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Controllability Problems for the Heat
Equation in a Half-Plane Controlled by the

Dirichlet Boundary Condition with a
Point-Wise Control

Larissa Fardigola and Kateryna Khalina

In the paper, the problems of controllability and approximate controlla-
bility are studied for the control system w; = Aw, w(0,z2,t) = u(t)d(z2),
x1 >0, 22 € R, t € (0,T), where uw € L*°(0,T) is a control. Both necessary
and sufficient conditions for controllability and sufficient conditions for ap-
proximate controllability in a given time 7" under a control u bounded by a
given constant are obtained in terms of solvability of a Markov power mo-
ment problem. Orthogonal bases are constructed in special spaces of Sobolev
type. Using these bases, necessary and sufficient conditions for approximate
controllability and numerical solutions to the approximate controllability
problem are obtained. The results are illustrated by an example.

Key words: heat equation, controllability, approximate controllability,
point-wise control, half-plane

Mathematical Subject Classification 2010: 93B05, 35K05, 35B30

1. Introduction

Controllability problems for the heat equation were studied both in bounded
and unbounded domains. However, most of the papers studying these problems
deal with domains bounded with respect to the spatial variables (see [2,7,8, 14—
16,19, 23, 25,26, 28,37] and the references therein). Although there are quite a
few papers considering domains unbounded with respect to the spatial variables
[3-6,12,13,17,20,27,29-32, 34, 35], we know only one paper (see [30]) where the
boundary controllability of the heat equation was studied in a half-plain. The
boundary controllability of the wave equation in a half-plane z; > 0, 9 € R with
a point-wise control on the bound was studied in [9-11].

In the present paper we consider the heat equation in a half-plane

wy = Aw, x1 >0, z0€R, te(0,7), (1.1)
controlled by the Dirichlet boundary condition

w(O, (-)[2],25) = 5[2}u(t), x9 €R, t€(0,7), (1.2)
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under the initial condition

w(()pps (g 0) =, 1 >0, 22 €R, (1.3)

where T > 0, u € L*(0,T) is a control, ) is the Dirac distribution with
respect to T, m = 1,2, A = (9/0x1)? + (0/0x2)?. The subscripts [1] and [2]
associate with the variable numbers, e,g., (-);;) and (-)[g) correspond to x1 and w2,
respectively, if we consider f(z), z € R?. This problem is considered in spaces of
Sobolev type (see details in Section 2).

In Section 2, some notations and definitions are given. In Section 3, the con-
trollability problem is formulated for the control system (1.1)—(1.3), and prelim-
inary results are gotten. In particular, properties of the solutions (Theorem 3.4)
and properties of the reachability sets (Theorem 3.5) are studied for this system.
In Section 4, for control system (1.1)—(1.3), the following assertions are obtained
in a given time under the control bounded by a given constant: a necessary
condition for 0-controllability (Theorem 4.1); necessary and sufficient conditions
for controllability (Theorem 4.2); sufficient conditions for approximate control-
lability (Theorem 4.3). In Section 5, bases in special spaces of Sobolev type are
constructed by using the generalized Laguerre polynomials. In Section 6, nec-
essary and sufficient conditions for approximate controllability in a given time
are obtained for system (1.1)—(1.3) (Theorems 6.1 and 6.2). Moreover, an algo-
rithm is given for construction of controls solving the approximate controllability
problem for this system. In Section 7, the results are illustrated by an example.

2. Notations

Let us introduce the spaces used in the paper. Let n € N. By | - |, we denote
the Euclidean norm in R".

Let 8(R™) be the Schwartz space of rapidly decreasing functions [33], 8'(R™)
be the dual space. Denote also 8§ = §(R). Let Ry = (0, 400). Let D(R4) be the
space of infinitely differentiable functions on R, which supports are bounded and
they are contained in R..

Let D = (—i0/0x1,...,—i0/0xy,), D* = (—i(0/0z1)™,. .., —i(0/0zyn)*"),
where a = (a, ..., ) is multi-index.

For s = 0, 3, consider

H5(R") = {p € L*(R") |VYa € N} (a1 + -+ +an, <s= D% € L*(R"))}

with the norm
1/2
2
lel = > (10%le@n) | 5w HRY),

ar - tan<s

and H*(R") = (H*(R"))* with the strong norm |[|-||~* of the adjoint space. We
also have HO(R") = L(R") = (H°(R™))* = H-O(R™).
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For m = —3, 3, consider
H Rn — L2 Rn 1 2\m/2 L2 Rn
m(R") = 19 € L (R") | (1 +[0]*)™ "¢ € L*(R")
with the norm

, e Hp(R").

_ 2 m/2
9l = | 4100,

Evidently, H_,,(R") = (H,,(R™))".

Let (f, ) be the the value of a distribution f € 8'(R™) on a test function ¢ €
S(R™).

By ¥ : §/(R") — 8'(R"), s = 0,3, denote the Fourier transform operator
with the domain 8'(R™). This operator is an extension of the classical Fourier
transform operator which is an isometric isomorphism of L?(R™). The extension
is given by the formula

(Ff.o)=(f.F71p), fe8R"), pe8R).
The operator F is an isometric isomorphism of H™(R"™) and H,,(R"), m = -3, 3,
[18, Chap. 1].
A distribution f € S’(R”) is said to be odd with respect to x1, if

<f, ( [1] ( )> = —<f, ( 1] ()[2})>, where S S(Rn) A distribution
f e 8 (R™)is sald to be even Wlth respect to x1, if <f, ( 1 (g2 )> <f, (

(I (1) )» where ¢ € 8(R™).

Let m = —3,3. By H™ (R?) (or H,, (R?)), denote the subspace of all distri-
butions in H™ (RQ) (or Hy, (RQ), respectively) that are odd with respect to z7.
Evidently, H™ (R?) (or H,, (R?)) is a closed subspace of H™ (R?) (or Hy, (R?),
respectively).

For s = 0, 3, consider

HC“’@:{@ELZ(R+XR)\(V04€NO (a1 +az < s= D% € L*(R; x R) )
A(szo,s—lD(“) (0%, () = 0)}

with the norm

1/2

2
lelp= > (IP%¢lgxw) | -+ ¢€Hy

altaz<s
and Hg’ = (HS©) with the strong norm ||-|| g of the adjoint space. We have
Hy=L*(Ry x R).

We also need the following subspaces of the spaces Hs (Rz) and H, (]RQ).

