Journal of Mathematical Physics, Analysis, Geometry
2022, Vol. 18, No. 1, pp. 118135
doi: https://doi.org/10.15407/mag18.01.118
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The aim of this paper is to study the existence of a solution to the
complex Hessian equation associated to an m-positive closed current T. We
give a sufficient condition on T and the measure p so that the equation
T A B ™ A (dd®.)™ P = p has a solution on the set of m-subharmonic
functions. For this we establish a connection between the convergence in
capp, 7 of a sequence of m-subharmonic functions and the weak convergence
of the associated Hessian measure.
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1. Introduction

The Dirichlet problem for the complex Monge—Ampere operator was studied
by Bedford and Taylor [1] who proved first that the operator (dd®.)” is well defined
on the set of locally bounded plurisubharmonic functions in a bounded domain
Q of C™ and then solved the Monge—Ampere equation (dd¢.)” = 0. This problem
achieved a considerable progress when several researchers studied the case of non-
degenerated Monge—Ampere equation and the regularity of its solution. Recently
Blocki [2] introduced the notion of m-subharmonic function denoted by S H,,(12)
for 1 < m < n and developed the pluripotential theory for the complex Hessian
operator. This allows [2,8,10,13] to study the Dirichlet problem for the Hessian
equation using pluripotential techniques adapted to the complex Hessian equation
to settle the question of the existence of its weak solutions. In 2013, Dhouib
and Elkhadhra [7] introduced analogous Cegrell classes for studying the complex
Hessian operator with respect to an m-positive closed current 1. The purpose
of our paper is to study the existence of a solution to the Hessian equation with
respect to T" which is given as follows:

T A B"™ A (dd°)™ P = p, (1.1)

where 3 := dd¢|z|2.
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Using the notion of m-capacity cap,,  introduced by [7] and under some
conditions on the given current and measure u, we prove the existence of a solution
for equation (1.1). This result is given by the following main result.

Theorem 1.1. Assume that all || T A """ || —negligible sets are negligible for
the Lebesque measure and that:

1) There exists v € SH,, () N L>®(Q) such that T A "™ A (dd°v)™ P > p.

2)  There exists a sequence of measures ;=T A B~ A (ddu;)™ P such that

lj — nllo — 0, where uj € SH,, (2) NC(2), uj = ur on 0 for all j € N.

3) Forall j €N, one has cap,, r (sup{uy | k > j} <sup*{up | k > j}) = 0.
Then there exists w € SH,, () N L>®(2) such that T A 7"~ A (dd°u)™ P = p.

The main tool for proving the above theorem is to find a suitable condition
on the convergence of a sequence u; to u to ensure the weak convergence of the
measures T'A "7 A (ddu;)™ P to T'A "™ A (dd°u)™ P, In the case T =1
and m = n, Cegrell [3] and Lelong [12] observed that the L], -convergence of u;
to u is not sufficient for obtaining the weak convergence of the measure (dd“u;)"
to (ddu)™. In 1996, Xing [14] gave a sharp sufficient condition to ensure the
convergence of (ddu;)"™ to (dd“u)"™. Here we treat the problem in the case of m-
positive currents and we prove that convergence with respect to capacity cap,,, p is
sufficient for obtaining the required convergence and also, under some conditions,
we show that the converse is true. We study also the convergence of dd®ug A Ty, A
B to dd° AuT A B~ ™, where (T})r is a sequence of m-positive closed currents
that converges to T. We prove, under a suitable condition on the growth of the
mass of Ty, A f"~™ with respect to cap,, p, that such convergence holds.

2. Preliminaries

Let us recall first the notion of m-subharmonicity introduced by Blocki in [2].

Definition 2.1. A real form « of bidegree (1,1) in a domain €2 of C" is said
to be m-positive if at every point of {2 one has

AdABI>0, j=1,...,m.

The above definition coincides with the standard definition of positivity in-
troduced by Lelong for the case m = n. To obtain a similar analogy, Dhouib and
Elkhadhra [7] introduced the following definition of positivity for (p, p)-forms.

Definition 2.2. Let ¢ be a real (p, p)-form defined on an open subset €2 of
C™ and let m be an integer such that p < m <mn.

1. The form ¢ is said to be m-positive on € if at every point of 2 one has
CAB"TTT AN AN ANy >0

for every m-positive (1,1)-form aq, ..., Qm—p.
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The form ¢ is said to be m-strongly positive on (2 if it can be written as
follows:

N
@sz\kalf/\'-‘/\a’;,
k=1

where o/f,...,a’;

are m-positive forms on 2 and Ap > 0.
By duality, one can define the notion of m-positive currents as follows.

Definition 2.3. Let T be a current of bidimension (n — p,n — p) on £ and

let m be an integer satisfying p < m < n.

1.

The current T is called m-positive if (T', 5"~ A p) > 0 for every m-strongly
positive form ¢ of bidegree (m — p,m — p).
The current T is called m-strongly positive if (T, 5"~ A ¢) > 0 for every
m-positive form ¢ of bidegree (m — p,m — p).

