ll +
Hence, taking (3.5), (3.9), and (3.10) into account, we have

F{t)=NE({t)+®(t)+ ¥ (¢)

B2
2
F(t)=E()—cs (IIUtH% +IVull3 + (g 0 Va) (2) + [lqll3 + ||9H§) ,

< E(t) + |luellz + B? | Vullz + e1 (g 0 V) () + ez [lally + - 16113

where ¢ = (kg — 1) B%/2, ¢ = % + 73, and c3 = max (1, B2 ¢, 02) . Thus, there
exist two positive constants 51 and Sy such that

BLE () < F(t) < BE(). 0 (3.11)

Lemma 3.4. Assume that (G1)—(G4) hold. Then the functional

00 [ (- 220)

satisfies, along the solution of (1.1)—(1.7), the inequality

(ko — 1)
21

l
P (t) < —2/Q|Vu]2 dm+2/gu§dm+ (g o Vu) (t)

12 (73)2 2
—(p+A) [ |divu|” dz + uy dT’
Q 2l Jr,
-« (t)/ uw (ug) dz + c/ q? de. (3.12)
Q Q

Proof. By using the differential equation in (1.1)—(1.7), Green’s identity,
Poincaré’s inequality and Young’s inequality, we obtain

@' (t):/Q|ut|2 dx—k:o/Q|Vu|2 d:v—(,u+)\)/9|divu]2 dx
+/9Vu(t)/0tg(ts)Vu(s) dsd:c/rlh(ut)udl“
—a®) /Q ww (up) dz — B /Q WV 0dz
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—Bm/utqd:cﬂ—ﬁ/uVde—i—B/uqu (3.13)
k Q Q k Q

< 2/ ug|* dx — (ko — Bf(sl)/ IVul® de — (u+ /\)/ |div u|® do
Q Q Q

—|—/QVu(t)/0tg(t—s)Vu(s) dsda;—/ h (ug) udl

I'1
2
—i—c/Q|q| da:—oz(t)/Quw (ut) dx. (3.14)

The fourth and the fifth terms on the right-hand side of (3.14) can be estimated
as follows. From Hélder’s inequality, Young’s inequality, and (G1), for n > 0, we
have

/QVu(t)/Otg(t—s)Vu(s) dsdx

k 1 ! ?
So/ \Vul® doe+ — (/ g(t—s)Vu(s)ds> dx
2 Ja 2ko Jo \Jo

ko )
32/Q’V’UJ‘ dx
t 2
+2,1€0 Q(/O g(t=s)(Vu(s) = Vu(t) + Vu(t)) ds> dz, (3.15)
but

h </° gt (Vul) = v+ e ) d8>2 da
<), (/Otf/(ts) (1Y (s) = Vu(0)] + IVu(t)|)dS)2dm

2

g/Q(/Otgu—smw(s)—Vu<t>|>ds) s

2

+/Q</Otg<t—s><\w<t>|>ds) s
+2/Q(/Otg@—s)(\Ws)—Vu<t>|>ds)
<[ ([ ot-90vutpas) ao

2

<arn [ ([oe-9vuwnas) @
+ <1+717> /Q (/Otg(t—s)ﬂVu(s)—Vu(t)])ds)gdx. (3.16)

Thus, by using the fact that

/Og(s)ds</0 g(s)ds=ko—1, (3.17)
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we obtain

/QVu (t)/0 g (t—s)Vu(s) dsdx
< [’?+2}%<1+n> (ko —z>2] JARE
+or (1 ; ;) (ko—0)(goVu)(t).  (318)

Employing Holder’s inequality, Young’s inequality and (G3), for d > 0, we obtain

2
/ h(ug)udl < 6,82 ||Vu|? + L [ w?dr. (3.19)
I 462 I

A substitution of (3.18) and (3.19) into (3.14) yields, we arrive at
k 1
¥ ) <~ (2 o () (- - B ) - B3 60)) [ [Vuf do
2 2k 0
1 1
+2/ 2 dg 4+ —— <1+> (ko — 1) (g o V) (£) — (u+)\)/ div u|® dz
Q 2ko n Q
2
+ V/ u? dl — a(t)/ uw (ug) dx + c/ lq? da. (3.20)
462 Jr, 0 Q

