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Controllability Problems for the Heat

Equation in a Half-Plane Controlled by the

Dirichlet Boundary Condition with a
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In the paper, the problems of controllability and approximate controlla-
bility are studied for the control system wt = ∆w, w(0, x2, t) = u(t)δ(x2),
x1 > 0, x2 ∈ R, t ∈ (0, T ), where u ∈ L∞(0, T ) is a control. Both necessary
and sufficient conditions for controllability and sufficient conditions for ap-
proximate controllability in a given time T under a control u bounded by a
given constant are obtained in terms of solvability of a Markov power mo-
ment problem. Orthogonal bases are constructed in special spaces of Sobolev
type. Using these bases, necessary and sufficient conditions for approximate
controllability and numerical solutions to the approximate controllability
problem are obtained. The results are illustrated by an example.
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1. Introduction

Controllability problems for the heat equation were studied both in bounded
and unbounded domains. However, most of the papers studying these problems
deal with domains bounded with respect to the spatial variables (see [2, 7, 8, 14–
16, 19, 23, 25, 26, 28, 37] and the references therein). Although there are quite a
few papers considering domains unbounded with respect to the spatial variables
[3–6, 12, 13, 17, 20, 27, 29–32, 34, 35], we know only one paper (see [30]) where the
boundary controllability of the heat equation was studied in a half-plain. The
boundary controllability of the wave equation in a half-plane x1 > 0, x2 ∈ R with
a point-wise control on the bound was studied in [9–11].

In the present paper we consider the heat equation in a half-plane

wt = ∆w, x1 > 0, x2 ∈ R, t ∈ (0, T ), (1.1)

controlled by the Dirichlet boundary condition

w
(
0, (·)[2], t

)
= δ[2]u(t), x2 ∈ R, t ∈ (0, T ), (1.2)
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under the initial condition

w
(
(·)[1], (·)[2], 0

)
= w0, x1 > 0, x2 ∈ R, (1.3)

where T > 0, u ∈ L∞(0, T ) is a control, δ[m] is the Dirac distribution with
respect to xm, m = 1, 2, ∆ = (∂/∂x1)

2 + (∂/∂x2)
2. The subscripts [1] and [2]

associate with the variable numbers, e,g., (·)[1] and (·)[2] correspond to x1 and x2,
respectively, if we consider f(x), x ∈ R2. This problem is considered in spaces of
Sobolev type (see details in Section 2).

In Section 2, some notations and definitions are given. In Section 3, the con-
trollability problem is formulated for the control system (1.1)–(1.3), and prelim-
inary results are gotten. In particular, properties of the solutions (Theorem 3.4)
and properties of the reachability sets (Theorem 3.5) are studied for this system.
In Section 4, for control system (1.1)–(1.3), the following assertions are obtained
in a given time under the control bounded by a given constant: a necessary
condition for 0-controllability (Theorem 4.1); necessary and sufficient conditions
for controllability (Theorem 4.2); sufficient conditions for approximate control-
lability (Theorem 4.3). In Section 5, bases in special spaces of Sobolev type are
constructed by using the generalized Laguerre polynomials. In Section 6, nec-
essary and sufficient conditions for approximate controllability in a given time
are obtained for system (1.1)–(1.3) (Theorems 6.1 and 6.2). Moreover, an algo-
rithm is given for construction of controls solving the approximate controllability
problem for this system. In Section 7, the results are illustrated by an example.

2. Notations

Let us introduce the spaces used in the paper. Let n ∈ N. By | · |, we denote
the Euclidean norm in Rn.

Let S(Rn) be the Schwartz space of rapidly decreasing functions [33], S′(Rn)
be the dual space. Denote also S = S(R). Let R+ = (0,+∞). Let D(R+) be the
space of infinitely differentiable functions on R, which supports are bounded and
they are contained in R+.

Let D =
(
− i∂/∂x1, . . . ,−i∂/∂xn

)
, Dα =

(
− i(∂/∂x1)α1 , . . . ,−i(∂/∂xn)αn

)
,

where α = (α1, . . . , αn) is multi-index.

For s = 0, 3, consider

Hs(Rn) =
{
ϕ ∈ L2(Rn) | ∀α ∈ Nn0

(
α1 + · · ·+ αn ≤ s⇒ Dαϕ ∈ L2(Rn)

)}
with the norm

‖ϕ‖s =

 ∑
α1+···+αn≤s

(
‖Dαϕ‖L2(Rn)

)21/2

, ϕ ∈ Hs(Rn),

and H−s(Rn) = (Hs(Rn))∗ with the strong norm ‖·‖−s of the adjoint space. We
also have H0(Rn) = L2(Rn) =

(
H0
(
Rn))∗ = H−0(Rn).
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For m = −3, 3, consider

Hm(Rn) =
{
ψ ∈ L2

loc(Rn) |
(
1 + |σ|2

)m/2
ψ ∈ L2(Rn)

}
with the norm

‖ψ‖m =
∥∥∥(1 + |σ|2

)m/2
ψ
∥∥∥
L2(Rn)

, ψ ∈ Hm(Rn).

Evidently, H−m(Rn) = (Hm(Rn))∗.
Let 〈f, ϕ〉 be the the value of a distribution f ∈ S′(Rn) on a test function ϕ ∈

S(Rn).
By F : S′(Rn) → S′(Rn), s = 0, 3, denote the Fourier transform operator

with the domain S′(Rn). This operator is an extension of the classical Fourier
transform operator which is an isometric isomorphism of L2(Rn). The extension
is given by the formula

〈Ff, ϕ〉 = 〈f,F−1ϕ〉, f ∈ S′(Rn), ϕ ∈ S(Rn).

The operator F is an isometric isomorphism of Hm(Rn) and Hm(Rn), m = −3, 3,
[18, Chap. 1].

A distribution f ∈ S′(Rn) is said to be odd with respect to x1, if〈
f, ϕ

(
(·)[1], (·)[2]

)〉
= −

〈
f, ϕ

(
− (·)[1], (·)[2]

)〉
, where ϕ ∈ S(Rn). A distribution

f ∈ S′(Rn) is said to be even with respect to x1, if
〈
f, ϕ

(
(·)[1], (·)[2]

)〉
=
〈
f, ϕ

(
−

(·)[1], (·)[2]
)〉

, where ϕ ∈ S(Rn).

Let m = −3, 3. By H̃m
(
R2
)

(or H̃m

(
R2
)
), denote the subspace of all distri-

butions in Hm
(
R2
)

(or Hm

(
R2
)
, respectively) that are odd with respect to x1.

Evidently, H̃m
(
R2
)

(or H̃m

(
R2
)
) is a closed subspace of Hm

(
R2
)

(or Hm

(
R2
)
,

respectively).
For s = 0, 3, consider

Hs
©0 =

{
ϕ ∈ L2(R+ × R) |

(
∀α ∈ N2

0

(
α1 + α2 ≤ s⇒ Dαϕ ∈ L2(R+ × R)

))
∧
(
∀k = 0, s− 1 D(k,0)ϕ(0+, (·)[2]) = 0

)}
with the norm

‖ϕ‖s©0 =

 ∑
α1+α2≤s

(
‖Dαϕ‖L2(R+×R)

)21/2

, ϕ ∈ Hs
©0,

and H−s©0 =
(
Hs
©0

)∗
with the strong norm ‖·‖−s©0 of the adjoint space. We have

H0
©0 = L2(R+ × R).

We also need the following subspaces of the spaces H̃s
(
R2
)

and H̃s

(
R2
)
.

Hs =

{
ν ∈ H̃s

(
R2
)
| ∃ρ ∈ S′ ν(x) =

∂

∂x1
ρ(|x|)

}
, s = −1, 1,
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Hs =
{
g ∈ H̃s

(
R2
)
| ∃f ∈ S′ g(σ) = iσ1f(|σ|)

}
, s = −1, 1.