%s:{ueﬁs (R*) |3pe s l/(ac):ailp(ﬂ)}, s=-1,1,



78 Larissa Fardigola and Kateryna Khalina

Hsz{geﬁs (R?) |3f e g(U):io'lfﬂo-D}’ )

Without less of generality, we can assume p and f are even in these definitions.
Let s = —1,1 and L? 53 )(R+) be the space of functions which are square-integrable

with the weight r3(1 4 72)® on Ry. It is equipped with the norm

0o 1/2
bz w = ([ IR+ ar)

- H(.)3/2(1 + (.)Q)S/Qh‘ e (2.1)
and the inner product
(h, Q>L§7(3)(R+) = /OOO h(r)g(r)r (1 +r%)* dr
= (P PO L @)

Let g € H,. Then there exists f € 8’ such that g(o) = io1f(Jo|). Using polar
coordinates, we have

lgll—y = V7l £l 2 (2.3)

—1 (3
Thus, H; is complete. Obviously, Hs = FH?. Therefore, H? is also complete.
We treat equality (1.2) as the value of the distribution w at x; = 0 (see
Definition 2.1 below). To give this definition, we need some additional notations.
Let g € H_4(R?), ¥ € H4(R), s =0,3. Since 1 + |o]?> < (1 +0})(1 + 03), we

have
(llgll—s) // (1+|0*) " |g(0)* do
> [Tt [T 4 a) o) dosdon
= /OO (1““73)_5 /OO (1—1—0%)_8 lg(0)? doy do.

— 00 —0o0

Therefore, we have g(al, (-)[2}) € H_4(R) for almost all o1 € R, and we have
9((-)p)s 02) € H_(R) for almost all o5 € R. Moreover, denoting

(9,9)1)(02) = /_ g(o1,02)¢(01) do, o2 €R,
gl = [ glon,02)00oa) do o1 €R,

we get

(9:¥)p) € H-s(R) and  (g,9)2) € H-s(R).

Let f € H—5(R2), ¢ € H3(R?), s =

isomorphism of H™(R™) and H,,(R" )
)

(f+0)1) = Fonsan ((Famsa S, Fo) )

. Since the operator F is an isometric
—3,3, [18, Chap. 1], denoting

and  (f, ) = Fo'hmy (Famsafs F)p2) 5
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we obtain
(fio)yy € HP(R) and (f,¢);p € H*(R).

According to the definition of the value of a distribution of one variable at a
point [1, Chap. 1] and to the definition of the value of a distribution of several
variables at a line [11], we give the following definition.

Definition 2.1. Let s = 1,3. We say that a distribution f € Hg’ has the
value fo € H *(R) on the line z; = 0, i.e., f(O*, (-)[Q]) = fo((')[g]), if for each
¢ € H*(R) and ¢ € D(R;) we have

(@O, O 2Oy O, = (o @prw) | asa— 0%,

[
where (h(a()),¥) = <h((-)), 1y (%>> for h € H=5(R).

Remark 2.2. Let ¢ € H&D’ s =0, 3. Let ¢ be its odd extension with respect to
x1, i.e., @(x1,x2) = @(x1,22) if 1 > 0 and p(z1,22) = —p(—x1,x2) otherwise.
Then ¢ € HS (RQ), s = 0,3. The converse assertion is true for s = 0,1, and
it is not true for s = 2,3. That is why the odd extension with respect to x
of a distribution f € H@s may not belong to H (]RQ), s = 2,3. However, the
following theorem holds.

Theorem 2.3. Let f € H@l and there exists f(07,(-);2)) € H '(R). Then

foia € H@3 can be extended to a distribution F € H™3 (]RQ) such that F' is odd
with respect to x1. This distribution is given by the formula

F = foye, = 2£(0%, (D) 8y, (2.4)
where f is the odd extension of f with respect to x1.

In the case f € H 61/ ?_ corresponding theorem has been proved in [11]. The
proof of Theorem 2.3 is analogous to the proof of the mentioned theorem.

3. Problem formulation and preliminary results

We consider control system (1.1)—(1.3) in H@l, 1=1,3, ie., (%)S w:[0,T) —
HC*@l*?S, s=0,1,w’ € H@l.

Let w®, w(-,t) € H' ¢t € [0,T]. Let W° and W(-,t) be the odd extensions

of w® and w(-,t) with respect to 1, respectively, t € [0,T]. If w is a solution to
control system (1.1)—(1.3), then W is a solution to control system

Wy =AW — 2(5{1]5[2}u(t), t e (0, T), (3.1)
W(()pps (p2,0) = W (3.2)

according to Theorem 2.3. Here (%)S W :0,T] — H-1-2s (RQ), s=0,1, W0 e
H-1 (RQ). The converse assertion is also true. Let WO W (-, t) € H~! (Rz), t e
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[0,7]. Let w” and w(-,t) be the restrictions of W° and W (-,t) to (0,+o00) with
respect to x1, respectively, t € [0,T]. If W is a solution to (3.1), (3.2), then w is
a solution to (1.1)—(1.3) because

W (0%, (-)g t) = dpu(t) for almost all t € [0,T] (3.3)

according to Lemma 3.6 (see below). Let w? € H_'. One can see that
w((-)[l], (')[2},T) = w! iff W(()[l],()[Q],T) = WT. Here W7 is the odd ex-
tension of w’ with respect to z1 and W7 € H! (]RQ).

Thus, control systems (1.1)—(1.3) and (3.1), (3.2) are equivalent. Therefore,
basing on this reason, we will further consider control system (3.1), (3.2) instead
of original system (1.1)—(1.3).

Let T >0, W0 ¢ H! (}RQ). By Ry (WO), denote the set of all states W71 &

H! (RQ) for which there exists a control u € L>°(0,T) such that there exists a
unique solution W to system (3.1), (3.2) such that W ((-)py, (-), ') = W

Definition 3.1. A state W° € H~! (]RQ) is said to be controllable to a target
state WT e H~1 (Rz) in a given time T > 0 if WT € Ry (WO).

In other words, a state W0 ¢ H! (RZ) is said to be controllable to a tar-

get state W7 ¢ H! (RQ) in a given time 7" > 0 if there exists a control v €
L*>°(0,T) such that there exists a unique solution W to system (3.1), (3.2) and
W () (Vg T) = W

Definition 3.2. A state W° ¢ H—! (RQ) is said to be null-controllable in a
given time T > 0 if 0 € Ry (W?).