Remark 2.4.
The above definitions generalize the standard definition of positivity for
forms and currents, it suffices to take the case m = n to recover them.
If T is an m-positive current, then the current T' A S~ is positive.
There is no link between s-positive currents and r—positive currents for

every r # s.

Definition 2.5. A function u : @ — RU{—o0} is called m-subharmonic if it

is subharmonic and

for

dduNB" ™ ANa1 A Ayp—1 >0

all m-positive forms ai,...,a,—1. We denote by SH,,(2) the set of all m-

subharmonic functions defined on §).

We cite below some well-known properties of m-subharmonicity. For more

details, one can refer to [2,7,13].

Proposition 2.6.

If u € C%(Q), then u € SH,,(Q) if and only if the form dd°u is m-positive
on €.

If w € SH,,(Q), then the current dd“u is m-positive.
If u,v € SHp, (), then Au+ pv € SH,, (), VA, 1w > 0.
PSH() = SHy(Q) C -+ C SHp(Q) C - C SHy(Q) = SH(S).

If u is m-subharmonic on ), then the standard regularization u * xe is also
m-subharmonic on Q. := {x € Q | d(xz,00) > e}.
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6. If (uw;); is a decreasing sequence of m-subharmonic functions, then u :=
limwu; is either m-subharmonic or identically equal to —oo.

The m-capacity of a subset F in 2 with respect to a given current 7" is defined
as follows.

Definition 2.7. For every compact K of 2, the m-capacity of K relatively
to an m-positive current 7' denoted by cap,,, 7(K) is defined by

Capm,T(K7 Q) = Capm,T(K)

:= sup {/ (ddv)™ PANT AL ™ v e SHR(Q),0<v< 1} ,
K

and for every £ C (2, cap,, r(F, ) = sup{cap,, 7(K) | K is a compact of {2}.

Basing on the definitions cited below, Dhouib and Elkhadhra [7] defined the
Hessian operator with respect to a given m-positive closed current of bidegree
(p,p) to generalize the well-known works of Bedford and Taylor [1], Blocki [2],
Abdullaev and Sadullaev [13] and Lu [11]. They proved that the Hessian oper-
ator (dd°.)? AT A "~ is well defined on the set of bounded m-subharmonic
functions (eventually, also for m-subharmonic functions which are bounded near
00 N SuppT ) and studied its pluripotential properties. An essential tool used
in their work is the convergence with respect to the capacity cap,, r defined by
using the complex Hessian measure associated to 7. In the next section, we are
intending to give a link between the weak convergence and the convergence with
respect to cap,, 7.

3. Weak convergence and convergence with respect to cap,, r

The notion of the convergence in capacity cap,, ; was introduced in [7] as
follows.

Definition 3.1. Let 2 be an open subset of C*, E C Q and let T be an
m-positive closed current of bidimension (n — p,n —p), p < m < n. A sequence
of functions (u;); defined on (2 is said to be convergent with respect to cap,,
to u on F if for all ¢ > 0 one has

lim cap,, 7(E N {|u —u;| >t}) =0.

Jj—+oo

We will prove first that every sequence of bounded m-subharmonic functions
(uj); that decreases to a function u converges to u with respect to capacity
cap,, r- This generalizes the result of Bedford and Taylor [1] for the limit case
m =nand T = 1 and Lu [10] for the case T" = 1. To prove this, we will generalize
first a result due to Dabbek and Elkhadra [6]. This result is given by the following
lemma.



122 Jawhar Hbil and Mohamed Zaway

Lemma 3.2. Let uy,ug,v1,v2, W1, ..., Wp—1 € SHy,(2) N L¥(Q) and let T
be an m-positive closed current on 0 of bidimension (n —p,n —p), p < m < n.
Assume that {u; # us} € Q and let 0 < € D(Q), ¥ =1 on {uy # uz}. Then,

(/Q d(uy — ug) A d(vy — vg) A X>2 < </Q d(ur — ug) Ad(ur —uz) A x)
« </Q wd(v1 — v3) A d*(v1 — v3) A x> ,

where x =T A B"™™ A ddwy A ddwa A -+ - A dd“Wp—p—1.

Proof. Using Theorem 2 from [7], it suffices to prove the result for the case
when u; — ug,v; — vy are smooth. It is easy to check that (u,v) — fQ wdu A
d“v A x is a positive and symmetric bilinear form on C*>(€2) x C*°(Q2). Using the
Cauchy—Schwartz inequality on (u1 —ug, v1 —v2), when u;, v; € SH,,,(Q)NC>(Q),
we get the desired inequality. O

Theorem 3.3. Let Q be a bounded open subset of C" and let T be an m-
positive closed current on Q of bidimension (n —p,n—p), p <m <n. Ifuj,u €
SH,y, ()NLS.(Q) such that uj = u on a fived neighborhood of 02 and u; decreases
to u, then for all 6 > 0 one has

lim cap,,7{z € Q| u;(z) > u(z) +6} = 0.