Without less of generality, we can assume ρ and f are even in these definitions.
Let s = −1, 1 and L2

s,(3)(R+) be the space of functions which are square-integrable

with the weight r3(1 + r2)s on R+. It is equipped with the norm

‖h‖L2
s,(3)

(R+) =

(∫ ∞
0
|h(r)|2 r3

(
1 + r2

)s
dr

)1/2

=
∥∥∥(·)3/2

(
1 + (·)2

)s/2
h
∥∥∥
L2(R+)

(2.1)

and the inner product

〈h, q〉L2
s,(3)

(R+) =

∫ ∞
0

h(r)q(r)r3(1 + r2)s dr

=
〈

(·)3/2
(
1 + (·)2

)s/2
h, (·)3/2

(
1 + (·)2

)s/2
q
〉
L2(R+)

. (2.2)

Let g ∈ Hs. Then there exists f ∈ S′ such that g(σ) = iσ1f(|σ|). Using polar
coordinates, we have

‖g‖−1 =
√
π‖f‖L2

−1,(3)
(R+). (2.3)

Thus, Hs is complete. Obviously, Hs = FHs. Therefore, Hs is also complete.
We treat equality (1.2) as the value of the distribution w at x1 = 0 (see

Definition 2.1 below). To give this definition, we need some additional notations.
Let g ∈ H−s(R2), ψ ∈ Hs(R), s = 0, 3. Since 1 + |σ|2 ≤ (1 + σ21)(1 + σ22), we

have (
‖g‖−s

)2
=

∫∫
R2

(
1 + |σ|2

)−s |g(σ)|2 dσ

≥
∫ ∞
−∞

(
1 + σ21

)−s ∫ ∞
−∞

(
1 + σ22

)−s |g(σ)|2 dσ2 dσ1

=

∫ ∞
−∞

(
1 + σ22

)−s ∫ ∞
−∞

(
1 + σ21

)−s |g(σ)|2 dσ1 dσ2.

Therefore, we have g
(
σ1, (·)[2]

)
∈ H−s(R) for almost all σ1 ∈ R, and we have

g
(
(·)[1], σ2

)
∈ H−s(R) for almost all σ2 ∈ R. Moreover, denoting

〈g, ψ〉[1](σ2) =

∫ ∞
−∞

g(σ1, σ2)ψ(σ1) dσ1, σ2 ∈ R,

〈g, ψ〉[2](σ1) =

∫ ∞
−∞

g(σ1, σ2)ψ(σ2) dσ2, σ1 ∈ R,

we get
〈g, ψ〉[1] ∈ H−s(R) and 〈g, ψ〉[2] ∈ H−s(R).

Let f ∈ H−s(R2), ϕ ∈ Hs(R2), s = 0, 3. Since the operator F is an isometric
isomorphism of Hm(Rn) and Hm(Rn), m = −3, 3, [18, Chap. 1], denoting

〈f, ϕ〉[1] = F−1σ2→x2
(
〈Fx→σf,Fϕ〉[1]

)
and 〈f, ϕ〉[2] = F−1σ1→x1

(
〈Fx→σf,Fϕ〉[2]

)
,
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we obtain
〈f, ϕ〉[1] ∈ H−s(R) and 〈f, ϕ〉[2] ∈ H−s(R).

According to the definition of the value of a distribution of one variable at a
point [1, Chap. 1] and to the definition of the value of a distribution of several
variables at a line [11], we give the following definition.

Definition 2.1. Let s = 1, 3. We say that a distribution f ∈ H−s©0 has the

value f0 ∈ H−s(R) on the line x1 = 0, i.e., f
(
0+, (·)[2]

)
= f0

(
(·)[2]

)
, if for each

ϕ ∈ Hs(R) and ψ ∈ D(R+) we have〈〈
f(α(·)[1], (·)[2]), ϕ((·)[2])

〉
[2]
, ψ((·)[1])

〉
[1]
→
〈
〈f0, ϕ〉[2] , ψ

〉
[1]

as α→ 0+,

where 〈h(α(·)), ψ〉 =
〈
h((·)), 1αψ

(
(·)
α

)〉
for h ∈ H−s(R).

Remark 2.2. Let ϕ ∈ Hs
©0, s = 0, 3. Let ϕ̃ be its odd extension with respect to

x1, i.e., ϕ̃(x1, x2) = ϕ(x1, x2) if x1 ≥ 0 and ϕ̃(x1, x2) = −ϕ(−x1, x2) otherwise.
Then ϕ̃ ∈ H̃s

(
R2
)
, s = 0, 3. The converse assertion is true for s = 0, 1, and

it is not true for s = 2, 3. That is why the odd extension with respect to x1
of a distribution f ∈ H−s©0 may not belong to H̃−s

(
R2
)
, s = 2, 3. However, the

following theorem holds.

Theorem 2.3. Let f ∈ H−1©0 and there exists f
(
0+, (·)[2]

)
∈ H−1(R). Then

fx1x1 ∈ H−3©0 can be extended to a distribution F ∈ H̃−3
(
R2
)

such that F is odd
with respect to x1. This distribution is given by the formula

F = f̃x1x1 − 2f(0+,
(
·)[2]
)
δ′[1], (2.4)

where f̃ is the odd extension of f with respect to x1.

In the case f ∈ H−1/2©0 , corresponding theorem has been proved in [11]. The
proof of Theorem 2.3 is analogous to the proof of the mentioned theorem.

3. Problem formulation and preliminary results

We consider control system (1.1)–(1.3) in H−l©0 , l = 1, 3, i.e.,
(
d
dt

)s
w : [0, T ]→

H−1−2s©0 , s = 0, 1, w0 ∈ H−1©0 .

Let w0, w(·, t) ∈ H−1©0 , t ∈ [0, T ]. Let W 0 and W (·, t) be the odd extensions

of w0 and w(·, t) with respect to x1, respectively, t ∈ [0, T ]. If w is a solution to
control system (1.1)–(1.3), then W is a solution to control system

Wt = 4W − 2δ′[1]δ[2]u(t), t ∈ (0, T ), (3.1)

W
(
(·)[1], (·)[2], 0

)
= W 0 (3.2)

according to Theorem 2.3. Here
(
d
dt

)s
W : [0, T ]→ H̃−1−2s

(
R2
)
, s = 0, 1, W 0 ∈

H̃−1
(
R2
)
. The converse assertion is also true. Let W 0,W (·, t) ∈ H̃−1

(
R2
)
, t ∈
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[0, T ]. Let w0 and w(·, t) be the restrictions of W 0 and W (·, t) to (0,+∞) with
respect to x1, respectively, t ∈ [0, T ]. If W is a solution to (3.1), (3.2), then w is
a solution to (1.1)–(1.3) because

W
(
0+, (·)[2], t

)
= δ[2]u(t) for almost all t ∈ [0, T ] (3.3)

according to Lemma 3.6 (see below). Let wT ∈ H−1©0 . One can see that

w
(
(·)[1], (·)[2], T

)
= wT iff W

(
(·)[1], (·)[2], T

)
= W T . Here W T is the odd ex-

tension of wT with respect to x1 and W T ∈ H̃−1
(
R2
)
.

Thus, control systems (1.1)–(1.3) and (3.1), (3.2) are equivalent. Therefore,
basing on this reason, we will further consider control system (3.1), (3.2) instead
of original system (1.1)–(1.3).

Let T > 0, W 0 ∈ H̃−1
(
R2
)
. By RT

(
W 0
)
, denote the set of all states W T ∈

H̃−1
(
R2
)

for which there exists a control u ∈ L∞(0, T ) such that there exists a
unique solution W to system (3.1), (3.2) such that W

(
(·)[1], (·)[2], T

)
= W T .

Definition 3.1. A state W 0 ∈ H̃−1
(
R2
)

is said to be controllable to a target

state W T ∈ H̃−1
(
R2
)

in a given time T > 0 if W T ∈ RT
(
W 0
)
.

In other words, a state W 0 ∈ H̃−1
(
R2
)

is said to be controllable to a tar-

get state W T ∈ H̃−1
(
R2
)

in a given time T > 0 if there exists a control u ∈
L∞(0, T ) such that there exists a unique solution W to system (3.1), (3.2) and
W
(
(·)[1], (·)[2], T

)
= W T .

Definition 3.2. A state W 0 ∈ H̃−1
(
R2
)

is said to be null-controllable in a
given time T > 0 if 0 ∈ RT

(
W 0
)
.

Definition 3.3. A state W 0 ∈ H̃−1
(
R2
)

is said to be approximately control-

lable to a target state W T ∈ H̃−1
(
R2
)

in a given time T > 0 if W T ∈ RT (W 0),

where the closure is considered in the space H̃−1
(
R2
)
.

In other words, a state W 0 ∈ H̃−1
(
R2
)

is approximately controllable to a

target state W T ∈ H̃−1
(
R2
)

in a given time T > 0 if for each ε > 0, there exists
uε ∈ L∞(0, T ) such that there exists a unique solution Wε to system (3.1), (3.2)

with u = uε and
∥∥Wε

(
(·)[1], (·)[2], T

)
−W T

∥∥−1 < ε.
Using the Poisson integral (see, e.g., [36]), we obtain the unique solution to

system (3.1), (3.2)

W (x, t) = W0(x, t) + Wu(x, t), x ∈ R2, t ∈ [0, T ], (3.4)

where

W0(x, t) =
1

4πt
e−
|x|2
4t ∗W 0(x), x ∈ R2, t ∈ [0, T ],

Wu(x, t) =
x1
π

∫ t

0

1

4ξ2
e
− |x|

2

4ξ u(t− ξ) dξ, x ∈ R2, t ∈ [0, T ].
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Theorem 3.4. Let u ∈ L∞(0, T ), W 0 ∈ H̃−1
(
R2
)
. Then,

(i) W0(·, t) ∈ H̃−1(R2), t ∈ [0, T ];

(ii) W0(·, t) ∈ C∞(R2), t ∈ (0, T ];

(iii) if W 0 ∈ H−1, then W0(·, t) ∈ H−1, t ∈ [0, T ];

(iv) Wu(·, t) ∈ H−1 and ‖Wu(·, t)‖−1 ≤
√

2/π(t+ 1)‖u‖L∞(0,T ), t ∈ [0, T ].

