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Characterization Theorems for the

B-q-Binomial and the q-Poisson Distributions
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In this paper, the q-binomial and the q-hypergeometric distributions are
redefined and re-introduced in the compact form. The redefined distri-
butions are named B-q-binomial and B-q-hypergeometric. Furthermore,
the generalization of the well-known Patil and Seshadri characterization
is reported in the q-calculus. The characterizations of B-q-binomial and
B-q-hypergeometric distributions are presented by using a conditional q-
distribution. A necessary and sufficient condition identifying the q-Poisson
distribution is outlined.
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1. Introduction

A deep investigation in the mathematics history unveils that quantum cal-
culus, often called q-calculus, was initially developed by the pioneer Euler in
Arithmetic around 1748 and dealt with the enumeration problems.

Later on, Heine and Gauss studied the q-analogues of hypergeometric func-
tions and demonstrated that these q-functions are solutions of linear q-differential
equations of second order.

In the early twentieth century, Jackson [11] initiated a q-analysis by identify-
ing the q-derivative, the q-integrals, also called Jackson integral, and systemati-
cally defined the analogues of some common functions such as the q-exponential,
the q-Bessel functions, the q-gamma, and the q-beta functions, etc.

Recently, many researchers showed a keen interest in exploring q-calculus and
highlighted its applications in interdisciplinary subjects such as various areas of
pure and applied mathematics, computer sciences and theoretical physics [13,16].
The q-calculus is viewed as a bridge between Mathematics and Physics.

In mathematical physics and probability, the q-distribution was introduced
by Dı́az [6–8] in the continuous case and by Kupershmidt [12] in the discrete
case. The hypothesis that the probability of success (or failure) at a trial varies
geometrically, with rate (proportion) q, yields the introduction of discrete q-
distributions. Exploring these distributions is substantially facilitated by the
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wealth existing with q-sequences and q-functions, in q-combinatorics, and the
theory of q-hypergeometric series.

The characterization of the q-distributions remains under investigation due
to its fundamental role in the linkage between different q-distributions. For
that, a large number of researching papers have been published in the recent
years [1–3,10,13]. To the best of our knowledge, Boutouria et al. [1,10] were the
first to study the characterization of the q-distribution in the continuous case.
Otherwise, the investigation of the q-distribution in the discrete case is still a
virgin researching area. In this paper, we report for the first time the general-
ization of the Patil and Seshardi [14] characterizations in the q-calculus theory.
The paper is structured as follow: in Section 2, some preliminary concepts re-
lated to q-addition operator and certain essential results are presented to build
up our work. In Section 3, based on the q-addition operator and the special
q-functions, the q-Binomial and the q-hypergeometric distributions are redefined
and re-introduced in the compact form and named as Bouzida q-binomial and
Bouzida q-hypergeometric (B-q-binomial and B-q-hypergeometric). In section
4, the generalization of the well-known Patil and Seshardi characterization [14]
is reported in the q-calculus. The characterizations of B-q-binomial and B-q-
hypergeometric distributions are presented by using conditional q-distribution.
A necessary and sufficient condition identifying the q-Poisson distribution is out-
lined. The last section wraps up the conclusion and provides new perspectives
for future works.

2. Preliminaries

In this section, some useful basic definitions [11] are introduced. We shall
start with the notion of [n]q given by

[n]q =
qn − 1

q − 1
= 1 + q + · · ·+ qn−1.

We also denote, for all n ∈ N,

[n]q! =

{
1 if n = 0,

[n]q[n− 1]q . . . [1]q otherwise.

For x ∈ R,
[x]q =

1− qx

1− q
.

If x goes to ∞, we obtain [∞]q = 1
1−q that is called a q-analogue of ∞.

Note that [∞]q approaches 1 if q goes to 0 and goes to +∞ if q approaches 1.
We recall some usual notations used in the q-theory.
Jackson in [11] proposed a q-analogue of the exponential function ex indicated

by

exq =
∞∑
n=0

xn

[n]q!
.
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The q-analogue of the identity exe−x = 1 is exqE
−x
q = 1, where the function Exq is

defined by ex1/q, is given also by

ex1/q = Exq =
∞∑
n=0

q
n(n−1)

2
xn

[n]q!
.