J—+oo
Proof. Without loss of generality, one can assume that § = 1. We consider
Q={2€Q|uj(z) >u(z)+1}
and U such that {u; #u} CU € Q. Let v € SH,(Q,]0,1]), using the Stokes
formula, we obtain
/ (ddV)™"PAT AT < /(uj —u)(ddv)"P AT AT
Q; u

=— / d(uj —u) A dv A (ddv)™P"EAT A B
u

Now, by Lemma 3.2, the right-hand side is dominated by

N

C ( / d(uj —u) A d(uj —u) A (ddv)™P~E AT A ,8”—m> ,
u

where

1

C= </ dv A dv A (ddv)™PTEAT A B’”‘m) i <M < 400
u

and M is a constant independent on v using the Chern—Levine—Nirenberg in-
equality [7]. Again, by the Stokes formula, we get

/ Ay — ) A d°(u; — u) A (dd0)™P~L AT A Brm
u



A Weak Solution to the Complex Hessian Equation 123

= — / (uj —w)dd®(uj —u) A (ddv)™P"EAT A B™
u
= / (u — uj)(dduj — dd°u) A (dd“v)™ P~L AT A B"™
u
< / (uj — u)dd®u A (dd“v)™ P~E AT A B,
u

It follows that

N[

/ (ddv)™ P AT AB" ™ < C < / (uj — w)ddu A (dd°v)™ P~ AT A ﬁ”m>
Q u

i
By repeating the process (m — p — 1)-times, we get the following estimate:

1

2P

/ (dd°o)™ P AT A B7™ < Cy < / (uy — u)(dd°u)™® AT A m-m) ,

Q; Q

where (] is a constant which does not depend on j and v. As v is arbitrarily
chosen, we deduce that lim;_, ;o cap,, 7(£;) = 0. O

The following theorem was proved in [7] and it will be useful later on.

Theorem 3.4. Let ) be a bounded subset of C",u € SH,,,(Q2) N LS () and
let T be an m-positive closed current on 0 of bidimension (n—p,n—p), p < m <
n. Then, for alle > 0, there exists an open set O¢ of Q2 such that cap,, (O, ) <

e and u is continuous 2 ~ O;.

Now we will establish the connection between the convergence in capacity
of a sequence of m-subharmonic functions u; and the weak convergence of the
associated Hessian measure. A similar version of the first assertion in the theorem
below was proved in [7] for m-subharmonic functions that are bounded only near
the boundary of 2, but with an additional sufficient condition (each of the Hessian
measure of u; is absolutely continuous with respect to cap,, ). Here we give
a different proof for the case of locally bounded m-subharmonic functions and
without any assumption on the Hessian measure of u;. We will also prove the
converse.

Theorem 3.5. Let ) be an open subset of C" and let T be an m-positive
closed current on Q0 of bidimension (n — p,n — p) and (u;); be a sequence of
locally uniformly bounded m-subharmonic functions and u € SH () N L3S (22).
Then

1. Ifu; converges to u in capacily cap,, p on every E € (2, then the sequence of
currents (ddu;)™ P AT A B~ converges weakly to (dd°u)™ P NT A "™.

2. Assume that there exist E € Q) such that for all j, u; = u on QN E and
that the sequences u(dd®u;)™ P AT A "™, w;(ddu)™ P AT A "™ and
wj(dduj)™ P NT A B converge weakly to u(dd®u)™ P NT A "™, Then
uj converges to u with respect to cap,, p on E.
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Proof. 1. We proceed by induction on m — p. The case m —p = 1 will be
proved if we show that u;T" A B"~™ converges to uT' A "~ ™. Let ¢ be a smooth
form with compact support in Q (¢ € Dy,—p m—p(€2)) such that suppe C Q € Q.
Then,

/(ujT—uT)/\B”_m/\gD’ < C’/ luj —u|T' A B"P
Q 941

=C luj —u|TAB" P4+ C luj —u|T AB"7P
{luj—ul<s}nn {Juj—u|>6}N0
< COIT A 5" ™y + Cllu — ulliwiany | T A B
{\u]-—u|25}ﬁ91

< CS|[T A B[, + M cap,, r({z € Q; |uj(z) — u(z)| > 6}).

This proves the case m —p = 1 since 0 is arbitrary, u; converges to u in capacity
cap,, 7 and M is independent on j.