Letting n =1/ (ko — 1), 61 = 1/2B% and 2 = [/2B3, (3.12) is established. O

Lemma 3.5. Let (ug,u1,6p,q0) € Hand let (G1)-(G3) hold. Then the func-
tional

\I/(t)——/Qut/otg(t—s)(u(t)—u(s))dsdm—To/Qq.Vgodx

satisfies, along the solution of (1.1)—(1.7) the inequality

t
(1) < - ( [ atyas—s- ) a2 + bcs [ull? + o (g 0 V) (1)
0

2

B
+(,u—|—)\)2(5/(div u)2dx+(572/ ufdf—&
Q r, 40

+ a? (t)a/guﬂ (ut) dz — <’;—525>/Q|9|2 d:1:+03/9\q|2 dz, (3.21)

where c3, ¢4, c5 and cg are positive constants.

(9 o Vu) (1)

Proof. Direct calculations give

\If’(t)——/Qutt/otg(t—s)(u(t)—u(s))dsd:v— </0tg(s)ds>/gu%d:r,

—/Qut/otg'(t—s)(u(t)—u(s))dsdw
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—TO/thcpdm—TO/qV%dx. (3.22)
Q Q

Using (1.1)—(1.7), Green’s identity and Young’s inequality, we obtain

t)—ko/QVu(t) (/Otg(t—s)(Vu(t)—Vu(s))ds) do

+(M+)\)/ﬂdivu</Otg(t—s)(Vu(t)—Vu(s))ds) dx
—/Q(/Otg(t—s)Vu(s)ds> (/Otg(t—s)(Vu(t)—Vu(s))ds)dw
ra ) [wi) ([ ol-9@o - us)ds)ds

+/ h(uo/g(t—s)(u(t) u(s)) ds dT

/ut/ ) dsdx — </Otg(s)ds>/ﬂufdx
—,6’/ / (s))dsdx

—I—/ (¢g+ kVO) Vodr — To/qV(A 16,) dz. (3.23)
Q Q

Similarly to (3.13), we estimate the right-hand side of (3.23). Using Young’s
inequality, Holder’s inequality, (3.3), (G1), (G2), and (G3), for 6 > 0, we have

/Qk:oVu (t) </Otg (t—s)(Vu(t) — Vu(s)) ds> dx
< K25 ||Vul2 + 415/9 (/Otg(t ) (Vu(t) — Vu (s))ds>2 dx

1 t t
< k25 |Vl + 45/ (s)ds Q/o g (t—s)|Vu(t) — Vu(s)]? dsdzx
o  ko—1

< kg [Vull; + =5 (90 Vu) (1), (3.24)
(M—f—)\)/ﬂdvu (/0 g(t—s)(Vul(t) —Vu(s))ds) dx
< (u+ )\)25/9 (divu)? + k°4g L g0 vu) (1), (3.25)

/(/tg( W“(>d>(/Otg(t—s)wu(t)—w<s))ds>d;,;
([
45/ </ ~ Vu(s ))ds>2dx
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1
<2 (ko =PIVl + (204 35 ) (o= D (g0 V) 0. (3.26)
For the fourth and fifth terms on the right-hand side of (3.23), we have

a(t)/Qw(ut) </Otg(t—s)(u(t)—u(s))ds> dx

B 2
<a2(1)6 /Q w? (ur) da+ W (goVu)(t)  (3.27)

and

[ w0 [[ote= 9w —uionasa

ko —1) B?
§572/F u? dr+(°45)(goVu) (t). (3.28)
1

As for the sixth and the seventh terms on the right-hand side of (3.23), using
Hélder’s inequality, Young’s inequality, (G1) and (G2), we obtain

t 2
[ [ o= @0 -u)as s <spulp - 20 (7o v0) 0, 629

ﬁ/ﬂe</0 g(t—s)(Vu(t)—Vu(s))ds) do
£B25/Q!9\2dx+ (k”4g ) (goVu)(t), (3.30)

and

/ (q+ kVO) Vodr — 7'0/ gV (A0, dx
Q Q

:—k/92d:c+/qwdx
Q Q
— 7'0/ qV (A_l <_ck divg — ﬁdivm)) dx
< k/@zdaﬂ—/]Vgo] de + — /\q[ dx
k
4—0/|q\2 da + 2 V( <le <q—ﬂut>>)
2 Ja 2 c c

Since (‘qu — gut> ( Q)) , recalling Lemma 2.3, we get div ( kq — gut) €
H=1(Q), then A~} (le (%q B )> € H' (Q) with

oo (B2, 2o (-2
C C C C Hfl(Q)