Definition 3.3. A state W° € H~! (RQ) is said to be approximately control-
lable to a target state W7 € H~! (R?) in a given time T' > 0 if W’ € Rp (W),
where the closure is considered in the space H ! (RQ).

In other words, a state W0 ¢ H1 (Rz) is approximately controllable to a
target state W71 € H! (Rz) in a given time T' > 0 if for each € > 0, there exists
ue € L*(0,T) such that there exists a unique solution W; to system (3.1), (3.2)
with u = ue and ||[Wz(()p), (D, T) — VVTH71 <e.

Using the Poisson integral (see, e.g., [36]), we obtain the unique solution to
system (3.1), (3.2)

W(z,t) = Wo(z,t) + Wy(z,t), = eR? te[0,T], (3.4)
where
1 e 0 2
Wo(x,t):ﬂe o« W (x), x eR® tel0,T],
T

b1 =l
Wy (z,t) = / —e € u(t—§)dg, reR? te(0,T]
0
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Theorem 3.4. Let u € L>(0,T), W' € H-1 (RQ). Then,
(i) Wo(-t) € H-'(R?), t € [0,T];
(i) Wo(-,t) € C(R?), t € (0,T7;
(iii) of WO € H~1, then Wo(-,t) € H~L, ¢t € [0,T7;
(iv) Wu(-,t) € 1 and [Wa (- )| < V/2/m(t + 1)l|ull oo o), t € [0, T).

Proof. Denote VO = FWO V(.,t) = FoseW (-, 1), Vo(-,t) = FosoWo(:,1),
Vu('at) = gjxaawu('vt)a te [OaT] Thena

V(o,t) = Vo(o,t) + Vu(o,t), o cR? tel0,T], (3.5)
where
Vo(o,t) = e 1P V0(a), o eR? tel0,T), (3.6)
Vu(o,t) = —i% Ote—flvlgu@ —€)de, ceR? te0,T]. (3.7)
Therefore,

Wo(, )7 = Vo )l -1 < VOl = WO, te[0,T],  (3.8)

i.e., (i) holds.
Let a = (o, 0) € (NU {0})2. We have

o7 052 Vo(o, )|

< (14 |op)Forrez g2l (14 102) T VO(0))% o eR% te(0,T).

For m € N and 8 > 0 we have

gme Pt < <m>m £>0.

Be
Therefore,
e e! e I+a;+a (e taz)/2
ID°Wo (DI = | Vel 1) < ¢ <2t> VoIl
1+051+042 (1+ai1+az)/2 B
— o () WL te . (39

i.e., (ii) holds.

Assume that W% € H~!. Then, V° € H_1, therefore, Vo(-,t) € H_1, hence,
Wo(-,t) € HL ¢t €[0,T], ie., (iii) holds.

Put

t 2
g(r,t) :/0 e ¢ u(t—¢&)d¢, r>0,tel0,T].
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We have

3| -

Wa (O™ = 1Vl Oy =

<//R o1lg (ol ) (1+ 1) d0> ;

g%(/ooo |g(r,t)|2rdr>1/2, te(0,7]. (3.10)

Since ,
1—etr 2(t+1
(2 )
r2 r2+1
we have
t —tr?
_gp2 1—e
()1 < oy | € g = ull oy —5—
2(t+1)
< oo a - 0 t 0-
= HUHL (0,7) T2+1 , >0, 1>

With regard to (3.10), we obtain

1 2 © 2rdr 1/2

2
R RS T !

i.e., (iv) holds.

According to (3.4), we have

(3.11)

Ry (WO) = {WT e H™' (R?) | Ju e L=(0,T) WT = Wo(-,T) + Wu(-,T)} ,

in particular,
Ry (0) = {WT e H™ (R?) | 3u e L=(0,7) W = Wu(-,T)} .
Denote also

RE(0) = {WT e H™' (R?) | Ju e L®(0,T)

(3.12)

(3.13)

(\|u||LOO(07T) < L and WT = Wu(-,T)>} . (3.14)

Taking into account Theorem 3.4, we obtain the following theorem.
Theorem 3.5. Let T >0, W° € H-(R?). We have

(i) Re(0)= [ J REO) cH
L>0
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i) RE0) c RE(0),0< L <L

iv) feRpWO) & f—Wo(-,T) € R(0), L > 0;
v) feRr(W?) & f—Wo(,T) € Rp(0).

Lemma 3.6. Let W9 ¢ H! (R?), t € [0,T]. Let W be a solution to (3.1),
(3.2). Then (3.3) holds.

(
(iii) f e RL(0) & Lf € RE(0), L > 0;
(
(

Proof. According to Theorem 3.4(ii), Wq(-, %) is continuous on R? for each
€ (0,T]. Moreover, Wy(-, t) is odd with respect to z1, t € [0,T]. Hence,

Wo(07, (-)ig,t) =0, te(0,T]. (3.15)

Let us calculate W, (0%, (1)}, ), t € [0,T]. We have

Wy ) = 22 [ e 120 R2 0,7
w(,t) = ye~ 17 y, xe€R" tel0,T].

Let o € HY(R), ¢ € D(R,). We have
<<wu<<~>2, <->z]>,go<<->m>>[2} (),
oL L
Since

e 2
/ g

2

2 042’5‘2
u (t— L >dy k) da ¥(&1) dei,

s\m

€[0,T]. (3.16)

i~

2|2 >
a®|€ —y? 1
u <t 4| 2| )’d?/ < ||UHL°°(0,T)/ ye " dy = Sllull o)
Y 0 2

S

l de
// e (el des 0(6) des < sup ol |/ 5“/’51'/0051+2£§d51

= 7sup |¢(u \/ ¥(&1)| d& < oo,

pER

we can apply Lebesgue’s dominated convergence theorem to (3.16) as o — 07

<<W )i (s () g ’lw <('L[1l>>m

/ / ) érlz /OOO ye V' dy déa (&) d&a
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= Lu(t)e(0) /0 Y ewe) / h gdfg% s = u(t)o(0) | "y dé

= <<u(t)5[2}7 §0>[2] 71/}>[1] , L€ [OvTL

i.e.,

W (07, (D, ) = u(t)dy, tel[0,T]. (3.17)
Taking into account (3.4), (3.15), and (3.17), we obtain (3.3). O