Assume by induction that the sequence (dd®u;)* AT AB"~™ converges weakly
to (dd°u)® NT A "™ for s < m — p. It suffices to prove that w;(ddu;)* AT A
B"~™ converges weakly to u(ddu)®* AT A "™, By Theorem 3.4, for all € > 0,
there exists an open subset O such that cap,, 7(O:) < ¢ and u = ¢ + 1), where
¢ is continuous on 2 and ¥ = 0 on 2\ O.. Note that

wj(ddui)* NT A "™ —u(ddu)> NT AT
= (uj —u)(dduj)> NT A B
+((ddu)* NT A B — (ddu)® AT A B"™)
+ p((ddu;)* NT A B — (dd°u)® NT A B"™).
Denote the first, second, and third summands in the right-hand side of this equal-
ity by (1), (2), and (3), respectively. Since ¢ is continuous on 2 and using

induction’s hypothesis, we get that (3) tends weakly to 0 when j — oc.
For (1), let ¢ € Dy—p—sm—p—s(£2) such that supp ¢ C Q1 € Qo € Q. Then,

/ (uj —w)T A L™ A (dduy)® A
Q

<C [ Juj—ulT AB™™ A (dd°u;)® A (ddC]2|2)mP=

Q1

<C [ Juj—ulT AB™ A (dd(uj + |2)*)) ™7
951

<C luj —u|T A B"™™ A dd(u; + |2!2)m_p
{Juj—u|>8}N2

e Jug — T A B A dd (s + |22

{luj—ul<5}n@
< Crcapy, (2 € s fuy(2) = u(2)[ > 0) + SMI[[T' A 5" ||o,.

Since the sequence (u;); is uniformly bounded, M and C; do not depend on j
and u; — u in capacity cap,, 1, we get that (1) tends to 0.
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The same reason for (2) gives

/ T A B A (ddCuy)® A @‘ < A/ T ABY™ A (dd(uj + [2%]))™ P
Q1NO. Q

lmOs
< By capm’T(Og) < eBj.

Using the same reasoning as above, one can obtain that

/ YT A B A (ddu)® A w’ < eBs.
Q21NO.

2. Let ' be an open subset such that £ € Q' € Q, ¢ € SH,,,(,[0,1]) and
0 > 0. By the Stokes formula and Lemma 3.2, we obtain

/ T A 8™ A (ddp)™ "
(I -ul>5)

1
< — / (uj — w)2T A B™™ A (ddCp)™ P
32 Joy

-1
=5 /Q/ T AB™ Ad(u; —u)® Adp A (ddSp)™ P!

<C1 </ T A B Ad(uy —u)? A d*(uy —u)® A (ddCSD)mp1>

=

< 20,0 </ TAB™ANd(uj —u) Ad(uj —u) A (ddccp)mzm) ’

where )
Ch:= 52/ T ABY™ Adp A dép A (dd°p)™ P! < 400
Q/
and Cy = ||uj — ul|oc < 00. As

dd(u; —u) AT A B < dd(u; +u) AT A B,

then, by repeating the same operation (m — p — 1)—times, we get
/ T AB™™ A d(uy — ) A d°(u; — u) A (dd°p)™ P~

= / T AB™™ Ad(u; —u) Ad°p Add(u; —u) A (ddp)™ P2

N |=

< ([ T A A dlg ) Ay ) A+ 0) A ) )

1
2(m—p)

< B (/, T AR Nd(uj —u) Ad(uy; — u) A (dd(u; + u))m—p—l>

< By (/ T AL ™ Nd(uj —u) Ad°(u; — u)
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m—p—1

2(m—p)
A (ddCu;)™ PR A (ddcu)k>

B
Il
o

TAB"™ A (dduj — ddu)

:32(//(%-—@

1
m—p—1

2(m—p)
A (dduj)™ P=H=1 A (ddcu)k])

iy
[e=)

= By (/,(uj —u) [T A BTN (ddCuy)™ TP
—TAB"™™A (ddcu)mpD o ;

where By does not depends on j and ¢. As u; = u on Y\ E and the sequences
uT' A BTN (dduy)™ TP wi T A BTN (ddCu) TP, u TN BT A (ddCuy )P
converge to uT' A "™ A (dd°u)™ P, then we get

Jim (g — )T AFT A [(ddus)"™ P = (ddw)™ ] = 0.

It follows that
cap, r(|lu; —ul > 4,Q) = 0. O

Proposition 3.6. Let T' be an m-positive closed current on S of bidimen-
sion (n —p,n —p), V1,...,Um—p € SHp(Q)(L>®(Q); v],...,v),_, € SHy(Q).

»Ym—p
Assume that the sequence (Ui)j is locally uniformly bounded and increases almost
everywhere to vy, with respect to cap,, p. Then