The q-logarithm function logq(x) is the inverse of the q-exponential function exq ,
and the function Logq(x) is the inverse function of Exq .

Chung et al. [5] proposed the q-addition operator and discussed its properties.
The q-addition operator is defined by(a⊕q b)n =

n∑
k=0

qC
n
k a

kbn−k, n ∈ N, a 6= b,

(a⊕q a)n = (a+ a)n = 2nan,

where

qC
n
k =

[n]q!

[k]q![n− k]q!
.

Equivalently, ⊕q is defined as

⊕q : R2 → R, (a, b) 7→ a⊕q b

such that a⊕q b is the unique real verifying e
a⊕qb
q = eaqe

b
q.

From the above definition, we get the property

k(a⊕q b) = ka⊕q kb, k ∈ R.

It is easy to see that this operator is commutative, i.e., a ⊕q b = b ⊕q a. In
addition, if we take b = a, then we have a⊕q a = a+ a = 2a. Finally, if we take
b = 0, we obtain a⊕q 0 = 0⊕q a = a.

The q-addition operator has the property x, y, z ∈ C,

(x⊕q y)⊕q z = x⊕q (y ⊕q z)].

This property (associativity) is proved as follows. We must prove that

[(x⊕q y)⊕q z]n = [x⊕q (y ⊕q z)]n.

But this is equivalent to

n∑
k=0

qC
n
k

k∑
l=0

qC
k
l x

lyk−lzn−k =
n∑

k′=0

qC
n
k′

n−k′∑
l′=0

qC
n−k′
l′ yl

′
zn−k

′−l′ .

Now we put l = k′ and l′ = k − l to conclude the proof. The proof of the
distributive law is obvious.

This operator permits to express the properties of the q-logarithm and q-
exponential functions in more compact forms:
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(i) eaqe
b
q = e

a⊕qb
q ;

(ii) enaq = (eaq)
n, n ∈ N;

(iii) logq(ab) = logq(a)⊕q logq(b);

(iv) logq(a
n) = n logq(a), n ∈ N.

The q-subtraction is defined as a 	q b = a ⊕q (−b), a 6= b, and if we take b = a,
then we have a	q a = a− a = 0.

Chung et al. [5] defined the power function and used the q-operator in its
properties.

A power function based on q-addition is defined by axq = E
xLogq(a)
q for all a >

0.
This function satisfies axqa

y
q = a

x⊕qy
q ,

axq
ayq

= a
x	qy
q , (ax)yq = axyq and (ab)xq =

axq b
x
q for all a, b > 0.

3. The discrete q-distributions

In this section, some classical q-distributions and their properties are exhib-
ited. We shall start by the the q-Bernoulli distribution.

3.1. The q-Bernoulli distribution. The Bernoulli distribution of a ran-
dom variable takes the value 1 with probability p and 0 value with probability 1−
p, that is, the probability distribution of any single experiment giving success or
failure. The problem here is that if there is an error in this experiment, then the
probability seems to be inaccurate. The solution of this problem can be derived
from the theory of q-calculus. For this reason, we change the parameter p by [p]q
with [p]q = 1−qp

1−q . From this perspective, the q-Bernoulli distribution is expressed
by

Pq(X = 1) = [p]q and Pq(X = 0) = 1− [p]q.

The q-Bernoulli distribution is more general than the classical Bernoulli distri-
bution. In fact, if q goes to 1, then [p]q approaches p.

We can imagine that the coin is not really well balanced, and we can translate
the default by “q” with 0 < q < 1. Basing on this definition, we can propose the
B-q-Binomial distribution.

3.2. The B-q-binomial distribution. Kupershmidt [12] proposed a q-
analogue of basic discrete probability distributions as the q-Binomial distribution
(K-q-binomial) using the following expression:

(a+̇b)n =

n−1∏
i=0

(a+ qib), n ∈ N.

