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The Hirota equation is an integrable higher order nonlinear Schréodinger
type equation which describes the propagation of ultrashort light pulses in
optical fibers. We present a standard Darboux transformation for the Hirota
equation and then construct its quasideterminant solutions. As examples,
the multi-soliton, breather and rogue wave solutions of the Hirota equation
are given explicitly.
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1. Introduction

There exists a large class of nonlinear evolution equations which can be solved
analytically. Such equations are called integrable. Integrable equations constitute
an important part of the nonlinear wave theory. The simplest integrable equa-
tion which describes the dynamics of deep-water gravity waves is the nonlinear
Schrodinger (NLS) equation

iQt+sz+2\Q|2q:0- (11)

In 1967, it was first discussed in the general context of nonlinear dispersive waves
by Benney and Newell [4]. In 1968, this equation was also derived by Zakharov in
his study of modulational stability of deep water waves [38]. In 1972, Zakharov
and Shabat found that the NLS equation had a Lax pair and could be solved
by the inverse scattering transform (IST) method [40]. This equation plays an
important role in different physical systems as wide as plasma physics [39], water
waves [4,5,38], and nonlinear optics [14, 15]. One of the most interesting appli-
cations of the NLS equation is that it can be employed to model short soliton
pulses in optical fibres [18]. However, as the pulses get shorter, various additional
effects become important and the NLS model is no longer appropriate. In order
to understand these additional effects, Kodama and Hasegawa [19,20] suggested
a higher-order NLS equation

iq + 1 e + 0201q + 1B [V100ae + 200120 + 734 (J0)),] =0, (1.2)
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where the «;, 7; are real constants, 5 is a real spectral parameter and ¢ is a
complex-valued function of x and ¢t. By choosing f = 0 and ay = 2a1 = 2 in
this equation, we can easily see that the first three terms form the standard NLS
equation (1.1). Generally, the Kodama—Hasegawa higher-order NLS equation
(1.2) may not be completely integrable if some restrictions are not imposed on
the real constants v; (i = 1,2,3). Until now it is known that, besides the NLS
equation (1.1) itself, there are four cases in which integrability can be proved via
the IST. These are the Chen—Lee—Liu [6] derivative NLS equation (1 : 2 : y3 =
0:1:0), the Kaup—Newell [17] derivative NLS equation (y; : 2 : 3 =0:1:1),
the Hirota [16] NLS equation (71 : 72 : y3 = 1 : 6 : 0), and the Sasa—Satsuma [33]
NLS equation (y; : y2:y3=1:6:3).
In this paper, we consider the Hirota [16] NLS equation

gt + o (qgcac + 2|Q|ZQ) +1i (QCCSCJ? + 6‘Q|2q:t) =0, a,8€R, (13)

in which as = 2a; = 2. This equation is commonly known as the Hirota
equation (HE), and we will denote it as such from now on. The HE (1.3) can
be used to describe the wave propagation of ultrashort light pulses in optical
fibers [1,19,20,23,26,36]. It is very interesting to see that the Hirota equation
(1.3) is the sum of the NLS (1.1) equation (o« = 1, 8 = 0) and the complex version
of the modified Korteweg-de Vries (mKdV) equation (o = 0,5 = 1),

qt + Qrax + 6|Q|2q:p =0 (1.4)

which is completely integrable [16,34]. In the resent years, there has been some
interest in solutions of the HE (1.3) obtained by Darboux-type transformations
[3,22,32]. These solutions are often written in terms of determinants.

In 1882, the French mathematician Jean Gaston Darboux [7] introduced a
method for solving the Sturm-Liouville equation called Darboux transformation
(DT) afterwards. Almost a century later, in 1979, Matveev [24] realized that the
method given by Darboux for the spectral problem of second order ordinary differ-
ential equations can be extended to some important soliton equations. Darboux
transformations are one of important tools in studying integrable systems. They
provide a universal algorithmic procedure to derive exact solutions of integrable
systems.