T AB™™™ Addv] A+ Nddvl,_, — T AB"™™ Add°vy A+ A ddVi—p
weakly in ).
Proof. We proceed as in [4]. Let ¢ and n € D(£2) be such that n > 0 and n =
1 in a neighborhood of supp ¢. Let @1, p2 € SHp,(£2) NC*(£2) be such that ¢ =
p1 — 2. We have
/ ©T A B Addv] A+ Add),
Q
= / VT A B Addvh A -+ A ddv,_, A ddep
Q
= / VT A B Addv) A - A ddvl, ) A (ddpy — ddCps).
Q
By induction, we assume that we have the following weak convergence:

lim TAB"™™ Addv) A - Addv],_, Addp

j—+oo
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=T AB" ™ ANdda A ... N ddVy—p A ddepr. (3.1)
As (v{) 1 vy, for all & < j, one has
/Q nufT A B Addvy A -+ Addv],_, A dd®py
< /Q nulT A B~ A ddv) A -+ A ddv], A ddp
< /Q nuiT A B A ddv) A -+ A ddul, A ddC.
Using (3.1) and Theorem 3.4, one can prove that

lim [ T A B A AU A - A ddu], A ddp
J—=+o0 Jo

= / nfT A BV Addvg A -+ . A dd“vm—p A ddCgy,
Q

lim [ poT A B AddvY A - A ddv,_ A ddCpy
J—=+oo Jo

= /anlT A BTN v A - A dd U —p A ddCpr.
It follows that
/Q ST A BY™™ A ddva A - -+ A dd“Vm—p A dd°pr
< ljlgl_:lgof /Q nU{T A BTN ddcvg A+ A ddcvfn,p A ddpq

< lim sup/ nv{T A BTN ddcvg ARERWA ddcvil_p A ddCpq
Q

j—+oo

< / nuiT A" Addva A -+ A dd“Vm—p A ddCpy. (3.2)
Q
To finish the proof, it suffices to prove that

lim [ no¥T A BY™™ Addvy A -+ A ddVpm—p A ddSpy

k—+oco J
= / nuiT A B Nddva A -+ - A dd“Upm—p A ddCpy.
Q

Let v5 = vy * X, where x. is a regularizing kernel. We can assume that v5 = v
on Q\ suppn and that n =1 in a neighborhood of {v§ # va}. It is easy to check
that

/ nuldd®(vy — v5) A ddvg A -+ A ddvy—p AT A B™ A ddpr

Q

= / vidde(vy — v5) A ddvz A -+ - A ddVp_p AT A ™ A dd®py
Q
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= /Q(vg — v§)dd“vY A ddCvs A - A ddvm—p AT A B A ddpy.

For all k, v} is locally uniformly bounded. Using Theorem 3.4 and the fact that
v5 | v, the last integral tends to 0 uniformly in k. It follows that

/Q nu¥ddvg A - A ddv_p NT A BV™ A ddCpy

> —e+ / nuiddvs A - A ddv_py NT A BP™ A ddpy > - -
Q
> —(p—1)e
+ / nulddvs A ddv§ A - A ddcvfn’“_‘p"‘2 ANT A B A ddpr,
Q

where 0 < g,,—p—2 < --- < g1 < &. Since the sequence (vf) is increasing almost

everywhere to v1 with respect to cap,, 7, we get

lim inf/ m)lfddcvg A NddVy—p NT N B N ddpq
Q

k——+o0

>—(p—1)e+ / nuiddvs A -+ A\ ddcvi,bm_*p”*2 ANT NB"™Addpr.
Q

By taking the limit when € | 0, we obtain

lim inf / nuiddvy A -+ A ddvm—p AT A B"™ A dd°py
Q

k—+o00

> / nuidd“va A -+ Add“Vp—p AT A B AN ddCpr.
Q

Using (3.2), we obtain the following weak convergence:
lim o]T A B Addvy A -+ A ddvl,_, A ddSpy
J—+o0o

=T AB" ™ ANddva A -+ A ddVp—p A ddp;.
The same reason applied to o gives the desired result. O

In the following theorem we will prove the convergence of the sequence
(ddug A T N B~ ™) (here the current T is no longer fixed and is replaced
by a sequence of currents that converges towards it). This result generalizes
Elkhadhra’s Theorem [9] proved for the limit case m = n.

Theorem 3.7. Let T and T}y be closed m-positive currents of bidimension
(p,p) in Q such that Ty converges weakly to T in Q. Let u and uy be locally
uniformly bounded m — sh functions in Q such that up — w in cap,, p on each
E e Q. Assume that

[Te A B™ ™| < capp, 1
on each E € Q uniformly as k — oco. Then

ddup, NTp A" — ddu NT N B weakly in €.
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Proof. 1t suffices to prove that u;Typ A "™ — uT A ™™ weakly in 2. For
this, let ¢ be a test form on Q, F = supp(yp) and let K be a compact subset of {2
such that F' C K°. Since ||T; A"~ ™|| < cap,,  on K uniformly for all &, we get
that for every € > 0 there exists § > 0 and kg € N such that for any Borel subset
Ky C K° with cap,, r(K1) < d, we have [T A 8"~ ™[|(K1) < & uniformly for k >
ko. Now, by Theorem 3.4, there exists an open set O C ) with capm;p((’)) <9
such that wu is continuous on €2 . O. Thus, we can write up = vp + wg, u = v +
w, where v is a continuous function in 2, w = w, = 0 on 2 . O, for each k and
all vg, wg, v, w are locally uniformly bounded on €2 by a constant independent of
0. It is easy to check that