4. Controllability
The following theorem gives us the necessary condition for f € R%(0).

Theorem 4.1. Let T >0, L > 0. If f € IR%(O), then f € H~! and

|22 T*T
e1r™ |f(x)| dxy dry < — T T T >T. (4.1)
Ll 7

Proof. From Theorem 3.5 (i), it follows that f € H~!. Taking into account
(3.14), we obtain

Jz|? || =2 1
/ / e4AT* |f | dzl dry < — / / e1T* 1 / e 4 ?dg dx1 dxo
= / / / aclefl ‘ g 4T*) dzy dxo d
™ Jo
L 1
= / = (/ 1€ (45 4T*)dx1/ e 2<4§ 4T*>d$2> d¢.  (4.2)
ar Jo & 0 0

It is easy to see that

[ g [ g, [
0 T - ¢ 0 T+ =

Continuing (4.2), we obtain

2 T 1 or*¢ T
//e!m,f ,dxldx2</ m*_ e

T* 3/2 de¢
2y VET -

(4.3)

Replacing & by T*sin? t, we get

) arcsin % dt
/ VET —)pr T T+ /0 cos? t
= i tan (arcsin \/T) = EL
T+ T ) T T —-T

With regard to (4.3), we conclude that (4.1) is true. O
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Theorem 4.2. Let L > 0, T > 0, W° ¢ H! (Rz), wT e H! (Rz), and
condition (4.1) holds for w=wT - Wo(-,T). Let

n! o o o
Wy, = QW /0 /0 x%"HW(acl, x9) dxy dro, n =0, 0. (4.4)

Then WT € RE (WO) iff W € H! and there exists u € L>(0,T) such that
[ull oo o) < L and

T
/ §"u(T — &) dé = wn, n =0, 00. (4.5)
0

Proof. According to Theorem 3.5 (iv), W1 € RE (W?) iff W e RL(0). With
regard to (3.14), we conclude that W e RE (0) iff there exists u € L>°(0,T) such
that [|ul| fec (o) < L and W= W, (-, T). Denote V = FW.

Let u € L>(0,T) such that [[u[| ey < L and W =W, (-, T). Hence,

Viey=——[ e o u(T — €)de, o e R2. (4.6)
0
For
i T
9o =1 [ eHur-gd zec, (4.7)
0
we have B
V=019 (|a|2) , o0 €R% (4.8)

Due to the Paley—Wiener theorem, ¢ is an entire function. Therefore,

< g™
g(z) = Z J n'(O) 2", zeC. (4.9)
n=0 )

Differentiating (4.7), (4.8) and considering the derivatives at z = 0 and o = 0,
we get

-1 n+1; T
g™ (0) = (zrz/o (T — €)dE, n =0, 00, (4.10)
g™ (0) = Mn = k)! eV (0,0) k=0,n, n=0,00. (4.11)

2k + D!(2(n —k))! aafk-i-lagg(n—k) )
Since

82n+1‘7(070>

2(n—k
ao_%k+1ao_2(”

1 . . n—=k) o7
y = Qﬂ// (i) (i) 2O (01, 22) doy de
R

_1 n+1; o0 o n—k) =
_ QM / / ;p%k“;pg( k)W(xl, x9) dxy dxa,
™ o Jo

k=0,n, n=0,00, (4.12)
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with regard to (4.4), (4.10) and (4.11), we conclude that (4.5) holds.
Let W € 3! and there exists u € L°°(0,T) such that [l oo o,y < L and
(4.5) holds. Hence,

Vio)=o1f (|a|2) , o €eR (4.13)
Taking into account (4.4) and (4.12), we get
(_1)n+1i /T . n 82n+1‘7(0’ 0)
—_— T—-¢&)dé= = . 4.14
T 0 6 U( 5) f (2n + 1)| 80’%”4_1 , n 0, o0 ( )

Multiplying this relation by a%"“ /n!, we obtain

1 82n+1‘7(07 0) 2n+1
g
2n+ 1) gontt 1

I [Tt - gag = Y (
n=0

™ Jo

=V(01,0), o1 €R. (4.15)
Substituting o2 = 0 in (4.13), we have
V(o1,0) =01 f (o%) , o1 €R.
With regard to (4.15), we get

7:0-1 T g} 2
- e 1y (T — €)dE = o f (01) , o1 €ER.
0

Therefore,
. T
f(z) = —Z/ e u(T — £)de, =€ C.
0

s

Taking into account (4.13), we have

~ iUl T 2 2
Vie)=—— [ e loFeuy(r —¢)de, oeR2
T Jo
Hence W = W, (-, T). That completes the proof. O

Theorem 4.3. Let L > 0, T > 0, W° ¢ H! (R2), wT e H! (RQ), W =
WT —Wo(-,T) € H™L, and condition (4.1) holds for W. Let {wn}o2, be defined
by (4.4). If for each N € N there exists uy € L>(0,T) such that ||un|| e ) <
L and

T
/f"uN(T—f)dﬁzwn, n=0,N, (4.16)
0

then WT € REL (W0), where the closure is considered in H! (R?).

Proof. Let N € N, Wy be the solution to (3.1), (3.2) with W° =0 and u =
uy. Then, Wy = W,,. Denote V = FW and Vy(-,T) = Forse Wn (-, T). We
have

Vn(o) = oign (|o]?), o€R? (4.17)
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where
i (T
gn(z) = —/ e_ZguN(T —&)d¢, zeC. (4.18)
0

™

According to the Paley-Wiener theorem, we conclude that gy is an entire func-
tion. Since W € H !, we get V € H_; and

V(o) =o1f (Jo]?), ocR~ (4.19)
We have
//| - (1+ !0!2)_1 “7(0) - VN(U)}zda —0 asa— oo. (4.20)

Now, let us estimate the integral

//||< (L+1oP) " V(o) = V(o) do, a>0.