In the present paper, for the first time we construct a standard Darboux
transformation for the Hirota equation (1.3). We underline that the method we
use here is based on Darboux’s [7] and Matveev’s original ideas [24,25]. There-
fore, our approach should be considered on its own merits. Furthermore, our
solutions for the HE are written in terms of quasideterminants [8, 9] rather than
determinants. It has been proved that quasideterminants are very useful for con-
structing exact solutions of integrable equations [10,11,21,29,31,35,41], enabling
these solutions to be expressed in a simple and compact form. Finally, we prove
that the DT we present here can be used to obtain various solutions of the HE
(1.3) such as multi-solitons, breathers and rogue waves.

In recent years, rogue waves (RW) have been widely studied. It is not easy
to give a full definition of the RW due to its complex phenomenon. In the ocean
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environment, the RW is defined as a surface wave that is abnormally large. The
amplitude of this wave is two or three times higher than those of its surrounding
waves. On mathematical aspect, rogue waves can be expressed as the rational
function solutions of nonlinear evolution equations. A typical example of rogue
wave is the Peregrine soliton [30]. In 1983, this solution was first presented by
the British mathematician Howell Peregrine as the fundamental rational solution
of the NLS equation (1.1) in the following form:

2it |1 4(1 + 4it)

- 1.5
14 422 + 16¢2 (1.5)

qg=2=e

For the NLS equation, the second-order rogue wave solution was constructed by
Akhmediev and his co-workers [2]. In general, the DT cannot be directly used to
construct rational solutions for evolution equations. In [13], Gue et al. proposed
a simple method (the generalized DT) for constructing higher-order rogue wave
solutions of the NLS equation (1.1). In this paper, we construct the first-order RW
solutions of the Hirota equation (1.3) from the Taylor expansion of the breather
solutions as a particular example for non-zero seed solutions. The higher-order
RW solutions of the Hirota equation are constructed basing on the gDT [3,13].

This paper is structured as follows. In Section 1.1 below, we give a brief
review of quasideterminants. In Section 2, we establish a 2 x 2 eigenfunction and
a corresponding constant 2 X 2 square matrix for the eigenvalue problems of the
Hirota equation (1.3) using two symmetries of the Lax pair of the HE. In Section
3, we state a standard Darboux theorem for the Hirota system. We review the
reduced DTs for the HE, which can be considered as a dimensional reduction
from (2+1) to (14 1) dimensions. In Section 4, we present the quasideterminant
solutions for the HE constructed by the DT. In Section 5, the multi-soliton and
breather solutions of the Hirota equation are given for both zero and non-zero seed
solutions as particular solutions of the HE. Section 6 is devoted to the construction
of the first-order rogue wave solutions of the HE (1.3). The conclusion is given
in the final Section 7.

1.1. Quasideterminants. In this short section we will list some of the
key elementary properties of quasideterminants used in the paper. The reader is
referred to the original papers [8,9] for more detailed and general treatments.

Let M = (m;;) be an n x n matrix with entries over a ring (noncommutative,
in general) having n? quasideterminants written as |M|;; for i, j = 1,...,n. They
are defined recursively by

. 1
‘M’ij :mij —T'l]- (M”) C; (1.6)
where rf represents the row vector obtained from the i*" row of M with the j**
element removed, c§- is the column vector obtained from the j'* column of M

with the i element removed and M¥ is the (n—1) x (n — 1) submatrix obtained
by deleting the i** row and the j** column from M. Quasideterminants can be
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also denoted as shown below by boxing the entry about which the expansion is
made,

|M|ij =

If the entries in M commute, then the quasideterminant |M|;; can be expressed
as a ratio of determinants

- det M
o= (1)t
|M|l] - ( 1) det MU (17)
2. Hirota equation
Let us consider the coupled Hirota equations:
qr — i (me + 2(]27") + 08 (qyc:m: + 6q7“q;p) =0,
re + i (TM + 2qr2) + B (rygs + 6qrry) =0, (2.2)

where ¢ = ¢(z,t) and r = r(x,t) are complex valued functions. Equations (2.1)
and (2.2) reduce to the Hirota equation (1.3) when r = ¢*. Here the asterisk
superscript on ¢ denotes the complex conjugate.