/(uka —uT) A" A 90‘ < ’/ (v —v)Tp AB"™ NP’
Q Q

+

/U(Tk 1) Aﬂn—mw‘ + ‘/(wka _ W) Aﬁn—mw‘. (3.3)
Q Q

As v =u, vp = ug on Q. O, the first term in the right-hand side of inequality is
bounded by

/ (up, —w) T A" A go‘ +
EXO

/ (Uk - U)Tk A BTN (,0‘ .
ONE

As the functions uyg, u are locally uniformly bounded, there exist A, B independent
of k and € such that

/ (uk—u)Tk/\ﬁn_m/\<ﬁ‘§A1/ | up —u | T A BP
E~O E~O

— A (/ g, — ul Ty, A 5P
(ENO)N{|ug—ul<e}

+/ ’uk—UTk/\ﬁp>
(B~ O){Juk—ul>e)

< Avel[Ti A B*I(E) + Ao||Tie A B [|(E 0 {|ug — uf > }).

Now, using the fact that Ty A "™ — T A "™ weakly in Q, we get that ||T} A
A"~ ™||(E) is uniformly bounded.
On the other hand, since cap,,, 7(E N {|ux —u| > €}) — 0 as k — oo, then for
k > k1 large enough we deduce that cap,, (£ N {|ur, —u| > €}) < J. It follows
that || Tk A 8"~ ||(E N {|ur, — u| > €}) < € for all k > max(ko, k1). Hence we get
that
lim
k—4o00

/ (up —w)Tp NS A w‘ < Ase.
ENO

Since v, v are locally uniformly bounded, there exists a constant A4 which does
not depend on ¢ and k such that

/ (’Uk—’U)Tk/\ﬁn_m/\(p’ §A4HT]€/\Bn_m”(OﬂE).
ONE
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Since ON E C K and cap,, 7(O N E) < §, we have

/ (g — V)T AB" T ANp| < Ag||Ti A B (ONE) < Age for all k > k.
ONE

It follows that if kK — +o0, then the first term in the right-hand side of inequality
(3.3) is less than (As + A4)e, while the second one converges to zero because of
the continuity of v and the fact that Ty A "™ — T A "™ weakly in ). For
the third term, since wy, w are locally uniformly bounded on 2 and are vanishing
on Q) \ O, there exists a constant As > 0 such that

/Q (wkTh — wT) A ™™ A o| < As(ITi A B~ (O A E) + [T A 8" (O E)).

As explained above, we have || T A " "|[(ONE) < ¢ for all k£ > kg. On the
other hand, since O N K° is open and T A B"~™ — T A "~ as currents in (),
we can easily prove that

ITAB"™(ONE)<|TAB"™[(ONK?) < k]irjl T AB" ™ (ONK®) <e.
—+00

The last inequality follows from the fact that cap,, (O N K°) < 4. Finally, by
summing up the three terms in the right-hand side of inequality (3.3), we obtain
the estimate

lim
k——+o0

/(uka —uT) A" N p| < Age,
Q

where Ag is a constant not depending on e. Since € is arbitrary, the result
follows. O

4. Range of the operator T'A "™ A (dd°.)™ P

Proposition 4.1. Let 2 be a bounded open subset of C" and let T be an
m-positive closed current of bidimension (n — p,n —p), p < m < n, defined on
Q. Let also u, v € SHy,(2) N L>®(Q) such that

Then, for all 6 >0 and 0 < k < 1, one has

m —p)!]?
Capm,T({’u —v| >0}) < (1 g k)m?ggm—p

X ||TAB™™ A (ddu)™ P =T A B"™ A (ddv

" || o ay -

In particular, if T N\ "™ A (ddu)™ P = T A "™ A (dd“v)™ P, then u = v
almost everywhere with respect to cap,, p.
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Proof. Let w € SH,,(€,[0,1]), 6 > 0 and k €]0, 1[. Using Lemma 3 in [7] and
the fact that
{lu—v|>d} C{lu—v+0k| > (1-k)d},

we can obtain

/ T AB™™™ A (ddw)™ P
{lu—v[>6}

1
: (1 — k)m=pgm=p /{ +6< }(v —u—kO)"TPT A BT A (ddPw)™ P
UTOSV
1
* (1 — k)ym—psm—rp /{ +o< }(u — v = kO)"TPT AL A (ddPw)™ P
v+0<u
! - n—m m—
= (1 — k)ym—pgm—>p /{ ks }(U —u— k&)™ PT A B A (dd°w)™ P
u <v
1
TR Jypapag™ 0TI A A G
v <u
[(m — p)1J?
— (1 — k)ym—pgm—p

X / (1 = w) (X futks<v} = X{otko<u})T A B A (ddu)™ P
{lu—v|>kd}

[(m — p)!]”
(1 — k)ym—pom—p

X / (1 = w) (X futks<v} = X{otks<up) T A BT A (ddv)™ P
{lu—v|>kd}

[(m — p)!]?
= (L= kympoms
x ||T A B A (ddCu)™ P =T A B A (ddcv)m_pu{mwpk&} :

The result follows. O

Corollary 4.2. Let Q be a bounded open subset of C" and let T be an m-
positive closed current of bidimension (n —p,n —p) (p < m < n) defined on 2
and u, u; € SHpy, () N L*(Y). Assume that:

i)  limsup |u;(§) — u(&)| = 0 uniformly on j.
E—00N
£eSupp T

ii) For all E € Q, one has

T A B A (ddu;)™ P — T A B7™ A (ddu)™P]| . — 0.
J E

Then uj converges to u with respect to capacity cap,, p on (2.