2
dr.  (3.31)

<c¢p
H(Q)
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kB
— _ < 3.32
a0+ U ey c1llall g2 (o) + ez lluell 2o (3.32)

<«

for some positive constants ¢; and cy. Thus, by using (2.6), we arrive at
/ (¢ + kVO) Vodr — 7'0/ qV (A710,) dz
Q Q

k
< —/Gde+03/ lq? dx+04/ lug|? daz. (3.33)
2 Ja 0 0

After combining estimates (3.24)-(3.33), (3.23) becomes

t
w%wz—(/Qmﬁw—a—@)wm@+&ﬂww@+%@ovwa>
0

g9(0) B?

15 (o Vu) ()

+(u—|—)\)25/(divu)2dm+&yz/ u? dl —
Q T

1

+ a? (t)é/ﬂwz (ut) dx+03/ﬂ\q|2 dx — <’; —525>/Q|9|2 dz, (3.34)

where

2 2 1 3B2
cs=hko+2(ko—1)">0, cg=(ko—1){5+20+ -5 )>0

Thus (3.21) is established. O

By using (2.2), (3.4), (3.5), (3.12), and (3.21), we obtain
F(t) < —(N—go—cz;)/Qu?de‘jL ((N—i—Q)/ngd:U—a(t)/Qu w(ut)dzn)

— Na (t)/gutw (uz) dx — (; — 5c5> /Q (Vul? dz

+ <(k°2l_ Dy CG) (90 Vu)(t)

—(u—l—)\)(l—é(u—{—)\))/ﬂ\diqu da:—l—aQ(t)é/QwQ(ut)dx

2
- (k —625> / 10]? do — [ aN — (B27) — 0v? / u? dl’
2 0 21 -
BQ

+ (N _ g(O)) (¢' o Vu) (t) — (N —c—c3) /Q g d. (3.35)

2 46

We have used the fact that for any ty > 0,

t to
/g@m>/g@w:% £> o, (3.36)
0 0
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because ¢ is positive and continuous with g (0) > 0. At this point, we choose N
large and ¢ small enough such that

ki=N—gy—cq >0, (337)
l
ko = 5 —dcs > 0, (338)
ks=1—0(u+A) >0, (3.39)
k
ha =3 - 326 > 0, (3.40)
B 2
ks = aN — ¢ ;7) — 672 >0, (3.41)
ke =N —c—c3>0. (3.42)
Hence, for all ty > 0, we arrive at
F' () < =k [[uelly — k2 [ Vull3 + ¢7 (g0 Vu) (£) + o (t) 5/ w? (up) dz
Q
- k:g/ |div u|® dz + 68/ (uf + [uw (ug)]) dz — Na (t) / upw (ug) do
Q Q Q
~Ral0)2 - k5/ W2 dl + o (g 0 V) (8) — ks [l (3.43)
I'

which yields

F'(t) < —c1oE (t) + c11 (g o Vu) (t)
+c (/Q w? (uyg) da + /Q (uf + |uw (ug))) dx) (3.44)

for some positive constants c¢7 — c11.
Now, let us choose 0 < £1 < ¢ such that

sw(s) <min{e, G(e)} forall |s| <ej. (3.45)

Then it is easy to show that

cils| < Jw(s)] < cymin{[s],|s|"} if |s| > es, (3.46)
s2 4+ w? (s) < Gt (sw(s)) if |s] <es. '
Considering the following partition of {2:
D ={xeQ: || <e}, Q={xecQ: |wy|l >},
from (3.46), we have
/ w? (ug) de < —cpE' (t). (3.47)
Qo

Using also Poincaré’s inequality, (3.46), the Holder’s inequality and Young’s in-
equality, we see that:



General Decay Result for Thermo-Viscoelastic System 69

If min {|ue| , Jue["} = |ue], then

/ luw (ug)] do < / [ullug| dz < Bel|Vull 20 llutll L2 () < cisE(t).  (3.48)
QQ QZ

If min {|u|, [ug|’} = |we|?, then

P

_1
1 +1
o) ([ ol as)”
Q

P

<cB </Q Vul? d;c>é </92 lw ()| d:z) a
<cB </Q |Vu|? dgc>é (/Q ugw(ug) dx) o . (3.49)