The Lax pair [32] for the coupled Hirota equations (2.1)—(2.2) is given by

L=08,+J\—R, (2.3)
M =0y +4BJN3 +2UN2 — 2V — W,

where J, R, U, V and W are 2 x 2 matrices

(i 0 (0 ¢ ~ (ia —2fq
J_<O —i)’ R_<—T 0)’ U_(QBT —ia)’ (2.5)

_ iﬁqr aq + iﬁqyc
 \—ar+ipr, —ifgr )’
W = toqr + B (qrac - qu) 10y — 6 (me + 2(]27') (2 6)
iary + 3 (Txm + 2qr2) —iaqr — B(qry —rqz)) ’

Here A is a spectral parameter. It can be seen that the potential matrix R in
(2.5) has two symmetry properties. One of them is that it is skew-Hermitian:
R' = —R. The other one is that SRS~ = R*, where

0 1
s=(% ),
Let ¢ = (,9)T be a vector eigenfunction for (2.3)-(2.4) for the eigenvalue A so

that Ly(¢) = Mx(¢) = 0. Using the second symmetry, it can be seen that ¢ =
S¢ = (¢v*, —¢*)T is another eigenfunction for eigenvalue A* such that Ly«(¢) =
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My«(¢) = 0. Using these vector eigenfunctions we can define a square 2 X 2
matrix eigenfunction 6 with 2 x 2 eigenvalue A

o = (i ‘i;), A= <3 AO) (2.7)

0, + JOA — RO = 0, (2.8)
0, + 43JON> + 2UOA% — 2VOA — W6 = 0.

satisfying

3. Darboux transformations and dimensional reductions

3.1. Darboux transformation. Let us consider the linear operators

n n
L=0,+Y wdy, M=0+> v, (3.1)
i=0 i=0
where u;,v; are m X m matrices. The standard approach to Darboux transfor-
mations [7,24,25] involves a gauge operator Gy = 09,0~1, where 0 = 0(z,y,t) is
an invertible m X m matrix solution to a linear system

If ¢ is any eigenfunction of L and M, then ¢ = Gy(¢) satisfies the transformed
system

L(¢) = M(¢) =0,
where the linear operators L = GgLG(;1 and M = GQMG(;1 have the same forms
as L and M:
L=0,+Y wd, M=0+» 00 (3.2)
i=0 i=0

3.2. Dimensional reduction of Darboux transformation Here we de-
scribe a reduction of the Darboux transformation from (24 1) to (1 + 1) dimen-
sions. We choose to eliminate the y-dependence by employing a ‘separation of
variables’ technique. The reader is referred to the paper [27] for a more detailed
treatment. We make the ansatz

¢ = ¢T($7t)e>\y7 0= 9T(£7t)eAy7

where A is a constant scalar and A is an N x N constant matrix and the super-
script 7 denotes reduced functions, independent of y. Hence, in the dimensional
reduction we obtain 8; (¢) = Aig and 8; (6) = OA?, and thus the operator L and
the Darboux transformation G become

L"=0,+ Y w), G =Xx-0"A0")", (3.3)
=0
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where 0" is a matrix eigenfunction of L" such that L" (") = 0, with \ replaced
by the matrix A, that is,

9; + Zn: uigrAi =0.
1=0

Below we omit the superscript r for ease of notation.

3.3. Iteration of reduced Darboux transformations. In this section,
we consider the iteration of the Darboux transformations and find closed form
expressions for them in terms of quasideterminants.

Let L be an operator, form invariant under the reduced Darboux transforma-
tion Gy = A — OAH~! discussed above.

Let ¢ = ¢(z,t) be a general eigenfunction of L such that L(¢) = 0. Then

¢=Gy(d) =Xp— 0N =

0 o
eA

is an eigenfunction of L = G(;LG(;1 so that ﬂ(é) = \o. Let 0; fori=1,....n, be
a particular set of invertible eigenfunctions of L so that L(#;) = 0 for A\ = A;, and

introduce the notation © = (61,...,6,). To apply the Darboux transformation

the second time, let 6y = 61 and ¢;;; = ¢ be a general eigenfunction of Ly =

L. Then ¢ = Gy, 8¢[1]) and Oy = P[ylg—6, are eigenfunctions for Ly =
-1

Ge[l] L[l} Ge[l] .