Throughout this section we denote by p a positive measure on a bounded
open set 2, by A, the Lebesgue measure and by T', an m-positive closed current



132 Jawhar Hbil and Mohamed Zaway

of bidimension (n —p,n —p) (p < m < n). We will solve the following Hessian
equation on the set of m-subharmonic functions

T AB™™™ A (dd°)™ P = p.

Proof of Theorem 1.1. Let A > 0 such that for all z € Q, one has A > |z|.
Take ¢ > 0 such that ¢ > |v(2)| + |u1(w)| + 1 for all z € Q and w € 9. Using
Lemma 3 from [7] and the hypothesis 1), we get

|Z|2> - -
1— EEN 1A g™ A (ddeuy) P
/{Uj<v—c} < A2 ’

K&

> / ( _ ) T A 7™ A (ddov)™
{uj<v—c} A?

1
o\ P n—
+ [(m — p)|2A2(m—p) /{uj@_c} (v —c—u)™ P T ABE

!Z!2>
> — 3 ) du
/{Uj<v—c} ( A?

1
g\ D n—p
({(m — p)2AZmD) /{}( ¢ ug) T ET AL,

+

As [luj — pllo — 0, then

0 > lim inf/ (v—c—u;))""PT AP
{uj<v—c}

j—+oo

> /Qljlgigof (X{Uj<v—c} (’U —C— uj)m—p) TA l@n—p

m—p
) . . IR n—p
> /S;X{hmsupjﬁJroo uj<v—c} <1Jl§ inf |[v — ¢ u]|> TAB

—+00

Jj—+oo

m—p
> /Qx{limsupﬁﬂo uj<v—c} (U —c— limsup uj> T AB"P.

It follows that limsup;_, . uj > v —c for [|[T'A f"~™|]-almost everywhere. Thus,

lim sup u; # —oo.
J—+0o0

If we take
*
A= U <sup{uj,uj+1, o} < sup{uj, uji, }) ,
J

after using [2], we can see that there exists g € SH,,(€2) such that

sup{u;, uji1,...} = sup™{u;, ujt1,...} L limsupu; =g on Q\A.
Jj—+oo

As cap,, r(A) = 0 and the ||T" A 8"~"||—negligible set are \-negilgeable, we get
that g > v — ¢ almost everywhere. It follows that g is bounded on €2. Using
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Theorem 3.5, it suffices to prove that u; converges to g with respect to capacity
cap,, p- Letting ' CC 2 and ¢ > 0, one has

)
cap,, v (EN{lg —uj| > 6}) > cap,, 1 (Eﬁ {g —sup{u;, wjy1,...}| > 2})

)
+ cap,, | sup{uj, wjq1,...} —uj| > B .

By applying Theorem 3.4 and Dini’s theorem on g, it is easy to check that the
sequence sup{uj,u;i1,...} | ¢ uniformly on E outside a set of small capacity
cap,,, p- It follows that

0
cap,, r <Eﬂ {|g —sup{uj, ujy1,...} > 2})

tends to 0 when j goes to +oo.
Now, let us prove that

A 5
B := {|sup{uj,uj+1,. . } —Uj| > 2} C U {|uj+l+1 _uj+l| > 2l+3+2} .
=0

We can assume that [(m — p)!]?||p; — pl| < m So, by Proposition 4.1, one
has for all 6 > 0,

(m —p)P?

capp, riluj+1 = uj| > 0} < =l — pyll

(m —p)?? 2
< sy ki = mlle +lln = pille) < Smpa(m—pt1);

and we deduce that

)
cap,, r | sup{uj, wjq1,...} —uj| > B

+00 ) 4m=p
< capyp{lugiien — il = i) =S Gmspy
=0

Hence the sequence u; converges to g with respect to capacity cap,, p and, by
Theorem 3.5, we get that the sequence (dd®u;)™ P AT A "™ converges weakly
to (dd®g)™ P NT N B ™. O

Remark 4.3. Without the first hypothesis, we cannot have the existence of
the solution to the equation T'A "~ A (dd®.)™ P = p even in the trivial case T' =
1 and m = n. In fact, using [5], there exists f € L'(2) such that the equation
(ddu)™ = fdX has no solution in PSH (Q2) N L>°(Q).

Acknowledgment. We would like to thank Prof. Stawomir Dinew for help-
ful comments on an earlier version of this paper.