Proof. Denote V 0 = FW 0, V (·, t) = Fx→σW (·, t), V0(·, t) = Fx→σW0(·, t),
Vu(·, t) = Fx→σWu(·, t), t ∈ [0, T ]. Then,

V (σ, t) = V0(σ, t) + Vu(σ, t), σ ∈ R2, t ∈ [0, T ], (3.5)

where

V0(σ, t) = e−t|σ|
2
V 0(σ), σ ∈ R2, t ∈ [0, T ], (3.6)

Vu(σ, t) = − iσ1
π

∫ t

0
e−ξ|σ|

2
u(t− ξ) dξ, σ ∈ R2, t ∈ [0, T ]. (3.7)

Therefore,

‖W0(·, t)‖−1 = ‖V0(·, t)‖−1 ≤ ‖V 0‖−1 = ‖W 0‖−1, t ∈ [0, T ], (3.8)

i.e., (i) holds.

Let α = (α1, α2) ∈
(
N ∪ {0}

)2
. We have

|σα1
1 σα2

2 V0(σ, t)|2

≤
(
1 + |σ|2

)1+α1+α2 e−2t|σ|
2 (

1 + |σ|2
)−1 |V 0(σ)|2, σ ∈ R2, t ∈ [0, T ].

For m ∈ N and β > 0 we have

ξme−βξ ≤
(
m

βe

)m
, ξ ≥ 0.

Therefore,

‖DαW0(·, t)‖0 =
∥∥∥(·)α1

[1](·)
α2

[2]V0(·, t)
∥∥∥
0
≤ et

(
1 + α1 + α2

2te

)(1+α1+α2)/2

‖V 0‖−1

= et
(

1 + α1 + α2

2te

)(1+α1+α2)/2

‖W 0‖−1, t ∈ (0, T ], (3.9)

i.e., (ii) holds.
Assume that W 0 ∈ H−1. Then, V 0 ∈ H−1, therefore, V0(·, t) ∈ H−1, hence,

W0(·, t) ∈ H−1, t ∈ [0, T ], i.e., (iii) holds.
Put

g(r, t) =

∫ t

0
e−ξr

2
u(t− ξ) dξ, r ≥ 0, t ∈ [0, T ].
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We have

‖Wu(·, t)‖−1 = ‖Vu(·, t)‖−1 =
1

π

(∫∫
R2

|σ1|2
∣∣g(|σ|, t)∣∣2 (1 + |σ|2

)−1
dσ

)1/2

≤ 1√
π

(∫ ∞
0
|g(r, t)|2r dr

)1/2

, t ∈ [0, T ]. (3.10)

Since
1− e−tr2

r2
≤ 2(t+ 1)

r2 + 1
, r > 0, t > 0,

we have

|g(r, t)| ≤ ‖u‖L∞(0,T )

∫ t

0
e−ξr

2
dξ = ‖u‖L∞(0,T )

1− e−tr2

r2

≤ ‖u‖L∞(0,T )
2(t+ 1)

r2 + 1
, r > 0, t > 0.

With regard to (3.10), we obtain

‖Wu(·, t)‖−1 ≤
√

2

π
(t+ 1)‖u‖L∞(0,T )

(∫ ∞
0

2r dr

(1 + r2)2

)1/2

=

√
2

π
(t+ 1)‖u‖L∞(0,T ), t ∈ [0, T ], (3.11)

i.e., (iv) holds.

According to (3.4), we have

RT (W 0) =
{
W T ∈ H̃−1

(
R2
)
| ∃u ∈ L∞(0, T ) W T = W0(·, T ) + Wu(·, T )

}
,

(3.12)

in particular,

RT (0) =
{
W T ∈ H̃−1

(
R2
)
| ∃u ∈ L∞(0, T ) W T = Wu(·, T )

}
. (3.13)

Denote also

RLT (0) =
{
W T ∈ H̃−1

(
R2
)
| ∃u ∈ L∞(0, T )(
‖u‖L∞(0,T ) ≤ L and W T = Wu(·, T )

)}
. (3.14)

Taking into account Theorem 3.4, we obtain the following theorem.

Theorem 3.5. Let T > 0, W 0 ∈ H̃−1(R2). We have

(i) RT (0) =
⋃
L>0

RLT (0) ⊂ H−1;



Controllability Problems for the Heat Equation in a Half-Plane 83

(ii) RLT (0) ⊂ RL
′

T (0), 0 < L < L′;

(iii) f ∈ R1
T (0)⇔ Lf ∈ RLT (0), L > 0;

(iv) f ∈ RLT (W 0)⇔ f −W0(·, T ) ∈ RLT (0), L > 0;

(v) f ∈ RT (W 0)⇔ f −W0(·, T ) ∈ RT (0).

Lemma 3.6. Let W 0 ∈ H̃−1
(
R2
)
, t ∈ [0, T ]. Let W be a solution to (3.1),

(3.2). Then (3.3) holds.

Proof. According to Theorem 3.4(ii), W0(·, t) is continuous on R2 for each
t ∈ (0, T ]. Moreover, W0(·, t) is odd with respect to x1, t ∈ [0, T ]. Hence,

W0(0
+, (·)[2], t) = 0, t ∈ (0, T ]. (3.15)

Let us calculate Wu(0+, (·)[2], t), t ∈ [0, T ]. We have

Wu(x, t) =
2

π

x1
|x|2

∫ ∞
|x|
2
√
t

ye−y
2
u

(
t− |x|

2

4y2

)
dy, x ∈ R2, t ∈ [0, T ].

Let ϕ ∈ H1(R), ψ ∈ D(R+). We have〈〈
Wu((·)[1], (·)[2]), ϕ((·)[2])

〉
[2]
,

1

α
ψ

(
(·)[1]
α

)〉
[1]

=
2

π

∫ ∞
−∞

∫ ∞
−∞

ξ1
|ξ|2

∫ ∞
α|ξ|
2
√
t

ye−y
2
u

(
t− α2|ξ|2

4y2

)
dy ϕ(αξ2) dξ2 ψ(ξ1) dξ1,

t ∈ [0, T ]. (3.16)

Since∫ ∞
α|ξ|
2
√
t

ye−y
2

∣∣∣∣u(t− α2|ξ|2

4y2

)∣∣∣∣ dy ≤ ‖u‖L∞(0,T )

∫ ∞
0

ye−y
2
dy =

1

2
‖u‖L∞(0,T )

and∫ ∞
−∞

∫ ∞
−∞

|ξ1|
|ξ|2
|ϕ(αξ2)| dξ2 |ψ(ξ1)| dξ1 ≤ sup

µ∈R
|ϕ(µ)|

∫ ∞
0

ξ1|ψ(ξ1)|
∫ ∞
−∞

dξ2
ξ21 + ξ22

dξ1

= π sup
µ∈R
|ϕ(µ)|

∫ ∞
0
|ψ(ξ1)| dξ1 <∞,

we can apply Lebesgue’s dominated convergence theorem to (3.16) as α→ 0+:〈〈
Wu((·)[1], (·)[2]), ϕ((·)[2])

〉
[2]
,

1

α
ψ

(
(·)[1]
α

)〉
[1]

→ 2

π
u(t)ϕ(0)

∫ ∞
0

∫ ∞
−∞

ξ1
|ξ|2

∫ ∞
0

ye−y
2
dy dξ2 ψ(ξ1) dξ1
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=
1

π
u(t)ϕ(0)

∫ ∞
0

ξ1ψ(ξ1)

∫ ∞
−∞

dξ2
ξ21 + ξ22

dξ1 = u(t)ϕ(0)

∫ ∞
−∞

ψ(ξ1) dξ1

=
〈〈
u(t)δ[2], ϕ

〉
[2]
, ψ
〉
[1]
, t ∈ [0, T ],

i.e.,
Wu

(
0+, (·)[2], t

)
= u(t)δ[2], t ∈ [0, T ]. (3.17)

Taking into account (3.4), (3.15), and (3.17), we obtain (3.3).

4. Controllability

The following theorem gives us the necessary condition for f ∈ RLT (0).