Thus, from (3.48) and (3.49), we deduce that

/ (Juel? + fuaw (ur)]) de

Qo

1 »
< c/ wpw(ug) dx + cB (/ |Vu)? dm) i (/ upw(ug) d:1:> . + c13E(t)
Qs Q Q2

< —cE'(t) + cE (1) (—F (t))ﬁ + c13E(1),

juo ()| dz < <

QQ QQ

[

where ¢, c13 > 0.
Taking into account (3.47) and using Young’s inequality and the boundedness
of E, we arrive at

/ w? (ug) dx +/ (uf + [uw (uy)]) dz < ceE (t) — (cc +c12) E' (). (3.50)
QQ QQ
Also
2 2
/Q1 w” (ug) dx +/ (uj + Juw (up)|) da

1

S/ ufdw—ka/ uzda:—F(C'a—Fl)/ w? (uyg) de
Ql Ql

941

)

2
< /Ql uide + csE (t) + (C. + 1) /Q1 w” (ug) de. (3.51)

Hence, Lemma 3.3, (3.50), and (3.51) imply, for £ small enough, that the func-
tional £ = F + C.E satisfies

£(t) < —dB (t) + 10 (g 0 V) (£) + /Q (2 + w? (uy)) da. (3.52)

and

L(t)~E(t). (3.53)

We are ready to state and prove our main result.
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Theorem 3.6. Assume that (G1)—(G4) hold. Then there exist positive con-
stants c1, ¢, c3 and € such that the solution of (1.1)~(1.7) satisfies

¢
E(t) < elel <k1/ a(s)ds+ 02) , t>0, (3.54)
0

where .
1
t)= | =——=ds and t) = tG' (eot) .
G (t) /t Gls end Galt) =G (ot
Here Gy is strictly decreasing and convex on (0, 1] with }in(l) G (t) = +oo.
—

Proof. Tt follows from (3.52), (2.2) and (3.4) that
a ()L (t) < —da(t) E(t) + croa(t) (g o Vu) (t) + ca(t) /Q (uf + w? (uy)) dz

< —da(t)E(t) — c14 (¢' o V) (t) + ca (t)/Q (uf + w? (uy)) dz

< —da(t) E(t) —mE' (t) + ca (t)/Q (uf +w?(u))dz, t>0, (3.55)

where m and cy14 are positive constants.
We then introduce H (t) = a(t) L (t) + mE (t), (clearly that H ~ E), using
(G2), so that (3.55) becomes

H (t) < —da(t) E(t) + ca(t) /Q (uf + w? (w)) d. (3.56)

Then we have two estimates:
Case 1. G is linear on [0,¢) : We deduce that

H(#) < —da(t) E(t) + ca (t) /Q ww (w) dz = —dor (£) B () — B (1),

which gives
(H+cE) (t) < —da (t) E(t).

Hence, using the fact that H+cE ~ E, we easily obtain

t
E@)<de Jo as)ds _ e <c”/ a(s) d8> .
0

Case 2. G is nonlinear on [0,¢) : To estimate the last integral in (3.56), we
use, for I(t) defined by

1
I(t) = — wpw(ue) dx,
( ) ’Q1| a2 t ( t)
Jensen’s inequality to get
Gra®) >c | G Huw(w))da. (3.57)

951
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Thus, using (2.5), (3.57), we get
2 2 -1 -1
a(t) /Q (|ut| + w(uy) )dw < a(t) G (wew(uy)) da < ca(t)GHI(L)).

Therefore, (3.56) becomes
Ry(t) < —da(t)E(t) + ca(t)G1(I(t)), (3.58)

where Ry = aL + E, and Ry ~ E because of (3.53).
Now, for €9 < & and ¢y > 0, using (3.58) and the fact that £/ <0, G’ > 0,
and G” > 0 on (0,¢], we find that the functional Ry, defined by

Ry (t) = <50 g((é))> Ro(t) + CQE(t),

satisfies, for some aq,as > 0,

alRl(t) S E(t) S agRl(t), (3.59)
and
< —da(t)E(t)G’ (sog((é))) + ca(t)G ( E((é)) “HI(1)

+coE'(t). (3.60)

Let G* be the convex conjugate of G in the sense of Young (see [2, p. 61-64]).
Then
G*(s) = 5(G") "M (s) = GI(G) ()] if s €(0,G'(e)], (3.61)

and G* satisfies the following generalized Young’s inequality:

AB < G*(A) + G(B), if A€ (0,G'(¢)], B € (0,e]. (3.62)

With A = G’( E((O))> and B = G=1(I(t)), using (3.4), (3.45), (3.60)~(3.62), we

arrive at

R\ (t) < —da(t)E(t)G’ <€0 g(?)) + ca(t)G* (G’ <€0 5((8)))
+ ca(t)I(t) + COE/( )

< —da(t)E(t)G’ (60 g((é))) + Cgoa(t)gé ( )
- cE’(t + coE'(1).