Bouzida et al. [9] defined the B-q-binomial distribution with parameters n and [p]q
as a discrete probability distribution of the number of successes in a sequence of n



186 Imed Bouzida

independent experiments. A random variable contains a single bit of information:
success, with probability [p]q, or failure, with probability 1 − [p]q. By referring
to the definition of the q-addition operator and the formulae of the q-binomial
polynomial, we define the B-q-binomial distribution by

Pq(X = k) =q C
k
n[p]k(1	q [p]q)

n−k, with k ∈ {0, . . . n}.

In fact,

n∑
k=0

Pq(X = k) =
n∑
k=0

qC
k
n[p]kq (1	q [p]q)

n−k = ([p]q ⊕q 1	q [p]q)
n = 1.

It is noteworthy to highlight that the B-q-binomial distribution introduced
has a compact form comparing to the K-q-binomial distribution.

3.3. The q-hypergeometric distribution. The q-analogue of the hyper-
geometric distribution presented by Kupershmidt [12] is defined according to the
q-Vandermonde formula

n∑
r=0

q(n−r)(M−r)q CMr qC
N−M
n−1 =

n∑
r=0

qr(r+N−M−n)q CMr qC
N−M
n−1 =q C

N
n .

In this section, we introduce the B-q-hypergeometric distribution concerning the
probability of r successes and random draws. In this respect, the drawn object
has a specific feature in n draws without replacement. Within this framework,
we may identify an error of minimization noted q, with 0 < q < 1. Within this
framework, we can identify an error of minimization noted by q, with 0 < q < 1.
In contrast, the B-q-binomial distribution portrays the probability of r successes
in n draws with replacement.

The B-q-hypergeometric distribution is based on the the formula of the q-
binomial theorem and the properties of the q-addition operator. It is given by

P (X = r) =
qC

M
r qC

N	qM
n	qr

qCNn
.

Our goal is to prove that

M∑
r=0

qC
M
r qC

N	qM
n	qr =q C

N
n .

The proof is based on the Cauchy product and the q-binomial theorem. Let M =
n⊕q m. In fact,

M∑
r=0

qC
M
r x

r = (x⊕q 1)M = (x⊕q 1)n⊕qm = (x⊕q 1)n(x⊕q 1)m

=
n∑
j=0

qC
n
j x

j
m∑
s=0

qC
m
s x

s =
∑
r

[∑
k

qC
n
k qC

m
r	qk

]
xr.

Thus the proof is complete.
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3.4. The q-Poisson distribution. The q-Poisson distribution was intro-
duced by Kupershmidt [12] and it was defined as a q-analogue of the Poisson dis-
tribution. Two major definitions of the q-Poisson distribution will be discussed
in this section.

Definition 3.1. The distribution of a random variable X is called Euler or
q-Poisson distribution with parameters λ and q if its probability function is given
by

Pq(X = x) = Eq(−λ)
λx

[x]q!
, x = 0, 1, . . . ,

where λ > 0.

Definition 3.2. Let X be a discrete random variable with probability func-
tion

P (X = x) = eq(−λ)
q(
x
2 )λx

[x]q!
, x = 0, 1, . . . , (3.1)

where λ > 0 and 0 < q < 1.
The distribution of the random variable X is called the Heine distribution

with parameters λ and q.

The Heine distribution is a q-Poisson distribution since the probability func-
tion (3.1), for q → 1, converges to the probability function of the Poisson distri-
bution. And using the expansion of the q-exponential function Eq(t) into a power
series, we have

Eq(t) =
+∞∑
x=0

q(
x
2 )

tx

[x]q!
.

Together with the relation
eq(−t)Eq(t) = 1,

it yelds that it sums to unity as required by the definition of a probability function.

4. Characterization Theorems

In 1964, Patil and Seshadri characterized the Poisson distribution which, for
independent variables X and Y , holds non-negative integral values and states
that if the conditional distribution of X given the total X + Y is a binomial
distribution with a common parameter p for all given values of X + Y, and if
there exists at least one integer i so that P (X = i) and P (Y = i) are both
positive, then X and Y are individually distributed in Poisson distributions.
Within the same framework, we explore results of this nature to characterize the
B-q-binomial and the q-Poisson distributions among the discrete distributions.