Theorem 4.1. Let T > 0, L > 0. If f ∈ RLT (0), then f ∈ H−1 and∫ ∞
0

∫ ∞
0

e
|x|2
4T∗ |f(x)| dx1 dx2 ≤

L√
π

√
T ∗T

T ∗ − T
, T ∗ > T. (4.1)

Proof. From Theorem 3.5 (i), it follows that f ∈ H−1. Taking into account
(3.14), we obtain∫ ∞

0

∫ ∞
0

e
|x|2
4T∗ |f(x)| dx1 dx2 ≤

L

π

∫ ∞
0

∫ ∞
0

e
|x|2
4T∗ x1

∫ T

0
e
− |x|

2

4ξ
1

4ξ2
dξ dx1 dx2

=
L

π

∫ T

0

1

4ξ2

∫ ∞
0

∫ ∞
0

x1e
−|x|2

(
1
4ξ
− 1

4T∗

)
dx1 dx2 dξ

=
L

4π

∫ T

0

1

ξ2

(∫ ∞
0

x1e
−x21

(
1
4ξ
− 1

4T∗

)
dx1

∫ ∞
0

e
−x22

(
1
4ξ
− 1

4T∗

)
dx2

)
dξ. (4.2)

It is easy to see that∫ ∞
0

x1e
−x21

(
1
4ξ
− 1

4T∗

)
dx1 =

2T ∗ξ

T ∗ − ξ
,

∫ ∞
0

e
−x22

(
1
4ξ
− 1

4T∗

)
dx2 =

√
πT ∗ξ

T ∗ − ξ
.

Continuing (4.2), we obtain∫ ∞
0

∫ ∞
0

e
|x|2
4T∗ |f(x)| dx1 dx2 ≤

L

4π

∫ T

0

1

ξ2
2T ∗ξ

T ∗ − ξ

√
πT ∗ξ

T ∗ − ξ
dξ

=
L(T ∗)3/2

2
√
π

∫ T

0

dξ√
ξ(T ∗ − ξ)3/2

. (4.3)

Replacing ξ by T ∗ sin2 t, we get∫ T

0

dξ√
ξ(T ∗ − ξ)3/2

=
2

T ∗

∫ arcsin
√

T
T∗

0

dt

cos2 t

=
2

T ∗
tan

(
arcsin

√
T

T ∗

)
=

2

T ∗

√
T√

T ∗ − T
.

With regard to (4.3), we conclude that (4.1) is true.
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Theorem 4.2. Let L > 0, T > 0, W 0 ∈ H̃−1
(
R2
)
, W T ∈ H̃−1

(
R2
)
, and

condition (4.1) holds for W̃ = W T −W0(·, T ). Let

ωn = 2
n!

(2n+ 1)!

∫ ∞
0

∫ ∞
0

x2n+1
1 W̃ (x1, x2) dx1 dx2, n = 0,∞. (4.4)

Then W T ∈ RLT
(
W 0
)

iff W̃ ∈ H−1 and there exists u ∈ L∞(0, T ) such that
‖u‖L∞(0,T ) ≤ L and ∫ T

0
ξnu(T − ξ) dξ = ωn, n = 0,∞. (4.5)

Proof. According to Theorem 3.5 (iv), W T ∈ RLT
(
W 0
)

iff W̃ ∈ RLT (0). With

regard to (3.14), we conclude that W̃ ∈ RLT (0) iff there exists u ∈ L∞(0, T ) such

that ‖u‖L∞(0,T ) ≤ L and W̃ = Wu(·, T ). Denote Ṽ = FW̃ .

Let u ∈ L∞(0, T ) such that ‖u‖L∞(0,T ) ≤ L and W̃ = Wu(·, T ). Hence,

Ṽ (σ) = − iσ1
π

∫ T

0
e−|σ|

2ξu(T − ξ)dξ, σ ∈ R2. (4.6)

For

g(z) = − i
π

∫ T

0
e−zξu(T − ξ)dξ, z ∈ C, (4.7)

we have
Ṽ = σ1g

(
|σ|2

)
, σ ∈ R2. (4.8)

Due to the Paley–Wiener theorem, g is an entire function. Therefore,

g(z) =

∞∑
n=0

g(n)(0)

n!
zn, z ∈ C. (4.9)

Differentiating (4.7), (4.8) and considering the derivatives at z = 0 and σ = 0,
we get

g(n)(0) =
(−1)n+1i

π

∫ T

0
ξnu(T − ξ) dξ, n = 0,∞, (4.10)

g(n)(0) =
k!(n− k)!

(2k + 1)!(2(n− k))!

∂2n+1Ṽ (0, 0)

∂σ2k+1
1 ∂σ

2(n−k)
2

, k = 0, n, n = 0,∞. (4.11)

Since

∂2n+1Ṽ (0, 0)

∂σ2k+1
1 ∂σ

2(n−k)
2

=
1

2π

∫∫
R2

(−ix1)2k+1(−ix2)2(n−k)W̃ (x1, x2) dx1 dx2

= 2
(−1)n+1i

π

∫ ∞
0

∫ ∞
0

x2k+1
1 x

2(n−k)
2 W̃ (x1, x2) dx1 dx2,

k = 0, n, n = 0,∞, (4.12)
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with regard to (4.4), (4.10) and (4.11), we conclude that (4.5) holds.

Let W̃ ∈ H−1 and there exists u ∈ L∞(0, T ) such that ‖u‖L∞(0,T ) ≤ L and
(4.5) holds. Hence,

Ṽ (σ) = σ1f
(
|σ|2

)
, σ ∈ R2. (4.13)

Taking into account (4.4) and (4.12), we get

(−1)n+1i

π

∫ T

0
ξnu(T − ξ) dξ =

n!

(2n+ 1)!

∂2n+1Ṽ (0, 0)

∂σ2n+1
1

, n = 0,∞. (4.14)

Multiplying this relation by σ2n+1
1 /n!, we obtain

− iσ1
π

∫ T

0
e−σ

2
1ξu(T − ξ)dξ =

∞∑
n=0

1

(2n+ 1)!

∂2n+1Ṽ (0, 0)

∂σ2n+1
1

σ2n+1
1

= Ṽ (σ1, 0), σ1 ∈ R. (4.15)

Substituting σ2 = 0 in (4.13), we have

Ṽ (σ1, 0) = σ1f
(
σ21
)
, σ1 ∈ R.

With regard to (4.15), we get

− iσ1
π

∫ T

0
e−σ

2
1ξu(T − ξ)dξ = σ1f

(
σ21
)
, σ1 ∈ R.

Therefore,

f(z) = − i
π

∫ T

0
e−zξu(T − ξ)dξ, z ∈ C.

Taking into account (4.13), we have

Ṽ (σ) = − iσ1
π

∫ T

0
e−|σ|

2ξu(T − ξ)dξ, σ ∈ R2.

Hence W̃ = Wu(·, T ). That completes the proof.

Theorem 4.3. Let L > 0, T > 0, W 0 ∈ H̃−1
(
R2
)
, W T ∈ H̃−1

(
R2
)
, W̃ =

W T −W0(·, T ) ∈ H−1, and condition (4.1) holds for W̃ . Let {ωn}∞n=0 be defined
by (4.4). If for each N ∈ N there exists uN ∈ L∞(0, T ) such that ‖uN‖L∞(0,T ) ≤
L and ∫ T

0
ξnuN (T − ξ)dξ = ωn, n = 0, N, (4.16)

then W T ∈ RLT (W 0), where the closure is considered in H̃−1
(
R2
)
.

Proof. Let N ∈ N, WN be the solution to (3.1), (3.2) with W 0 = 0 and u =

uN . Then, WN = WuN . Denote Ṽ = FW̃ and VN (·, T ) = Fx→σWN (·, T ). We
have

VN (σ) = σ1gN
(
|σ|2

)
, σ ∈ R2, (4.17)
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where

gN (z) = − i
π

∫ T

0
e−zξuN (T − ξ)dξ, z ∈ C. (4.18)

According to the Paley–Wiener theorem, we conclude that gN is an entire func-
tion. Since W̃ ∈ H−1, we get Ṽ ∈ H−1 and

Ṽ (σ) = σ1f
(
|σ|2

)
, σ ∈ R2. (4.19)

We have∫∫
|σ|≥a

(
1 + |σ|2

)−1 ∣∣Ṽ (σ)− VN (σ)
∣∣2 dσ → 0 as a→∞. (4.20)

Now, let us estimate the integral∫∫
|σ|≤a

(
1 + |σ|2

)−1 ∣∣Ṽ (σ)− VN (σ)
∣∣2 dσ, a > 0.

Let an arbitrary a > 0 be fixed. From (4.4), (4.10), (4.12), (4.16), and (4.18), it
follows that

n!

(2n+ 1)!