Let an arbitrary a > 0 be fixed. From (4.4), (4.10), (4.12), (4.16), and (4.18), it
follows that

nl 92V (0,0)  (—1)"th

= ns =0, 00, 4.21
@n+ 1)l 9ot T n=0,c0 (421)
n -1 n+1,
9" (0) = (ke n=0,N (4.22)
™
Taking into account (4.18), we obtain
=3 B0y CU Napt ) e o)
gN(H _n:0 n| w (N+1)'/’L N/"L7 w y A |,
where .
i e
Rl = - /0 TNy (T €) e, pe (0,07,
here f1 € [0, p]. Since
T _ T TN+2
| et - gag| <1 [ € ag =L Teo.a,
we get
(_1)N N+ pg LTN+2a2(N+1) )
N <= = .
Therefore, with regard to (4.17) and (4.22), we get
. N
io1 (_1)n+1 " -
Vn(o) = — Z T(,un](7|2 + R%(0), o] <a, (4.23)

n=0
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where

~ 1)V
R(0) = T B (o) 1o o, o] <
and N+2,2N+3
~ LT a

Taking into account (4.21), we obtain

N ~

17 1 821@—‘,—1‘/(0’0) 2n+1 of

Vo0 =2, vy oo " ey
n=0

i1 o (—1)nt

=N L o+ R, v(o1), o1 €[0,4d] (4.25)
| nv1 ’ ’
T = nl
where N3
~ 1 "NV (51,0
R{V(O'l) = (01, )O'%N+3, o1 € [0, al, (4.26)

(2N +3)!  go2N+3
here 71 € [0,01]. With regard to (4.19), we get

01f<0'1):‘~/(01,0), o1 € R.

Therefore,

. N
ind 101 1 n+l n
V(o) = Z(n) wnlo | + RY(0), o] <a, (4.27)
n=0 ’

where ~
01 821\7—’—3‘/(&/17 O) | ‘2(N+1)

nf
Bx(0) =GN o) g2

. ol <a, (4.28)

here o1 € [0,01]. To estimate }le\,, let us first estimate 82N+31~/(01,0)/80fN+3
for o1 € [0,a]. Let T* > T be fixed. With regard to (4.1), we put

We have

82N+3V (01,0)
80_2N+3

<5 Lk
// <2N+3 2) <esz’W(x)‘>d:v1dx2.

2 X N+3/2
22N+~ < (mm) , a1 >0, 29 >0,
e

2N+3W ‘ )| da

Since
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we obtain
92N+3V (54, 0) 2 (2T*(2N + 3)\ V32
do2N+3 < QT*; ( . ) , o1 €R. (4.29)
Using Stirling’s formula:
V2mn"tae™ < nl < en™tze ™, n €N, (4.30)

we conclude that

(2N +3)! > \/27(2N + 3) (

[2 29T*e \NF3/2
< EQT* (2N+3> , o1 €R. (4.31)

- 2 2T*e \ V32
’R{V(U)‘ < EQT* (2N+3> N3 o] < a. (4.32)

From (4.23) and (4.27), it follows that
V(o) - Vn(o) = R (o) — RL(0), o] <a.
Taking into account (4.24) and (4.32), we get

//| ) (14 10?) " [V(0) - Viv(o)|* do

2
TN+2 \/E 9T*e \NF3/2\ " gaN+8
S Y o W (. N = oo
—< Ni2 VET <2N+3) o 0 e

With regard to (4.20), we conclude that

2N+3)2N+3

With regard to (4.29), we get

1 92NV (4y,0)
(2N +3)]  §o2N+3

According to (4.28), we obtain

— —1 ~
HW—WNH :HV—VNH =0 asN oo,

therefore, W € RL(0), hence (see 3.5 (iv)), WT € RE (W0), where the closure is
considered in H~! (RQ). The theorem is proved. O

In Theorems 4.2 and 4.3 we deal with a control bounded by a given constant.
In fact, in these theorems, we reduce the controllability problems to the Markov
power moment problems. They may be solved by using the algorithms given
in [21,24]. Similar results were obtained for controllability problems for the heat
equation on a half-axis [12,13]. Theorem 4.2 gives us necessary and sufficient
conditions for controllability of an initial state W0 H! (Rz) to a target state
wT e H-! (R?) in a given time T > 0 under the additional condition (4.1) on
the function W1 — Wy(-,T). Theorem 4.3 gives us the sufficient conditions for
approximate controllability of an initial state W0 € H! (RQ) to a target state

wT e H-! (]R2) in a given time 7" > 0 under the same additional condition.
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5. Bases in H~! and H_;

In this section we introduce and study orthogonal bases in H~! and H_;.
In the spaces H,,(R?) and H™(R?), m = —3,3, we consider the following
inner products

(9.0 = (L +10) 7 9. (0 +10P) 7 h) . f€ Hu(R), g € Hu(R?),
<V7 M>m = <EFV7 fTrM)m Ve Hm(R2)7 IS Hm(R2)7

where (-,-)o is the inner product in L?(R?). Note that (-,-)° = (-,-)o. For f €
H,,(R?) and g € H,,(R?), if g(0) = io1 f(|o|) and h(c) = io1p(|o]), o € R?, then

(9, h)m = 7T<f>p>L$n’(3)(]R+)' (5.1)

First, we prove the following lemma.

Lemma 5.1. Let T > 0,

om(o) = iaﬂa\me_T'Ulg, ceR? m=0,00. (5.2)
Then the system {pm }o0_ is complete in H_;.

Proof. Put
7’3/2 —TT2

. ,
V14 r?

Let us prove that the system {(-)™q}%°_, is complete in L?*(R,). Suppose the
converse. Due to the Hahn-Banach theorem, there exists h € L?(R) \ {0} such
that

r > 0.

q(r) =

0= ()", h) o) = /Ooo (YR dr,  m = 0,5%. (5.3)

Extend the functions ¢ and h to R by setting ¢(r) = h(r) = 0 on (—o0,0].
Evidently, ¢h € L'(R) and its Fourier transform is given by

(F(qh)) (N = \/12? /0 h e~ q(r)h(r)dr, A€ C.

Moreover, F(qh) is an entire function. According to (5.3), we have

(gj(qﬁ))(m) (0)=0, m=0,00.

Therefore, ?(qﬁ) = 0. Hence, ¢h = 0 in L*(R). Since ¢ # 0, we see that h = 0
in L2(R). This contradiction proves that the system {(-)™q}%°_, is complete in
L*(Ry).