Consequently, with suitable choices of ¢y and ¢y, we obtain

Ri(t) < —ka(t) (%) e <50§,(((’;>)> = —ka(t)Gs @((é))) : (3.63)
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where Gy(t) = tG'(got). Since
G5(t) = G'(eot) + eotG" (cot),

then, using the strict convexity of G on (0,¢], we find that G5(t), G2(t) > 0 on

(0,1). Thus, with R(t) = 90 and using (3.59) and (3.63), we have

R(t) ~ E(t) (3.64)

and, for some k1 > 0,
R'(t) < —k1a(t)Ga(R(2)).

Then a simple integration gives, for some ko > 0,
t
R(t) < Gll(kzl/ a(s)ds + kz), (3.65)
0

where G1(t) = ftl ﬁ(s)ds. Here we used the properties of Gy and the fact that
G is strictly decreasing on (0, 1]. Using (3.64)—(3.65), we obtain (3.54). O

3.1. Remark. If w satisfies

wo(]s]) < |w(s)| < wyt(|s]) for all [s| <e (3.66)
and
crls| < |w(s)| < cols| forall |s| >¢
for some strictly increasing function wy € C([0,+00), with wg(0) = 0, and

positive constants cj, ¢1, € and the function G, defined by G(s) = \/gwo (\/g),
is strictly convex C? function on (0, ] when wy is nonlinear, then (G2) is satisfied.
This kind of hypothesis, where (G2) is weaker, was considered by Liu and Zuazua
[11], and Alabau-Boussouira [1].

3.2. Examples. We give same examples which were considered by Mes-
saoudi and Mustafa [14] to illustrate the energy decay rates given by Theorem
3.6. Here we assume that w satisfies (3.66) near the origin with the following
various examples for wq:

(1) If wo(s) = csP and p > 1, then G(s) = cs™5 satisfies (G2). By using
Theorem 3.6, we easily obtain

E(t) < ce™® Jo a(s)ds itp=1,

t Tp—1
E(t) <c <c'/ a(s)ds + c") ’ if p>1.
0

(2) If wo(s) = e1/%, then (G2) is satisfied for G(s) = \/ge—\/i/\/g near zero.

Therefore, we get
t
E(t) <c (ln <c’/ a(s)ds + c"))
0

—2



General Decay Result for Thermo-Viscoelastic System 73

(3) If wo(s) = %6*1/82, then (G2) is satisfied for G(s) = e~2/% near zero. Then

we obtain

-1

s < (i (¢ [ty +))

(4) If wo(s) = %67(1“)27 then (G2) is satisfied for G(s) = e=1(13)” near zero.

Thus, we have the following energy decay rate

[1]

E(t) < Ce—2(ln(c’ fot oz(s)ds—l—c”))%'
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PesysnbTaT 1110710 3arajibHOTO 3racaHHs JJisd CJIaOKO
aeMIipoBaHOI TEPMOB’I3KOMPY2KHOI CUCTEMU 3 JIPYTUM
3ByKOM

Amel Boudiaf and Salah Drabla

VY cTaTTi po3rIaIaEThCA N-BUMIpHA TEPMOB’ I3KOIPYKHA CUCTEMA 3 IPY-
UM 3BYKOM 3i cJIaOKuM JieMIipyBaHHIM T€PTsi. BUKOPUCTOBYOUHM JIESIKI BJIa-
CTUBOCTI OIyKJMX (DYHKIIiM, BCTAHOBJIEHO SIBHUI Ta 3arajibHUN pPe3yJIbrarT
sracanHsi. Hamm pesysbrar ojepkaHo 0e3 Oy/ib KX 0OMeXKYBaJbHUX IIPU-
IyIIeHb LI0J0 3POCTaHHs JIeMII(DYBAHHS TE€PTS.

KirrowoBi ciioBa: 3arajbHe 3racaHHsl, cJIabKe JIeMII(pyBaHHsS TEPTs, Tep-
MOB’SI3KOIIPYKHA CHUCTEMA 3 JIPYTUM 3BYKOM, OIIyKJICTh
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