In general, for n > 1, we define the nth Darboux transform of ¢ by
Plnt1] = APpn) — Q[n]AnQ[;]lqb[n], (3.4)

in which 03 = ¢pl¢—e,. For example,

0
b = Ao — O A0 6= | o
e
01 02 4]

b3 = APp2 — 9[2}A295}1¢[21 —|61A1 6Ay MO
91[\% (92/\% )\2¢

After n iterations, we get

0 Oy ... O, ¢
O1A1 Oohs...00A, MO

2 2 g 2
Bs1) = 91{\1 eg{\Q...en'An A2

alAgL @xg Gn'AQ
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4. Constructing solutions for Hirota equation

In this section, we determine the specific effect of the Darboux transformation
Gy = A — OAO~! on the operator L given by (2.3). Corresponding results hold
for the operator M given by (2.4). Here the eigenfunction 6, the solution of the
linear system (2.8)—(2.9), is given explicitly with the eigenvalue A in (2.7). From
LGy = GyL, the operator L = 8, + JXA — R is transformed to a new operator L
in which J is unchanged and

R=R—[JOA07]. (4.1)

For notational convenience, we introduce a 2 x 2 matrix @ such that R = [J, Q],

and hence
1 q
@= 2 <7“ > ’

where the entries left blank are arbitrary and do not contribute to R. From (4.1),
it follows that

Q=0Q—0A07" (4.2)
which can be written in a quasideterminant structure as

~ 0 I

We rewrite (4.2) as
Q= Qu — 9[1]/\19[_1]1,

where Q) = Q, Q) = Q, 0 = 61 = 0 and A; = A. Then, after repeating

Darboux transformations n times, we have
Qpt1) = Q) — Aty (4.3)

in which ) = ép g0, We express P, ) in the quasideterminant form as

6, g ... O 02
0174 Ooha...0,A,  Oo
. — + . D .
Quan =QH g fn-2 g an=2 g An2 g,
01N AL 0N I
LAY OAL .. O,AL

where each 6;, A; as a 2 x 2 matrix

() w63 4
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in which i = 1,...,n. Now let ©™ be a 2 x 2n matrix such that

(n)
O = (G1AY, ..., 0,A") = (i“’)) :

where

P = (Mo, AT™0T, - Aron, At
0 = (Afgr, =01, A, = A 0)

denote 1 x 2n row vectors. Thus, (4.4) can be written as

B © E
Qi =@+ o) )
where © = <0iAg71)‘ . and F = (eg,—1,€2,) denote the 2n x 2n and the
,)=1..,n

2n x 2 matrices respectively, in which e; represents a column vector with 1 in the

ith row and zeros elsewhere. Hence, we obtain
@ €oan—1 @ €on
o o] e [o]
Qi =@+
@ €on—1 é €on
) @ ™) @

Here we immediately see that a quasideterminant solution g, ) of the Hirota
equation (1.3) along with its complex conjugate Tn+1) can be expressed as

~

O e, O e

(™) @ (™) @

where it can be easily shown that the reduction rp, 1) = qE‘n +1] holds.

~

Qn+1) = 4 + 27 s Tt =T+ 21 , (4.6)

4.1. Explicit solutions. In order to construct explicit solutions for the
Hirota equation (1.3), we consider the quasideterminant solution given by (4.6)
in which we obtain

1 Wy e P o 0
Y1 -1 Yn -, 0
o1 A1 WX nAn PEAL 0
REERN —QIAT o g —pAn 0
q[n+1] =q+ 2 : : . . (47)
D P PR 7 R P Wt
G I AT et
TP VD ¢ LR VN 0 N 1]
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Here ¢; and ; are scalar functions such that the eigenfunction ¢; = (¢, %)T
denotes n distinct solutions of the spectral problem L(¢;) = M(¢;) = 0 with the
associated eigenvalue \;, where the operators L, M are given by (2.3)-(2.4) so

that

Gjo+ JOjNj — Rop; =0,
Gt +ABI ;NS +2U A5 — 2V g\ — W =0, (4.8)

in which j =1,...,nand J, R, U, V, W are the 2 x 2 matrices given by (2.5)—
(2.6). In the next section, we will present some explicit solutions of the equation
(1.3) for the cases n = 1,...,3. For the one-fold (n = 1), two-fold (n = 2) and
three-fold (n = 3) Darboux transformations, the solution (4.7) yields