Putting f,,(r) = rme_TT2, r > 0, we conclude that the system {fp,}>°_ is
complete in LQ_L(?)) (R4). Therefore, the system {¢n}20_, is complete in H_;
according to (2.3) and (5.1). O
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Consider the generalized Laguerre polynomials [22, p. 775]:

o %" (d\", _, ia “ n+ o\ z*

k=0
Denote , | |2
Up(x) = e T Lq(I — ), ze€R? n=0,o00. (5.5)
V2T 2T

With regard to [22, p. 775], we get

(s ) / (@) () day dzs = Tr(n + )om, o = 0,50, (5.6)

where 6, is the Kronecker delta.
Denote 9, (0) = Fpp(0), n = 0,00. One can easily obtain

~

Un(0) = (=1)"T1i2Ty, (2T o), n =0, oo. (5.7)
Hence,
wna'@bm 0= // T;Z)n d0'1 dJZ ( 1)n+mT7T(n + 1)5nma
m,n =0, co. (5.8)

~ o
Thus, {1, }72, and {wn} are orthogonal bases in H° and H, respectively.
Put -

1)ptl (1)
_ 2TZ pil( 2T) (1+ DP) vp(z), z€R? n=0,00, (59)

and denote 1;,11 = Fypl n =0,00. Obviously,

n

R p+1L() 9T ~
Gho) =2r (1+10P) > B ED G 0) e 2 n- 0. (10

p=0

Taking into account (5.5) and (5.7), for n = 0, 00, we get

- LY (—27)
1 _ s 2 2
Un(o) =i(2T)* (1+ o] )pz:(:)pp_i_l¢p(2TU)
n (1)
=i(21)* (1+ |o]?) V2T e~ 3 Ly (=2D) L (QT’JP), oceR% (5.11)

p=0 p+1

Using the Christoffel-Darboux formula [22, pp. 785], from (5.11) we obtain

121\,11(0) =i(2T)* (1 + |0|2) 2T0'167T|0-|2
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L L @Tlo) L (-27) — L, (2T o )L (=21)
2T |o|? + 2T
= i2TV2Toye T (LD T |o )L, (—27) - LU, (2710 )LD (—21))
= (! (L 2DV (o) + LO (2D (). o € B2 (1)

Let m > n, n = 0,00. Taking into account (5.8), (5.10), and (5.12), we have

n

SN mii g~ UL (2T - o
<¢;@,¢}L>_1—2T<—1> P (L (=2T) (s By,

e (G

1)nt+1 (1)
o qyme1 (D) L (=2t (—21)
— 2% LD (=21) L)), | (=2T)6pm,  m,n =0, 0. (5.13)

Note that L(l)( 2T) > 0 for all n = 0, co.
~ o0
According to Lemma 5.1, the system {wn} is complete in H_;. Taking

n=0

-~ [e.9]
into account (5.12), we conclude that the system {w}l} is complete in JH_;.

Due to (5.13), we obtain the following theorem.

-~ o
Theorem 5.2. The systems {%11} . and {wk}:}:o are orthogonal bases in
n=
H_1 and H~L, respectively.

Denote
o2/t _ 1\ "
(plzn(U) = ’L.O'1’0'|2n€_T‘U‘2 (W) y (oS RQ, l e N, n = 0,00,
)i (Mt € e <17J7 . j=0,
Uz”(ﬁ):{( () ¢ : ) I leN, n=0,00. (5.14)
0, ¢ ¢ [0, %]
Note that u* — 6 as 1 — oo in H~!(R) for each n =0, cc.

Lemma 5.3. Letl € N, n=0,00. Then

1

Proof. We have

P /n (G+1)/1 )
FWr (T (0) = — Loy S (—1ynd ()t / e~ (T-9)lol
(FWop (2 T) (0) SE} (j) B ¢

. —T|o‘|2 n
B Y (Lqyn=i (+DIol?/t _ ilo?/l
71_0'1l o Z ( )( 1) (e e )

=0 N
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. —Tlo 2 n+l
m o> =\
]_
; o \"
_ ¢ 2n_—T|o|2 | € _ l 2
= —;0’1‘0" ne IU <0"2/l> = —;@Qn(g), (NS R .
The lemma is proved. O

Lemma 5.4. Let n =0,00 and [ > % Then

HSOQn—WIQn 1—>0 asl — oo, n=0,o00. (5.16)

Proof. We have

SOQH(O-) = iGlan(|U|), SOZQn(O-) = ia—lfén(|0|)’ (S RQ) le Na n= 0,00,

where

n+1
f2 (T) — T27L67T7"2 fl (T) — T27L67T1"2 6T2/l —1
n 9 2n T2/l bl

r>0,1€eN, n=0,c0.

Let I > (2n+2)/T. Then,

’fén(r)‘ < e (T < p2ne=37" >0, n =0, 00.

Since r2 < 1 + 12, we obtain

r

It is easy to see that

2

2n+§ 0o 5
dr < / pAntle=Tr g =
0

2

(2n)!
2T2n+1 )

,
1+r2

T2
e 2"

3
1
2

r2flo(r) 13 fon(r)

According to Lebesgue’s dominated convergence theorem (see also (2.2)), for each
n =0, oo, we get

asl — o0 a.e. on Ry, n=0,00.

) —0 asl— oo.
L,L(3>(R+)

| fonlr) = £ )|

Due to (2.3), we obtain (5.16). The lemma is proved. O
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6. Approximate controllability

Theorem 6.1. Let T > 0. Then Rp(0) = H L.

Proof. Let f € H™!. Then F = Ff € H_;. From Lemma 5.1, it follows that
for each € > 0, there exists N € N and oY € R, n =0, N, such that

N €
|F=FY|| | < 3 (6.1)
where
N+1
Y=Yl 62
n=0
According to Lemma 5.4, for each € > 0, there exist [ € N such that
N+1 -1
H<,02n — P, ) <e (2 Z ‘aﬁ‘) , n=0,N.
- m=0
Therefore,
|FN —FN||_, <e/2, (6.3)
where
N+1
FN =" ol b, (6.4)
n=0
Combining (6.1) and (6.3), we obtain
HF_FINH—1 < HF_ FNH—1 + HFN o FlNH—l <&
Denote f/¥ = F~1FN. By using (5.15) and (6.4), we get
T 2 77N
N 1 ~LP UM (T =€) 2
Ji (x):WUlN(%T):W/O e 454752615, r € R%,
where
N+1
UM = =7 > anui(€),  €>0.
n=0
Due to (3.13), we get f{¥ € Rp(0). Thus, we have
-1
lF = =P =FY <e
Since we have considered an arbitrary € > 0, we conclude that f € Rp(0). O

With regard to Theorems 3.5 (v) and 6.1, we obtain the following theorem

Theorem 6.2. Each state W0 € H~1 (RQ) s approximately controllable to
a state WT € H™! (R?) in a given time T > 0 iff W' — Wy (-, T) € H™'.
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For the state W9, let us construct controls approximately targeting the state
wT.