∂2n+1Ṽ (0, 0)

∂σ2n+1
1

=
(−1)n+1i

π
ωn, n = 0,∞, (4.21)

g
(n)
N (0) =

(−1)n+1i

π
ωn, n = 0, N. (4.22)

Taking into account (4.18), we obtain

gN (µ) =
N∑
n=0

g
(n)
N (0)

n!
µn +

(−1)N

(N + 1)!
µN+1RgN (µ), µ ∈ [0, a2],

where

RgN (µ) =
i

π

∫ T

0
e−ξµ̃ξN+1uN (T − ξ) dξ, µ ∈ [0, a2],

here µ̃ ∈ [0, µ]. Since∣∣∣∣∫ T

0
e−ξµ̃ξN+1uN (T − ξ) dξ

∣∣∣∣ ≤ L∫ T

0
ξN+1 dξ = L

TN+2

N + 2
, µ̃ ∈ [0, a2],

we get ∣∣∣∣ (−1)N

(N + 1)!
µN+1RgN (µ)

∣∣∣∣ ≤ LTN+2a2(N+1)

π(N + 2)!
, µ ∈ [0, a2].

Therefore, with regard to (4.17) and (4.22), we get

VN (σ) =
iσ1
π

N∑
n=0

(−1)n+1

n!
ωn|σ|2n + R̃gN (σ), |σ| ≤ a, (4.23)
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where

R̃gN (σ) =
(−1)N

(N + 1)!
RgN

(
|σ|2

)
|σ|2(N+1)σ1, |σ| ≤ a,

and ∣∣∣R̃gN (σ)
∣∣∣ ≤ LTN+2a2N+3

π(N + 2)!
, |σ| ≤ a. (4.24)

Taking into account (4.21), we obtain

Ṽ (σ1, 0) =
N∑
n=0

1

(2n+ 1)!

∂2n+1Ṽ (0, 0)

∂σ2n+1
1

σ2n+1
1 + R̃fN (σ1)

=
iσ1
π

N∑
n=0

(−1)n+1

n!
ωnσ

2n
1 + R̃fN (σ1), σ1 ∈ [0, a], (4.25)

where

R̃fN (σ1) =
1

(2N + 3)!

∂2N+3Ṽ (σ̃1, 0)

∂σ2N+3
1

σ2N+3
1 , σ1 ∈ [0, a], (4.26)

here σ̃1 ∈ [0, σ1]. With regard to (4.19), we get

σ1f (σ1) = Ṽ (σ1, 0), σ1 ∈ R.

Therefore,

Ṽ (σ) =
iσ1
π

N∑
n=0

(−1)n+1

n!
ωn|σ|2n + R̃fN (σ), |σ| ≤ a, (4.27)

where

R̃fN (σ) =
σ1

(2N + 3)!

∂2N+3Ṽ (σ̃1, 0)

∂σ2N+3
1

|σ|2(N+1), |σ| ≤ a, (4.28)

here σ̃1 ∈ [0, σ1]. To estimate R̃fN , let us first estimate ∂2N+3Ṽ (σ1, 0)/∂σ2N+3
1

for σ1 ∈ [0, a]. Let T ∗ > T be fixed. With regard to (4.1), we put

ΩT ∗ =

∫ ∞
0

∫ ∞
0

e
|x|2
4T∗
∣∣∣W̃ (x)

∣∣∣ dx1 dx2.
We have∣∣∣∣∣∂2N+3Ṽ (σ1, 0)

∂σ2N+3
1

∣∣∣∣∣ ≤ 1

2π

∫∫
R2

∣∣∣x2N+3
1 W̃ (x)

∣∣∣ dx
=

2

π

∫ ∞
0

∫ ∞
0

(
x2N+3
1 e−

|x|2
4T∗

)(
e
|x|2
4T∗
∣∣∣W̃ (x)

∣∣∣) dx1 dx2.
Since

x2N+3
1 e−

|x|2
4T∗ ≤

(
2T ∗(2N + 3)

e

)N+3/2

, x1 ≥ 0, x2 ≥ 0,
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we obtain∣∣∣∣∣∂2N+3Ṽ (σ1, 0)

∂σ2N+3
1

∣∣∣∣∣ ≤ ΩT ∗
2

π

(
2T ∗(2N + 3)

e

)N+3/2

, σ1 ∈ R. (4.29)

Using Stirling’s formula:
√

2πnn+
1
2 e−n ≤ n! ≤ enn+

1
2 e−n, n ∈ N, (4.30)

we conclude that

(2N + 3)! ≥
√

2π(2N + 3)

(
2N + 3

e

)2N+3

.

With regard to (4.29), we get∣∣∣∣∣ 1

(2N + 3)!

∂2N+3Ṽ (σ1, 0)

∂σ2N+3
1

∣∣∣∣∣ ≤
√

2

π3
ΩT ∗

(
2T ∗e

2N + 3

)N+3/2

, σ1 ∈ R. (4.31)

According to (4.28), we obtain∣∣∣R̃fN (σ)
∣∣∣ ≤√ 2

π3
ΩT ∗

(
2T ∗e

2N + 3

)N+3/2

a2N+3, |σ| ≤ a. (4.32)

From (4.23) and (4.27), it follows that

Ṽ (σ)− VN (σ) = R̃gN (σ)− R̃fN (σ), |σ| ≤ a.

Taking into account (4.24) and (4.32), we get∫∫
|σ|≤a

(
1 + |σ|2

)−1 ∣∣Ṽ (σ)− VN (σ)
∣∣2 dσ

≤

(
L

TN+2

(N + 2)!
+

√
2

π
ΩT ∗

(
2T ∗e

2N + 3

)N+3/2
)2

a4N+8

π
→ 0 as N →∞.

With regard to (4.20), we conclude that∥∥∥W̃ −WN

∥∥∥−1 =
∥∥∥Ṽ − VN∥∥∥

−1
→ 0 as N →∞,

therefore, W̃ ∈ RLT (0), hence (see 3.5 (iv)), W T ∈ RLT (W 0), where the closure is

considered in H̃−1
(
R2
)
. The theorem is proved.

In Theorems 4.2 and 4.3 we deal with a control bounded by a given constant.
In fact, in these theorems, we reduce the controllability problems to the Markov
power moment problems. They may be solved by using the algorithms given
in [21,24]. Similar results were obtained for controllability problems for the heat
equation on a half-axis [12, 13]. Theorem 4.2 gives us necessary and sufficient
conditions for controllability of an initial state W 0 ∈ H̃−1

(
R2
)

to a target state

W T ∈ H̃−1
(
R2
)

in a given time T > 0 under the additional condition (4.1) on
the function W T −W0(·, T ). Theorem 4.3 gives us the sufficient conditions for
approximate controllability of an initial state W 0 ∈ H̃−1

(
R2
)

to a target state

W T ∈ H̃−1
(
R2
)

in a given time T > 0 under the same additional condition.



90 Larissa Fardigola and Kateryna Khalina

5. Bases in H−1 and H−1

In this section we introduce and study orthogonal bases in H−1 and H−1.

In the spaces Hm(R2) and Hm(R2), m = −3, 3, we consider the following
inner products

〈g, h〉m =
〈(

1 + |σ|2
)m

2 g,
(
1 + |σ|2

)m
2 h
〉
0
, f ∈ Hm(R2), g ∈ Hm(R2),

〈ν, µ〉m = 〈Fν,Fµ〉m, ν ∈ Hm(R2), µ ∈ Hm(R2),

where 〈·, ·〉0 is the inner product in L2(R2). Note that 〈·, ·〉0 = 〈·, ·〉0. For f ∈
Hm(R2) and g ∈ Hm(R2), if g(σ) = iσ1f(|σ|) and h(σ) = iσ1p(|σ|), σ ∈ R2, then

〈g, h〉m = π〈f, p〉L2
m,(3)

(R+). (5.1)

First, we prove the following lemma.

Lemma 5.1. Let T > 0,

ϕm(σ) = iσ1|σ|me−T |σ|
2
, σ ∈ R2, m = 0,∞. (5.2)

Then the system {ϕm}∞m=0 is complete in H−1.

Proof. Put

q(r) =
r3/2√
1 + r2

e−Tr
2
, r > 0.

Let us prove that the system {(·)mq}∞m=0 is complete in L2(R+). Suppose the
converse. Due to the Hahn–Banach theorem, there exists h ∈ L2(R+) \ {0} such
that

0 = 〈(·)mq, h〉L2(R+) =

∫ ∞
0

rmq(r)h(r) dr, m = 0,∞. (5.3)

Extend the functions q and h to R by setting q(r) = h(r) = 0 on (−∞, 0].
Evidently, qh ∈ L1(R) and its Fourier transform is given by

(
F
(
qh
))

(λ) =
1√
2π

∫ ∞
0

e−irλq(r)h(r) dr, λ ∈ C.