Suppose that the following assumptions are carried out about the random
variables X and Y, whose probability q-distributions are denoted by f(x) and
g(y):

1. X and Y are independent;
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2. X and Y are both discrete;

3. the conditional q-distribution of X given (X ⊕q Y ), denoted by

c(x, x⊕q y),

is such that
c(x⊕q y, x⊕q y)c(0, y)

c(x, x⊕q y)c(y, y)

is of the form h(x ⊕q y)/h(x)h(y), where h is an arbitrary non-negative
function.

Theorem 4.1. Under the assumptions 1, 2, and 3,

f(x) = f(0)h(x)Eaxq ,

where a is an arbitrary constant and f(0) is a suitable normalizer which makes
f(x) a probability function

g(y) = g(0)k(y)Eayq ,

where

k(y) =
h(y)c(0, y)

c(y, y)

and g(0) is the corresponding normalizer for g(y).

Proof. One has

c(x, x⊕q y) =
f(x)g(y)

r(x⊕q y)
,

where r(s) =
∑
f(x)g(s	q x). Hence,

f(x)g(y) = r(x⊕q y)c(x, x⊕q y). (4.1)

Put y = 0 in (4.1) and change x to x⊕q y to obtain

f(x⊕q y)g(0) = r(x⊕q y)c(x⊕q y, x⊕q y). (4.2)

In this step, dividing by f(x)g(y) and using (4.1), we obtain

f(x⊕q y)g(0)

f(x)g(y)
=
c(x⊕q y, x⊕q y)

c(x, x⊕q y)
. (4.3)

Setting x = 0 in (4.3) yields

f(y)g(0)

f(0)g(y)
=
c(y, y)

c(0, y)
. (4.4)

Departing from (4.3) and (4.4) makes it clear that

f(x⊕q y)f(0)

f(x)f(y)
=
c(x⊕q y, x⊕q y)c(0, y)

c(x, x⊕q y)c(y, y)
. (4.5)
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Then, using the assumption 3, we obtain

f(x⊕q y)f(0)

f(x)f(y)
=
h(x⊕q y)

h(x)h(y)
. (4.6)

We suppose that Φ(x) = f(x)
f(0)h(x) . Then (4.6) becomes Φ(x ⊕q y) = Φ(x)Φ(y).

The solution of this equation is Φ(x) = Eaxq , with a being an arbitrary constant.
Therefore, f(x) = f(0)h(x)Eayq . Using (4.4)

g(y) =
g(0)g(y)c(0, y)

f(0)c(y, y)
.

Hence,
g(y)g(0)k(y)Eayq ,

where

k(y) =
h(y)c(0, y)

c(y, y)
.

If there are two functions h1 and h2 satisfying 4.3, it is easy to infer that h2(x) =
h1(x) = Ebxq , with b being an arbitrary constant. It means that f and g remain
unchanged.

Now, we will characterize the B-q-binomial and the q-Poisson distributions.
These characterizations are based on Theorem 4.1 and the following two technical
lemmas.

Lemma 4.2. Let X and Y be two independent random variables according
to B-q-binomial distributions with respective parameters m and n. Then X ⊕q Y
is B-q-binomial distributed with parameter m⊕q n.

Proof. Let GX be the generating function of X. Then

GX =

n∑
k=0

P (X = k)tk =

n∑
k=0

qC
k
n([p]qt)

k(1	q [p]q)
	qk = ([p]qt⊕q 1	q [p]q)

n.

Therefore, the generating function of X ⊕q Y is given by

GX⊕qY (t) = ([p]qt⊕q 1	q [p]q)
n([p]qt⊕q 1	q [p]q)

m = ([p]qt⊕q 1	q [p]q)
n⊕qm.

The lemma is proved.

Lemma 4.3. Let X and Y be two independent random variables according
to the q-Poisson distribution with respective parameters λ and µ. Then X ⊕q Y
is q-Poisson distributed with parameter λ⊕q µ.