Denote W = WT —Wq(-,T), V =FW. Then W € K™, V € H_1, and, with
regard to Theorem 5.2, we have

V(o)=Y willo), oek?,
n=0

—2
where w,, = <V, @Z)}L> ) (HIZJTILH 1> , n=0,o00.
According to (5.13), for each g1 > 0, there exists N = N(e1) € N such that

o0

SN = Z wn{b\yll
n:N—l—l —1
o 1/2
- T\/27r< 3 \wn|2L$L1)(—2T)L7(114)rl(—2T)> <er (6.5)
n=N+1
Put
~ N .
VN(o) = anw,ll(a), o€ R
n=0
Hence,
HV—VNH =Sy <e (6.6)
Put N
Qg:an, p=0,N. (6.7)
n=p

Due to (5.11), (5.4), and (5.2), we get

n

~ al ) (_opy 7D 2
PV(0) = 3 wnil2T)? (1 + [of2) VAT ore 7o 3 Lo (20 Ly (2Tlo])
n=0

p=0 pt1

=i(27)%/? (L+10?) e Tlol?

N k
S ok (C20) i(l)k<p+ 1) (270 )
= Pp+1 = p—k k!
N 1) p k
LY (—217) p+ 1\ (27)
— 5/2 N~p U <+2) _1k’
Ty =S () B euto)
N 1) P k
Ly’ (—-2T) P+ 1\ (27)
e ooy D S (07 ) G e )
p: =

N o E N Lg(;l) _oT
- erpry S ol D (2F}) (eulo) + e (@)
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N
30216( ) + @2(k+1) (U)) ) oc R27 (68)

k= 0

where
N

=3 <Z> oNrL(—21),  k=0,N. (6.9)
p=k

Summing the coefficients at o, £ = 0, N, in (6.8), we obtain

- ]Vfa;y(p%(a), o€ R? (6.10)
where
ag = (21)°hg’,
ol = (272 <(—2Z!)'Hhivl+ﬁi?;hg>, k=T1,N, (6.11)
alNy = (2T)5/2mh%.
Let [ > 242, Put
- Nfag@gk(a), o€ R (6.12)
Evidently,
N+1

e S S | . IS

Let us estimate nggk goQkH , under the condition [ > k+1 , k=0,N+41. Due
o (2.3), we have

k41
] R B R A g
L2, 4 (Ry) T

T T

where

k
f ( ) 2k _—Tr? fl ( ) 2k —Tr? eTQ/l -1 o
2k\T re ) T2/l )

kel o
r>0, l>%, k=0,N T 1

Taking into account the following obvious inequalities

™ =1 <my™ y —1], y >0, m>0,
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ef —1

-1
‘ < e, € 1' < Ze z >0,
z z 2
one can easily obtain
Zo1\™ o1 et -1
’(e > —1'§m€ ‘ ¢ —1‘§mzemz, z>0, m>0.
z z z 2
Due to (2.1) and (2.3), we get
l
Dok — H fozk—f ‘
[y AT

00 7’4k+36_2TT2 67“2/1 -1 k+1 ) p
N /0 1+r2 r2/l B "

0 1/2
Va(k+1) < / 1"4’“”6-2(T-h+1>r2dr) /
0

21 14172
k+1ym ([ kiny,2  \V2 S
< — T (/ k45 —2(T- 5 )r d7“> , k=0,N+1.
0

IA

-l 2

Replacing 2 (T k+1) r* by z, we obtain

1/2
E+1 m > 22kt+2e—2
l
Yok — H < ——F / dz
H 2k 1 l 2\/5 ( 0 (2 (T— k;-li,-l))Zk’-‘r?)

2 2)! _
L VA C e ) LR Y s oy
1

Thus, for N = N(e1) and for each g9 > 0, there exists [ > % such that

k+1 V(2k +2)!
HVN VNH = 8l Z‘ é\f‘ ( k+1)k’+3/2 < &2 (6.13)

Denote WZN = 9’_117/\[. Due to (6.6), and (6.13), we have
-1 -~
S el L B

Put
N+1

un(§) = —m Z ap up (€), (6.14)
n=0

where u is defined by (5.14), o is defined by (6.11). Using (5.15) and (6.12),
we obtain AW/IN = Wy, (,T). Due to (3.13), we get WZN € Rr(0). Since we have
considered arbitrary e; > 0 and €2 > 0, we conclude that W e W Hence,
according to Theorem 3.5 (v), W' € Rp(W0Y). In other words, the state W0 is
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approximately controllable to the state W7 in the time T > 0 by the controls
(6.14). We have

[WT — W[ < &1+ e, (6.15)
where VVZN =Wy + WN/ZN =Wo + Wy,

7. Examples
Example 7.1. Let T =1/2,
ac|2 E3 2
w(z) = %6_‘47, wl (z) = %6_8%, x1 €R, 29 €R.

Consider W° = w® and W7 = w” in system (3.1), (3.2). Let us investigate
whether the state W0 is approximately controllable to a target state W7 in the
time T'.

We have WO € 5! and WT € H~L. Denote W = W7T — Wpy. One can easily
— o2 - .
obtain W(z) = —%e_%, x € R2. Therefore, V = FW = 2ig1e 2711 Since

Ve H_q, then
~ © .
o) = anwi(a), o € R?
n=0

where w, = <17, @Z}l>71 <2T27rL£})( 2L (- 2T))_1, n =0, 0o.

Let n =0, 00. Using (5.11) and (5.4), we have
YN
<V’¢”>—1

LY (=21 L @210 ?)
_ %ige—2Tlo; (oy5/25 —Tlal2§ : doid
//R2 101€ ( ) p_|_ 1 71402

n 2\k
5/2 2 —3T\a\2 p+1) (2T|o[%)
Y B Ve (S

pO

20123 L0 (—ar) 3 o l<:+1 <> // o2/0[2e=3T1 g dory,

p=0 kO

do1dos

Using polar coordinates, we obtain from here

- 5 o P (—oT)F 7 (k+1)!
(7)., -am e £ G (1)

k=0

2T)3 7 & L 2\ 2T)37m <~ LV (2T
:_((312)2 Z::Lél)(_QT)Z<Z> (_3> :_( T>2 Z 31(o+2 )

p=0

&

3

|

|
7N
Mo
N
[N}
[a—
10~
N
w —
=N

+
N ro
3

3

I

=

8
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ébv{)—'xo—xmm.h

(a) WN (-, T) = WT, N =3, 1=50. (b) WN(-,T) = WT, N =4, [ = 200.