1 Y0
Qo =q+2i| v1 —p] 1], (4.9)
pix YiAr [0]

®1 (0H ©2 (2

L 2

0
0
0
1
eIA2 I oAl usas? (0]

qi3 — ¢4 + 2i |p11 TZJTX{ PaAo ’(/)5)\3 (4.10)
1A —IAT Y2da —p5A;
and
P1 (H ©2 (B ©3 V3
U1 =] (0 —p5 V3 —3
P11 YIAT wada 3N p3d3 Y5NS
qup =q+2i|P1Ar —@IAT Yok —0hA3 P3d3 —p3A3 (4.11)

e1AT  UIAT 02X Y55 p3A] Y5Ag?
PIAT —QIAT oA —BA3E Ay —psAs?
e1AT VTN 0o NS p3A] YAg?

@}—‘OOOOO

respectively. The quasideterminant solutions (4.9)—(4.10) can be expanded as

. . o107
oy =q—2i(AM = \]) ——— (4.12)
. o1 + [1
and
An (le [pal” + 0, |¢2!2) P17 + Ao (Alz e1]” + At |1l)1|2) P23
q3 =q—2 2 . w12 w12 2 )
A1 = A2|” 1905 + 15| + |A = AS|7 p19he — patn |
(4.13)
where

Alr=XM =X, Aa=X—2A3, A=A —X) M —A)),
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12 = (M — A2) (AT — A2).

Moreover, the solution (4.11) can be expressed in terms of determinants such that

D
G = q = 2i% (4.14)

in which

®1 (0H P2 (% ®3 V3
L T 2 T 2
Do [P1Ar UTAT w2de WAL p3As dsAg
ViIAL —OIAT Yoda —@BAS UsAs —@5A;
E1AT IAT @2A5 UEASE @03Af PEAR?
eIAT PIATS 0aAd iR osA] A
©1 (0H P2 V3 ©3 V3
Y = Y2 =95 Y3 =)
A — P11 PIAT V2o P3A; P33 VY33 )
1A —QIAT Y2da —@5A5 P33 —p3A3
P1IAT UIAT oAl UsAST psA] YAl
PiIA] —OiA? Al —esAs? YsA] —giAy

5. Particular solutions

5.1. Solutions for zero seed. For ¢ = r = 0, the spectral problem (4.8)
becomes

Gja+ JPiN; =0,
bt + (482 +2a03) Jg; =0,

which has a solution ¢; = (¢, wj)T such that
0; (2,8, \)) = 6—2‘[ij+(20¢)\§+4,8)\?)75]7 b (2t )) = ei[)xj;t+<2a)\?+4ﬂ)\?)t]7 (5.1)

where j =1,...,n.

Case I (n=1). By letting \; = £ + in and substituting the functions ¢;
and 11 given by (5.1) into (4.12), we obtain the one-soliton solution of the Hirota
equation (1.3) as

gz = 2ne” 2120l =P[R5 gooh (2m 4 8 [agn + 8 (3620 — n*) ¢])

which yields
‘2

‘q[ﬂ = 4772 sech? (27]1’ +8 [afn +5 (35277 - 773)] t) :

This solution is plotted in Fig. 5.1.
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Fig. 5.1: One-soliton solution |gjy| of the HE (1.3) when a = =1, =0.8,n =
1.6. Figure (a) describes its surface and (b) gives its profiles at different times
t =—1.8 (red), t = 0 (blue), t = 1.8 (green).