Moreover, F
(
qh
)

is an entire function. According to (5.3), we have(
F
(
qh
))(m)

(0) = 0, m = 0,∞.

Therefore, F
(
qh
)

= 0. Hence, qh = 0 in L1(R). Since q 6= 0, we see that h = 0
in L2(R+). This contradiction proves that the system {(·)mq}∞m=0 is complete in
L2(R+).

Putting fm(r) = rme−Tr
2
, r > 0, we conclude that the system {fm}∞m=0 is

complete in L2
−1,(3)(R+). Therefore, the system {ϕm}∞m=0 is complete in H−1

according to (2.3) and (5.1).
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Consider the generalized Laguerre polynomials [22, p. 775]:

L(α)
n (x) =

x−αex

n!

(
d

dx

)n
(e−xxn+α) =

n∑
k=0

(−1)k
(
n+ α

n− k

)
xk

k!
, n = 0,∞. (5.4)

Denote

ψn(x) =
x1√
2T

e−
|x|2
4T L(1)

n

(
|x|2

2T

)
, x ∈ R2, n = 0,∞. (5.5)

With regard to [22, p. 775], we get

〈ψn, ψm〉0 =

∫∫
R2

ψn(x)ψm(x) dx1 dx2 = Tπ(n+ 1)δnm, m, n = 0,∞, (5.6)

where δmn is the Kronecker delta.
Denote ψ̂n(σ) = Fψn(σ), n = 0,∞. One can easily obtain

ψ̂n(σ) = (−1)n+1i2Tψn(2Tσ), n = 0,∞. (5.7)

Hence,

〈ψ̂n, ψ̂m〉0 =

∫∫
R2

ψ̂n(σ)ψ̂m(σ) dσ1 dσ2 = (−1)n+mTπ(n+ 1)δnm,

m, n = 0,∞. (5.8)

Thus, {ψn}∞n=0 and
{
ψ̂n

}∞
n=0

are orthogonal bases in H0 and H0, respectively.

Put

ψ1
n(x) = 2T

n∑
p=0

(−1)p+1L
(1)
p (−2T )

p+ 1

(
1 + |D|2

)
ψp(x), x ∈ R2, n = 0,∞, (5.9)

and denote ψ̂1
n = Fψ1

n, n = 0,∞. Obviously,

ψ̂1
n(σ) = 2T

(
1 + |σ|2

) n∑
p=0

(−1)p+1L
(1)
p (−2T )

p+ 1
ψ̂p(σ), σ ∈ R2, n = 0,∞. (5.10)

Taking into account (5.5) and (5.7), for n = 0,∞, we get

ψ̂1
n(σ) = i(2T )2

(
1 + |σ|2

) n∑
p=0

L
(1)
p (−2T )

p+ 1
ψp(2Tσ)

= i(2T )2
(
1 + |σ|2

)√
2Tσ1e

−T |σ|2
n∑
p=0

L
(1)
p (−2T )L

(1)
p (2T |σ|2)

p+ 1
, σ ∈ R2. (5.11)

Using the Christoffel–Darboux formula [22, pp. 785], from (5.11) we obtain

ψ̂1
n(σ) = i(2T )2

(
1 + |σ|2

)√
2Tσ1e

−T |σ|2
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×
L
(1)
n (2T |σ|2)L(1)

n+1(−2T )− L(1)
n+1(2T |σ|2)L

(1)
n (−2T )

2T |σ|2 + 2T

= i2T
√

2Tσ1e
−T |σ|2

(
L(1)
n (2T |σ|2)L(1)

n+1(−2T )− L(1)
n+1(2T |σ|

2)L(1)
n (−2T )

)
= (−1)n+1

(
L
(1)
n+1(−2T )ψ̂n(σ) + L(1)

n (−2T )ψ̂n+1(σ)
)
, σ ∈ R2. (5.12)

Let m ≥ n, n = 0,∞. Taking into account (5.8), (5.10), and (5.12), we have〈
ψ̂1
m, ψ̂

1
n

〉
−1

= 2T (−1)m+1
n∑
p=0

(−1)p+1L
(1)
p (−2T )

p+ 1

(
L
(1)
m+1(−2T )

〈
ψ̂m, ψ̂p

〉
0

+ L(1)
m (−2T )

〈
ψ̂m+1, ψ̂p

〉
0

)
= 2T (−1)m+1 (−1)n+1L

(1)
n (−2T )L

(1)
m+1(−2T )

n+ 1

〈
ψ̂m, ψ̂n

〉
0

= 2T 2πL(1)
n (−2T )L

(1)
m+1(−2T )δnm, m, n = 0,∞. (5.13)

Note that L
(1)
n (−2T ) > 0 for all n = 0,∞.

According to Lemma 5.1, the system
{
ψ̂n

}∞
n=0

is complete in H−1. Taking

into account (5.12), we conclude that the system
{
ψ̂1
n

}∞
n=0

is complete in H−1.

Due to (5.13), we obtain the following theorem.

Theorem 5.2. The systems
{
ψ̂1
n

}∞
n=0

and
{
ψ1
n

}∞
n=0

are orthogonal bases in

H−1 and H−1, respectively.

Denote

ϕl2n(σ) = iσ1|σ|2ne−T |σ|
2

(
e|σ|

2/l − 1

|σ|2/l

)n+1

, σ ∈ R2, l ∈ N, n = 0,∞,

unl (ξ) =

{
(−1)n−j

(
n
j

)
ln+1, ξ ∈

(
j
l ,
j+1
l

)
, j = 0, n

0, ξ /∈
[
0, n+1

l

] , l ∈ N, n = 0,∞. (5.14)

Note that unl → δ(n) as l→∞ in H−1(R) for each n = 0,∞.

Lemma 5.3. Let l ∈ N, n = 0,∞. Then

FWunl
(·, T ) = − 1

π
ϕl2n. (5.15)

Proof. We have(
FWunl

(·, T
)

(σ) = − i
π
σ1

n∑
j=0

(−1)n−j
(
n

j

)
ln+1

∫ (j+1)/l

j/l
e−(T−ξ)|σ|

2
dξ

= − i
π
σ1l

n+1 e
−T |σ|2

|σ|2
n∑
j=0

(
n

j

)
(−1)n−j

(
e(j+1)|σ|2/l − ej|σ|2/l

)
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= − i
π
σ1l

n+1 e
−T |σ|2

|σ|2
n+1∑
j=0

(
n+ 1

j

)
(−1)n−j+1ej|σ|

2/l

= − i
π
σ1|σ|2ne−T |σ|

2

(
e|σ|

2/l − 1

|σ|2/l

)n+1

= − 1

π
ϕl2n(σ), σ ∈ R2.

The lemma is proved.

Lemma 5.4. Let n = 0,∞ and l > 2(n+1)
T . Then∥∥∥ϕ2n − ϕl2n

∥∥∥
−1
−→ 0 as l→∞, n = 0,∞. (5.16)

Proof. We have

ϕ2n(σ) = iσ1f2n(|σ|), ϕl2n(σ) = iσ1f
l
2n(|σ|), σ ∈ R2, l ∈ N, n = 0,∞,

where

f2n(r) = r2ne−Tr
2
, f l2n(r) = r2ne−Tr

2

(
er

2/l − 1

r2/l

)n+1

,

r ≥ 0, l ∈ N, n = 0,∞.

Let l > (2n+ 2)/T . Then,∣∣∣f l2n(r)
∣∣∣ ≤ r2ne−(T−n+1

l )r2 ≤ r2ne−
T
2
r2 , r ≥ 0, n = 0,∞.

Since r2 < 1 + r2, we obtain

∫ ∞
0

∣∣∣∣∣ r2n+
3
2

√
1 + r2

e−
T
2
r2

∣∣∣∣∣
2

dr <

∫ ∞
0

r4n+1e−Tr
2
dr =

(2n)!

2T 2n+1
, n = 0,∞.

It is easy to see that

r
3
2 f l2n(r)√
1 + r2

→ r
3
2 f2n(r)√
1 + r2

as l→∞ a.e. on R+, n = 0,∞.

According to Lebesgue’s dominated convergence theorem (see also (2.2)), for each
n = 0,∞, we get ∥∥∥f2n(r)− f l2n(r)

∥∥∥
L2
−1,(3)

(R+)
→ 0 as l→∞.

Due to (2.3), we obtain (5.16). The lemma is proved.
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6. Approximate controllability

Theorem 6.1. Let T > 0. Then RT (0) = H−1.