Fig. 7.1: The influence of the controls ux; on the difference WlN (-.,T)—-WwT.

1.2

o
ENATEEN

3 — 1

©

0.8

S

0.6

0.4

|

e 02

0
i . v

-3 -0.4
0 1 2 3 4 5 0 1 2 3 4 5
x1 x1

(a) WN(()1),0,T) = WT((-)p), 0) for () WN(()up,2,T) = WE((-)a,2) for
1) N=3,1=50;2) N =3,1=100; 1) N=3,1=50;2) N =3,1=100;
3) N =4,1=100;4) N =4, [ = 200. 3) N =4,1=100;4) N =4, [ = 200.

Fig. 7.2: The influence of the controls uy,; on the difference WN(-,T) — W71
(vertical sections for zg = 0 and x5 = 2).

Let N € N. Put
N+1

un(€) = -7 Y afui(€), (7.1)
n=0

where u! is defined by (5.14), Y is defined by (6.11), and

Wi (@) = Wo(, T) + Wy, (2, T)
|2

x _|:c|2 z1 [Te 2
- 4il12 T ?1 o 4¢2 ~un (T — €)d¢, =R

Let us estimate Sy. Taking into account the following formula [22, p. 784]:

> Tz
Z lea)(m)z" =(1—z)"lezT,
n=0
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AN
d4 $ - == fr—
A | |
C2 ¢ - - - dg,,,,:_: ! !
CAp---r-mmr o dﬁr———‘———‘r—ffiffff%fff—\‘
10 21 31 41 5 I S S S S S L
0| 5, 50, 50, 50, 50 t O] 1" 2" 31 41 51 6
> dy +=200, 200, 200, 200, 200, 200
T L S s ! A
Clp— o
- P S S S S
C3¢---—---- — d3 b - — - —— - — l—‘
(a) N =3,1=50, (b) N =4, 1 = 200,
c1 &~ —31414950.29038, d; =~ —698686882813.66,
co & 115438209.43400, ds &~ 3395749137654.21,
c3 &~ —158753249.50461, ds &~ —6600596465358.46,
¢y & 96837151.30739, d4 =~ 6414088809555.09,
c5; ~ —22106385.63675. ds =~ —3115950570459.56,

de =~ 605395974997.15.
Fig. 7.3: The controls uy,; defined by (5.14).

and monotonicity of the sequence of partial sums, we conclude

Zn: Ly (—21) <O

— < —e".

= 3P 4

From (5.4) it follows that LfllJ)rl(—2T) > Lgll)(—2T) > n+1. Therefore, according
o (6.5), we get

2y 1/2
2 3/2 oo 1 n L(l)(—QT)
sv=1var (7)) | 2 >
+2
T) S nrl ) \;z
1/2
TV2r (2\*? [ & 1 2 > 1
(S atn () Y
n=N+1 (n+ ) n=N-+1 (n+ )
< T T _ .
=CNVTWN+2)
Thus, due to (6.15) for I > % = 2(N +2), we get
—1
[WT =W <erteo,
where
22 1 1/2 67%
W (z) =ze” 7 + = ——uny(1/2 = §) dg, x €R?,

™ Jo 4§
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T T | 2me
1=¢€ = )
T(N +2) N +2

Nil‘ N’k+1 V2k+2)!

k+1)k+3/2

Niﬁ N’k:+1 V(2k+2)!
(l le)k+3/2

The controls uny, | = 2(N +2),00, N = 1,00, defined by (7.1), solve the ap-
proximate controllability problem for the given system.

The influence of the control ux,; on the difference VVZN (-,7) — W' is shown
in Figs. 7.1 and 7.2. The controls uy,; are given in Fig. 7.3 for the cases of N =
3,1 =50 and N =4, 1 = 200. The shape of the control in the cases of N = 3,
[ =200 and N =4, [ = 150 are similar to these cases, respectively.
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IIpobGyieMu kKepoBaHOCTI AJisd PiBHAHHSA
TeNJIONPOBIJHOCTI HA MiBILIONINHI KepoBaHe KpaiioBUMU
ymoBamu /[lipixJjie 3a JIoMOMOror TOYKOBOTO KepyBaHHSI

Larissa Fardigola and Kateryna Khalina

Y poboti BuBueHo mnpobsieMu KepPOBAHOCTI Ta HAOJIMKEHO! KEePOBAHOCTI
Juist Keposanol cucremu w; = Aw, w(0,z2,t) = u(t)d(x2), x1 > 0, z2 €
R, t € (0,T), ne u € L*(0,T) € kepyBauusaM. ¥ TepMiHAX PO3B’A3HOCTI
cTerneHeBol mpobJjieMu MOMEHTIB MapKoBa oIep:KaHO HeOOXimHi 1 JocTraTHi
YMOBU KEPOBAHOCTI, a TAKOXK TOCTATHI yMOBH HAOJIMKEHOI KEPOBAHOCTI 3a
zaganuit 1ac T, Ko KepyBaHHS U € OOMEXKEHUM 3aIaH0I0 cTaso0. 1106y mo-
BaHO OPTOTOHAJIbHI 6a3WCH B CHEIlaJbHUX IIPOCTOPaX COOOJIEBCHKOIO THUILY.


mailto:fardigola@ilt.kharkov.ua
mailto:khalina@ilt.kharkov.ua

104

Larissa Fardigola and Kateryna Khalina

BacrocoByroun 11i 6asucy, ojIepKaHO HeOOXiTHI 1 JoCcTaTHI yMOBHU HabJ/IMAKe-
HOI KEPOBAHOCTI, » TAKOXK YHCEJIbHE PO3B’S3aHHS ITPOOIEMH HAOIMKEHOT
KepoBaHOCTI. Pe3ymbTarn mpoiTrocTpOBaHO TPUKJIAIOM.

KirrowoBi cjioBa: piBHAHHS TEIJIOIPOBIIHOCTI, KEPOBAHICTH, HAOIUKEHA
KEpPOBaHICTh, TOYKOBE KEPYBAHHS, MMiBILIOMTTHA
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