Case II (n=2). Let \; =&+ n1 and Ay = £ + 2 such that nym2 # 0. By
substituting the corresponding eigenfunctions 1,11 and g, 19, given by (5.1),
into (4.13), we obtain the two-soliton solution of the Hirota equation (1.3) as

nie~"9" cosh fo — noe %92 cosh f;

2 2
qp =4 (m —
13 ( ) (m — 772)2 cosh F1 + (m + 772)2 cosh Fy — 4mymg cos F3

which yields

‘2 — 16 (772 2)2 77% cosh? f1+ 77% cosh? f2 — 2mma cosh f1 cosh fo cos F3

1~ T

g3 -

[(771 — 772)2 cosh F1 + (m + 172)2 cosh Fy — 4mym cos F3
where

fi=2m [z +4(a€+B[3 —ni])t].
fo=2m [z +4(af+ B3 —n3]) 1],
g1 =26z +4 [0 (€ — n7) + 288 (€2 = 3n7) ] ¢,
g2 = 26w +4 [a (& —n3) +28¢ (€% —3m3)] ¢

and 1 = fi1 + fo, Fo = fi — f2, F3 = g1 — g2 such that

Fy=2(m +m) [z +4 (ot + B 36 + mm — i — n]) 1],
Fy=2(m —m) [x+4 (€ + B[3% —mm —nf —n3]) 1],
Fy =4 (ny —n7) [+ 68¢] t.

By choosing appropriate parameters, the two-soliton solution of the Hirota equa-
tion (1.3) is plotted in Fig. 5.2.
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Fig. 5.2: Two-soliton solution |gj3| of the HE (1.3) when o = 8 =1, £ = 0.5,
nm = 0.7 and 72 = 1.1. (a) Surface diagram. (b) Contour diagram.

Case III (n =3). In this case, we have three eigenvalues A1, Ao and As.
Let us choose A\; = i, Ay = 2¢ and A3 = 3i. By substituting the corresponding
eigenfunctions (p1,11)7, (p2,¥2)7 and (¢3,v3)T, given by (5.1), into (4.14),
we obtain the three-soliton solution of the Hirota equation (1.3). By choosing
appropriate parameters, this solution is plotted in Fig. 5.3.

Fig. 5.3: Three-soliton solution |gyy)| of the HE (1.3) when A; = i, A2 = 2i and
Az = 3i. (a) Surface diagram. (b) Density diagram.

5.2. Solutions for non-zero seed. In this subsection, for ¢,r # 0 and
r = ¢*, we take ¢ = ce™ as a plane wave solution of the Hirota equation (1.3),
where y = ax + bt in which a,b,c¢ € R under the condition b = « (202 - a2) +
15} (a3 — 6a02). We use this as a seed solution. Substituting ¢ = ce into the
linear system (4.8) and then solving for the eigenfunction ¢; = (goj,wj)T
obtain

, We

1, L., 1.
pj (2,1, A5) = e2™ (Cjem’ +eje 2m) ’
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i(z,t, ) = et (Geat +63~'6_%in 5 5.2
j J j J
where

Ci e
v = s (x+kjt), ¢ :ii(a+2Aj+8j), € :Z?]C(G-FQ)\]‘—S]')

in which s; = \/(a +20)2 442, kj = a2\ —a) + B (a2 —2a\; + 4)@ — 202)
and c;, e; are arbitrary constants such that j =1,...,n.

Case IV (n =1). Let the eigenvalue \y = £ + in. For simplicity, choose
a = —2¢ and e; = dc; = dc in which §2 = 1. Substituting the seed solution ¢ =
ce’ and the functions @1, 11, given by (5.2), into (4.12), we obtain the following
breather solution:

g = ce™ <1

1 cosh(Qt) — dw sinh(Qt) + 6n cos[2w(x + I't)] + dwsin[2w(z + I't)]
c? cosh(Qt) + dn? cos[2w(x + T't)] + dnw sin[2w(x + T't)] ’

(5.3)
where

p=—2x+ [2a (¢ —26%) +48 (3¢°¢ — 26%)] t,
w=VER,

Q = dnw(a + 65¢),

I =4af + 28 (662 — 2n° — c?) .

2 2 2
Thus, we have ‘qm‘ =L JQG , where

F = (2172 - 02) cosh(Qt) + 0n? cos[2w(x + T't)] 4+ dnw sin[2w(z + IT't)],
G = 2nw sinh(2t)
H = ¢ cosh(Qt) 4 61 cos[2w(x + T't)] + dnw sin[2w(x + T't)].