Proof. Let f ∈ H−1. Then F = Ff ∈ H−1. From Lemma 5.1, it follows that
for each ε > 0, there exists N ∈ N and αNn ∈ R, n = 0, N , such that∥∥F − FN∥∥−1 < ε

2
, (6.1)

where

FN =
N+1∑
n=0

αNn ϕ2n. (6.2)

According to Lemma 5.4, for each ε > 0, there exist l ∈ N such that

∥∥∥ϕ2n − ϕl2n
∥∥∥
−1

< ε

(
2

N+1∑
m=0

∣∣αNm∣∣
)−1

, n = 0, N.

Therefore, ∥∥FN − FNl ∥∥−1 < ε/2, (6.3)

where

FNl =

N+1∑
n=0

αNn ϕ
l
2n. (6.4)

Combining (6.1) and (6.3), we obtain∥∥F − FNl ∥∥−1 ≤ ∥∥F − FN∥∥−1 +
∥∥FN − FNl ∥∥−1 < ε.

Denote fNl = F−1FNl . By using (5.15) and (6.4), we get

fNl (x) = WUNl
(x, T ) =

x1
π

∫ T

0
e
− |x|

2

4ξ
UNl (T − ξ)

4ξ2
dξ, x ∈ R2,

where

UNl (ξ) = −π
N+1∑
n=0

αNn u
n
l (ξ), ξ ≥ 0.

Due to (3.13), we get fNl ∈ RT (0). Thus, we have∥∥f − fNl ∥∥−1 =
∥∥F − FNl ∥∥−1 < ε.

Since we have considered an arbitrary ε > 0, we conclude that f ∈ RT (0).

With regard to Theorems 3.5 (v) and 6.1, we obtain the following theorem

Theorem 6.2. Each state W 0 ∈ H̃−1
(
R2
)

is approximately controllable to

a state W T ∈ H̃−1
(
R2
)

in a given time T > 0 iff W T −W0(·, T ) ∈ H−1.
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For the state W 0, let us construct controls approximately targeting the state
W T .

Denote W̃ = W T −W0(·, T ), Ṽ = FW̃ . Then W̃ ∈ H−1, Ṽ ∈ H−1, and, with
regard to Theorem 5.2, we have

Ṽ (σ) =
∞∑
n=0

ωnψ̂
1
n(σ), σ ∈ R2,

where ωn =
〈
Ṽ , ψ̂1

n

〉
−1

(∥∥∥ψ̂1
n

∥∥∥
−1

)−2
, n = 0,∞.

According to (5.13), for each ε1 > 0, there exists N = N(ε1) ∈ N such that

SN =

∥∥∥∥∥
∞∑

n=N+1

ωnψ̂
1
n

∥∥∥∥∥
−1

= T
√

2π

( ∞∑
n=N+1

|ωn|2L(1)
n (−2T )L

(1)
n+1(−2T )

)1/2

< ε1. (6.5)

Put

Ṽ N (σ) =
N∑
n=0

ωnψ̂
1
n(σ), σ ∈ R2.

Hence, ∥∥∥Ṽ − Ṽ N
∥∥∥
−1

= SN < ε1. (6.6)

Put

ΩN
p =

N∑
n=p

ωn, p = 0, N. (6.7)

Due to (5.11), (5.4), and (5.2), we get

Ṽ N (σ) =

N∑
n=0

ωni(2T )2
(
1 + |σ|2

)√
2Tσ1e

−T |σ|2
n∑
p=0

L
(1)
p (−2T )L

(1)
p (2T |σ|2)

p+ 1

= i(2T )5/2
(
1 + |σ|2

)
σ1e
−T |σ|2

×
N∑
p=0

ΩN
p

L
(1)
p (−2T )

p+ 1

p∑
k=0

(−1)k
(
p+ 1

p− k

)(
2T |σ|2

)k
k!

= (2T )5/2
N∑
p=0

ΩN
p

L
(1)
p (−2T )

p+ 1

p∑
k=0

(−1)k
(
p+ 1

p− k

)
(2T )k

k!
ϕ2k(σ)

+ (2T )5/2
N∑
p=0

ΩN
p

L
(1)
p (−2T )

p+ 1

p∑
k=0

(−1)k
(
p+ 1

p− k

)
(2T )k

k!
ϕ2(k+1)(σ)

= (2T )5/2
N∑
k=0

(−2T )k

k!

N∑
p=k

ΩN
p

L
(1)
p (−2T )

p+ 1

(
p+ 1

p− k

)(
ϕ2k(σ) + ϕ2(k+1)(σ)

)
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= (2T )5/2
N∑
k=0

(−2T )k

(k + 1)!
hNk
(
ϕ2k(σ) + ϕ2(k+1)(σ)

)
, σ ∈ R2, (6.8)

where

hNk =

N∑
p=k

(
p

k

)
ΩN
p L

(1)
p (−2T ), k = 0, N. (6.9)

Summing the coefficients at ϕ2k, k = 0, N , in (6.8), we obtain

Ṽ N (σ) =
N+1∑
k=0

αNk ϕ2k(σ), σ ∈ R2, (6.10)

where

αN0 = (2T )5/2hN0 ,

αNk = (2T )5/2
(

(−2T )k−1

k!
hNk−1 +

(−2T )k

(k + 1)!
hNk

)
, k = 1, N, (6.11)

αNN+1 = (2T )5/2
(−2T )N

(N + 1)!
hNN .

Let l > N+2
T . Put

Ṽ N
l (σ) =

N+1∑
k=0

αNk ϕ
l
2k(σ), σ ∈ R2. (6.12)

Evidently, ∥∥∥Ṽ N − Ṽ N
l

∥∥∥
−1
≤

N+1∑
k=0

∣∣αNk ∣∣ ∥∥∥ϕ2k − ϕl2k
∥∥∥
−1
.

Let us estimate
∥∥ϕ2k − ϕl2k

∥∥
−1 under the condition l > k+1

T , k = 0, N + 1. Due
to (2.3), we have∥∥∥ϕ2k − ϕl2k

∥∥∥
−1

=
√
π
∥∥∥f2k − f l2k∥∥∥

L2
−1,(3)

(R+)
, l >

k + 1

T
, k = 0, N + 1,

where

f2k(r) = r2ke−Tr
2
, f l2k(r) = r2ke−Tr

2

(
er

2/l − 1

r2/l

)k+1

,

r ≥ 0, l >
k + 1

T
, k = 0, N + 1.

Taking into account the following obvious inequalities

|ym − 1| ≤ mym−1|y − 1|, y > 0, m > 0,
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z

∣∣∣∣ ≤ ez, ∣∣∣∣ez − 1

z
− 1

∣∣∣∣ ≤ z

2
ez, z > 0,

one can easily obtain∣∣∣∣(ez − 1

z

)m
− 1

∣∣∣∣ ≤ m ∣∣∣∣ez − 1

z

∣∣∣∣m−1 ∣∣∣∣ez − 1

z
− 1

∣∣∣∣ ≤ m

2
zemz, z > 0, m > 0.

Due to (2.1) and (2.3), we get∥∥∥ϕ2k − ϕl2k
∥∥∥
−1

=
√
π
∥∥∥f2k − f l2k∥∥∥

L2
−1,(3)

(R+)

=

∫ ∞
0

r4k+3e−2Tr
2

1 + r2

(er2/l − 1

r2/l

)k+1

− 1

2

dr

1/2

≤
√
π(k + 1)

2l

(∫ ∞
0

r4k+7

1 + r2
e−2(T−

k+1
l )r2dr

)1/2

≤ k + 1

l

√
π

2

(∫ ∞
0

r4k+5e−2(T−
k+1
l )r2dr

)1/2

, k = 0, N + 1.

Replacing 2
(
T − k+1

l

)
r2 by z, we obtain

∥∥∥ϕ2k − ϕl2k
∥∥∥
−1
≤ k + 1

l

√
π

2
√

2

(∫ ∞
0

z2k+2e−z(
2
(
T − k+1

l

))2k+3
dz

)1/2

=
k + 1

l

√
π

2k+3

√
(2k + 2)!(

T − k+1
l

)k+3/2
, k = 0, N + 1.

Thus, for N = N(ε1) and for each ε2 > 0, there exists l > N+2
T such that

∥∥∥Ṽ N − Ṽ N
l

∥∥∥
−1
≤
√
π

8l

N+1∑
k=0

∣∣αNk ∣∣ k + 1

2k

√
(2k + 2)!(

T − k+1
l

)k+3/2
≤ ε2. (6.13)

Denote W̃N
l = F−1Ṽ N

l . Due to (6.6), and (6.13), we have∥∥∥W̃ − W̃N
l

∥∥∥−1 =
∥∥∥Ṽ − Ṽ N

l

∥∥∥
−1
≤ ε1 + ε2.