Authors extend their appreciation to the Deanship of Scientific Research at
Jouf University for funding this work through research Grant No. DSR-2021-03-
03134.



134 Jawhar Hbil and Mohamed Zaway

References

[1] E. Bedford and B.A.Taylor, A new capacity for plurisubharmonic functions, Acta.
Math. 149 (1982), 1-40.

[2] Z. Blocki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier 55
(2005), 1735-1756.

[3] U. Cegrell, Discontinuitee de I'operateur de Monge-Ampere complexe, C. R. Acad.
Sci.Paris Ser. I Math. 296 (1983), 869-871.

[4] U. Cegrell, Capacities in Complex Analysis, Braunschwerg Wiesbaden Friedr.
Vieweg et Sohn, 1988.

[5] U. Cegrell and A. Sadullaev, Approximation of plurisubharmonic functions and
the Dirichlet problem for the complex Monge-Ampere operator, Math. Scand. 71
(1993), 62-68.

[6] K. Dabbek and F. Elkhadhra, Capacité associée a un courant positif fermé, Docu-
menta Math. 11 (2006), 469-486 (French).

[7] A. Dhouib and F. Elkhadhr, m-Potential theory associated to a positive closed
current in the class of m-sh functions, Complex Var. Elliptic Equ. 61 (2016), 1-28.

[8] S. Dinew and S. Kolodziej, A priori estimates for complex Hessian equations, Anal.
PDE. 7 (2014), 227-244.

[9] F. Elkhadhra, Lelong-Demailly numbers in terms of capacity and weak convergence
for closed positive currents, Acta Math. Scientia 33 (2013), 1652—-1666.

[10] L.H. Chinh, Equations Hessiennes complexes, Theése de "Université Toulouse III
(UT3 Paul Sabatier), 2012. Available from: http://thesesups.ups-tlse.fr/
1961/1/2013T0OU30154 . pdf.

[11] L.H. Chinh, A variational approach to complex Hessian equations in C", J. Math.
Anal. Appl. 431 (2015), 228-259.

[12] P. Lelong, Discontinuitee et annulation de I6perateur de Monge—Ampére complexe.
In: Lecture Notes in Math., Springer-Verlag, Berlin, 1028, 1983, 219-224 (French).

[13] A.S. Sadullaev and B.I. Abdullaev, Potential theory in the class of msubharmonic
functions, Tr. Mat. Inst. Steklova 279 (2012), 166-192.

[14] Y. Xing, continuity of the complex Monge-Ampére operator, Proc. Amer. Math.
Soc. 124 (1996), 457-467.

Received October 15, 2020, revised December 21, 2020.

Jawhar Hbil,

Department of Mathematics, College of science, Jouf University, P.O. Box 2014, Sakaka,
Saudi Arabia,
E-mail: jmhbil@ju.edu.sa

Mohamed Zaway,

Department of Mathematics, Faculty of Sciences and Humanities in Ad-Dawadmi, Shaqra
University, 11911, Saudi Arabia.

Irescomath Laboratory, Gabes University, 6072 Zrig Gabes, Tunisia,

E-mail: m_zaway@su.edu.sa


http://thesesups.ups-tlse.fr/1961/1/2013TOU30154.pdf
http://thesesups.ups-tlse.fr/1961/1/2013TOU30154.pdf
mailto:jmhbil@ju.edu.sa
mailto:m_zaway@su.edu.sa

A Weak Solution to the Complex Hessian Equation 135

CuabKuii po3B’I30K KOMILJIEKCHOI'O PiBHAHHS recciaHa,
MMOB’SI3aHOTO 3 M~-MO3UTUBHUM 3aMKHYTHM IIOTOKOM

Jawhar Hbil and Mohamed Zaway

Mertoro maHOl cTaTTi € BUBYEHHS ICHYBAHHSI PO3B S3KY KOMILIEKCHOTO
PIBHSIHHA TecciaHa, IIOB’sI3aHOTO 3 M-IO3UTUBHUM 3aMKHYTHUM HOTOKOM 1.
Haemo pocrarHio ymoBy Ha T 1 Mipy u, Tak mo piBasaEa 1T A 577 A
(dd°.)™ P = p Mae PO3B’SI30K HA MHOXKUHI M-CyOrapMOHidHUX (DYHKILI.
JIJ19 pOT0 BCTAHOBJIIOEMO 3B’f30K MiK 3012KHICTIO BITHOCHO €GPy, 1 HOCII-
JOBHOCTI m-~CyOrapMOHIIHIX (DYHKIIIH Ta CJIa0KOI0 3012KHICTIO acoIiiioBaHol
recciaHoBOl Mipu.

KuirouoBi ciioBa: m-TO3UTUBHUI 3aMKHYTH IIOTIK, mM-CyOrapMOHIYHA
PYHKIIisT, EMHICTD, OTIEPATOP Tecciama



	Introduction
	Preliminaries
	Weak convergence and convergence with respect to cap (m,T)
	Range of the operator T beta 