Fig. 5.4 shows the dynamical evolution of the breather solution of the Hirota
equation (1.3).

6. Rogue wave solutions

In this section, we consider the breather solution (5.3) of the HE (1.3) with
d = —1. Here we use the Taylor expansion approach [2,32] in order to obtain
the rogue wave solutions of the HE from the breather solution (5.3). The Taylor
expansion of the breather solution (5.3) with the limit ¢ — 71 gives us the first-
order rogue wave solution of the Hirota equation:

1+ 4in? (a +6B€)t

5 5 , (6.1)
1+ 8n* (a+ 68812 + 202 (x + T't)” — 2n (x + Tt)

q2) = nei“ —1+2
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Fig. 5.4: Breather solution [gp| of the HE (1.3) whenc=0=1,a=8=1,{=
0.04 and n = 0.76. (a) Surface diagram. (b) Density diagram.

where
p=—2x+bt, T =4af+68(26%—n?).
in which b = 2« (n2 — 252) + 45¢ (3772 — 252). This is the simplest RW solution

of the HE (1.3). This rogue wave solution of the Hirota equation is shown in Fig.
6.1(a). Furthermore, by choosing @ = 1,8 = 0, the rogue wave solution (6.1)

Fig. 6.1: The first-order rogue wave solutions of (a) the HE (1.3) with parameters
a=p=1,£=0.5and n=1. (b) the NLS (1.1) equation when £ = 0 and n = 2.

reduces to the first-order RW solution of the NLS equation (1.1) :

1+ 4in’t
1+ 8nt2 + 202 (x4 46t)% — 20 (z + 4€t) ]

gy =ne™ | =1 +2

(6.2)

This is the fundamental Peregrine-like rogue wave solution which is shown in Fig.
6.1(b). Finally, we should point out that the higher-order RW solutions of the HE
(1.3) can be constructed by different methods, for example, by using gDT [3,13].
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7. Conclusion

In conclusion, we have studied a standard Darboux transformation to con-
struct quasideterminant solutions for the Hirota equation (1.3). These quaside-
terminants are expressed in terms of solutions of the linear partial differential
equations given by (4.8). It should be highlighted that these quasideterminant
solutions arise naturally from the Darboux transformation we present here. Fur-
thermore, the multi-soliton, breather and rogue wave solutions for zero and non-
zero seeds are given as particular examples for the HE. The examples of these
particular solutions are plotted in the figures 5.1-6.1 with the chosen parame-
ters. Finally, we point out that the method we present in this paper allows us to
construct exact solutions for other integrable nonlinear evolution equations such
as [12,28,37].
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IleperBopenus /lapby aJsi piBHaHHA XipoTu

Halis Yilmaz

PiBusaasa XipoTu € iHTErpoBHUM HEJIIHIHHUM PIBHSAHHSIM BHIIOTO TTOPSI-
Ky Tumy Illpeninrepa, sike ONMHUCY€ MOMUPEHHS YJILTPAKOPOTKUX CBITIOBUX
IMITYJIbCIB B ONTUYHUX BOJIOKHAX. MU MpeCTaBIsIEMO CTaHIAPTHE IIEPETBO-
peuns lapby mns piBasiaus XipoTw, a moTiM Oy/IyeMo HOro Kpasimerepmi-
HaHTHI po3B’sa3ku. B sKOCTI IpUKIaIiB HABEIEHO MYJILTUCOIITOHHI 1 Opu3ep-
Hi PO3B’SI3KM, & TAKOXK PO3B’SI3KM y BUTJISAI TTOOIMHOKNX XBUJb JIJIsT PiBHS-
HHs XipoTH B IBHOMY BUIVISJI.

KitogoBi cioBa: piBusinuast Xiportu, mneperBopenus JlapOy, kBasime-
TepMiHAHTHI PO3B’sI3KM, MYJIbTUCOITOHHI PO3B’SI3KU, OpU3EpHi pO3B’SI3KH,
PO3B’SI3KU y BUIJISI TOOJUHOKUX XBHUJIh
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