Put

uN,l(ξ) = −π
N+1∑
n=0

αNn u
n
l (ξ), (6.14)

where unl is defined by (5.14), αNn is defined by (6.11). Using (5.15) and (6.12),

we obtain W̃N
l = WuN,l(·, T ). Due to (3.13), we get W̃N

l ∈ RT (0). Since we have

considered arbitrary ε1 > 0 and ε2 > 0, we conclude that W̃ ∈ RT (0). Hence,
according to Theorem 3.5 (v), W T ∈ RT (W 0). In other words, the state W 0 is
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approximately controllable to the state W T in the time T > 0 by the controls
(6.14). We have ∥∥W T −WN

l

∥∥−1 ≤ ε1 + ε2, (6.15)

where WN
l = W0 + W̃N

l = W0 + WuN,l .

7. Examples

Example 7.1. Let T = 1/2,

w0(x) =
x1
T 2
e−
|x|2
4T , wT (x) =

x1
8T 2

e−
|x|2
8T , x1 ∈ R, x2 ∈ R.

Consider W 0 = w0 and W T = wT in system (3.1), (3.2). Let us investigate
whether the state W 0 is approximately controllable to a target state W T in the
time T .

We have W 0 ∈ H−1 and W T ∈ H−1. Denote W̃ = W T −W0. One can easily

obtain W̃ (x) = − x1
8T 2 e

− |x|
2

8T , x ∈ R2. Therefore, Ṽ = FW̃ = 2iσ1e
−2T |σ|2 . Since

Ṽ ∈ H−1, then

Ṽ (σ) =
∞∑
n=0

ωnψ̂
1
n(σ), σ ∈ R2,

where ωn =
〈
Ṽ , ψ̂1

n

〉
−1

(
2T 2πL

(1)
n (−2T )L

(1)
n+1(−2T )

)−1
, n = 0,∞.

Let n = 0,∞. Using (5.11) and (5.4), we have〈
Ṽ , ψ̂1

n

〉
−1

=

∫∫
R2

2iσ1e
−2T |σ|2i(2T )5/2σ1e

−T |σ|2
n∑
p=0

L
(1)
p (−2T )L

(1)
p (2T |σ|2)

p+ 1
dσ1dσ2

= −2(2T )5/2
n∑
p=0

L
(1)
p (−2T )

p+ 1

∫∫
R2

σ21e
−3T |σ|2

p∑
k=0

(−1)k
(
p+ 1

p− k

)
(2T |σ|2)k

k!
dσ1dσ2

= −2(2T )5/2
n∑
p=0

L(1)
p (−2T )

p∑
k=0

(−2T )k

(k + 1)!

(
p

k

)∫∫
R2

σ21|σ|2ke−3T |σ|
2
dσ1dσ2.

Using polar coordinates, we obtain from here〈
Ṽ , ψ̂1

n

〉
−1

= −2(2T )
5
2

n∑
p=0

L(1)
p (−2T )

p∑
k=0

(−2T )k

(k + 1)!

(
p

k

)
π

2

(k + 1)!

(3T )k+2

= −(2T )
5
2π

(3T )2

n∑
p=0

L(1)
p (−2T )

p∑
k=0

(
p

k

)(
−2

3

)k
= −(2T )

5
2π

T 2

n∑
p=0

L
(1)
p (−2T )

3p+2
.

Hence,

ωn = −
(

2

T

) 3
2 1

L
(1)
n (−2T )L

(1)
n+1(−2T )

n∑
p=0

L
(1)
p (−2T )

3p+2
, n = 0,∞.
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(a) WN
l (·, T )−WT , N = 3, l = 50. (b) WN

l (·, T )−WT , N = 4, l = 200.

Fig. 7.1: The influence of the controls uN,l on the difference WN
l (·, T )−W T .
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(a) WN
l

(
(·)[1], 0, T

)
−WT

(
(·)[1], 0

)
for

1) N = 3, l = 50; 2) N = 3, l = 100;
3) N = 4, l = 100; 4) N = 4, l = 200.
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(b) WN
l

(
(·)[1], 2, T

)
−WT

(
(·)[1], 2

)
for

1) N = 3, l = 50; 2) N = 3, l = 100;
3) N = 4, l = 100; 4) N = 4, l = 200.

Fig. 7.2: The influence of the controls uN,l on the difference WN
l (·, T ) − W T

(vertical sections for x2 = 0 and x2 = 2).

Let N ∈ N. Put

uN,l(ξ) = −π
N+1∑
n=0

αNn u
n
l (ξ), (7.1)

where unl is defined by (5.14), αNn is defined by (6.11), and

WN
l (x) = W0(x, T ) + WuN,l(x, T )

=
x1

4T 2
e−
|x|2
8T +

x1
π

∫ T

0

e
− |x|

2

4ξ

4ξ2
uN,l(T − ξ) dξ, x ∈ R2.

Let us estimate SN . Taking into account the following formula [22, p. 784]:

∞∑
n=0

L(α)
n (x)zn = (1− z)−α−1e

xz
z−1 ,
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0
1
50

2
50

3
50

4
50

5
50

c1

c2

c3

c4

c5

t

(a) N = 3, l = 50,
c1 ≈ −31414950.29038,
c2 ≈ 115438209.43400,
c3 ≈ −158753249.50461,
c4 ≈ 96837151.30739,
c5 ≈ −22106385.63675.

0 1
200

2
200

3
200

4
200

5
200
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(b) N = 4, l = 200,
d1 ≈ −698686882813.66,
d2 ≈ 3395749137654.21,
d3 ≈ −6600596465358.46,
d4 ≈ 6414088809555.09,
d5 ≈ −3115950570459.56,
d6 ≈ 605395974997.15.

Fig. 7.3: The controls uN,l defined by (5.14).

and monotonicity of the sequence of partial sums, we conclude

n∑
p=0

L
(1)
p (−2T )

3p
≤ 9

4
eT .

From (5.4) it follows that L
(1)
n+1(−2T ) > L

(1)
n (−2T ) ≥ n+1. Therefore, according

to (6.5), we get

SN = T
√

2π

(
2

T

)3/2
 ∞∑
n=N+1

1

L
(1)
n (−2T )L

(1)
n+1(−2T )

 n∑
p=0

L
(1)
p (−2T )

3p+2

21/2

≤ T
√

2π

9

(
2

T

)3/2
( ∞∑
n=N+1

1

(n+ 1)2

(
9

4
eT
)2
)1/2

= eT

√√√√π

T

∞∑
n=N+1

1

(n+ 1)2

≤ eT
√

π

T (N + 2)
= ε1.

Thus, due to (6.15) for l ≥ N+2
T = 2(N + 2), we get∥∥W T −WN

l

∥∥−1 ≤ ε1 + ε2,

where

WN
l (x) = x1e

− |x|
2

4 +
x1
π

∫ 1/2

0

e
− |x|

2

4ξ

4ξ2
uN,l(1/2− ξ) dξ, x ∈ R2,
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ε1 = eT
√

π

T (N + 2)
=

√
2πe

N + 2
,

ε2 =

√
π

8l

N+1∑
k=0

∣∣αNk ∣∣ k + 1

2k

√
(2k + 2)!(

T − k+1
l

)k+3/2

=

√
π

8l

N+1∑
k=0

∣∣αNk ∣∣ k + 1

2k

√
(2k + 2)!(

1
2 −

k+1
l

)k+3/2
.

The controls uN,l, l = 2(N + 2),∞, N = 1,∞, defined by (7.1), solve the ap-
proximate controllability problem for the given system.

The influence of the control uN,l on the difference WN
l (·, T ) −W T is shown

in Figs. 7.1 and 7.2. The controls uN,l are given in Fig. 7.3 for the cases of N =
3, l = 50 and N = 4, l = 200. The shape of the control in the cases of N = 3,
l = 200 and N = 4, l = 150 are similar to these cases, respectively.
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Проблеми керованостi для рiвняння
теплопровiдностi на пiвплощинi кероване крайовими
умовами Дiрiхле за допомогою точкового керування

Larissa Fardigola and Kateryna Khalina

У роботi вивчено проблеми керованостi та наближеної керованостi
для керованої системи wt = ∆w, w(0, x2, t) = u(t)δ(x2), x1 > 0, x2 ∈
R, t ∈ (0, T ), де u ∈ L∞(0, T ) є керуванням. У термiнах розв’язностi
степеневої проблеми моментiв Маркова одержано необхiднi i достатнi
умови керованостi, а також достатнi умови наближеної керованостi за
заданий час T , коли керування u є обмеженим заданою сталою. Побудо-
вано ортогональнi базиси в спецiальних просторах соболєвського типу.
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Застосовуючи цi базиси, одержано необхiднi i достатнi умови наближе-
ної керованостi, ф також чисельне розв’язання проблеми наближеної
керованостi. Результати проiлюстровано прикладом.

Ключовi слова: рiвняння теплопровiдностi, керованiсть, наближена
керованiсть, точкове керування, пiвплощина
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