Proof. Let Z = X ⊕q Y and let Σn≥0ant
n, Σn≥0bnt

n and Σn≥0cnt
n be the

generating functions of X, Y and Z respectively. Then we obtain

an =
E−λq λn

[n]q!
and bn =

E−µq µn

[n]q!
,
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cn is obtained by performing the Cauchy product of these two series. Therefore,
we have

cn =

n∑
k=0

akbn−k =
E
−(λ⊕qµ)
q

[n]q!

n∑
k=0

[n]!
λkµn−k

[k]q![n− k]q!

=
E
−(λ⊕qµ)
q

[n]q!

n∑
k=0

qC
k
nλ

kµn−k =
E
−(λ⊕qµ)
q (λ⊕q µ)n

[n]q!
.

Then Z is q-Poisson distributed with parameter λ⊕q µ.

Theorem 4.4. Let X and Y be two positive independent real random vari-
ables.

Then X and Y have the B-q-binomial distribution with the same parameters
p and n if and only if the conditional q-distribution of X given the total X ⊕q Y
is the B-q-hypergeometric distribution with parameters n and 2n.

Proof. Necessity. Let X and Y have the q-binomial distribution. Then, using
Lemma 4.2, X⊕qY has the q-binomial distribution with parameter 2n. Therefore,
we have

P (X = k/X ⊕q Y = n) =
P (X = k)P (y = n	q k)

P (X ⊕q Y = n)

=
qC

k
n[p]kq (1	q [p]q)

n	qk
qC

n	qk
n [p]n−kq (1	q [p]q)

k

qCn2n[p]nq (1	q [p]q)n

=
qC

k
nqC

n	qk
n (1	q [p]q)

n	qk(1	q [p]q)
k

qCn2n(1	q [p]q)n

=
qC

k
nqC

n	qk
n

qCn2n
.

Sufficiency. In Theorem 4.1, we take

c(x, x⊕q y) =
qC

n
x qC

n
z	qx

qC2n
z

.

Then,

h(x) = qC
n
x , k(y) = qC

n
y , f(x) = f(0)qC

n
xE

ax
q , g(y) = g(0)qC

n
yE

ay
q .

Let Eaq = [α]q. It is clear that

f(0) = (1⊕q [α])−n and g(0) = (1⊕q [α]q)
−n.

Therefore,

f(x) = qC
n
x θ

x(1	q [θ]q)
n	qx and g(y) = qC

n
y θ

y(1	q [θ]q)
n	qy,
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where

[θ]q =
[α]q

1⊕q [α]q
.

From the last equality, we get

[α]q =
[θ]q

1	q [θ]q
,

which completes the proof.

The characterization of the q-Poisson distribution is discussed in the following
theorem.

Theorem 4.5. Let X and Y be two positive independent real random vari-
ables. Then X and Y have q-Poisson distributions with parameter λ if and only
if the conditional q-distribution of X given the total X ⊕q Y is a B-q-binomial
distribution with a common parameter p.

Proof. Necessity. Let X and Y have the q-Poisson distribution. By using
Lemma 4.3, we get that X ⊕q Y has the q-Poisson distribution with parameter
2λ. Thus we obtain

P (X = k/X ⊕q Y = n) =
P (X = k)P (y = n	q k)

P (X ⊕q Y = n)

=

E−λq λk

[k]q !
E−λq λn−k

[n−k]q !
E−2λ
q (2λ)n

[n]q !

=
[n]q!

[k]q![n− k]q!2n
.

Hence, the conditional distribution of X given the total X ⊕q Y is B-q-Binomial
distribution with parameter p = 1/2.

Sufficiency. The sufficient condition of this characterization is based on The-
orem 4.1. Consider

c(x, x⊕q y) = qC
x⊕qy
x px(1	q p)x⊕qy(1	q p)−x

= qC
x⊕qy
x

(
p

1	q p

)x
(1	q p)x⊕qy.

We can notice that

h(x) =
1

[x]q!
and k(y) =

(
1	qp
p

)y
[y]q!

.

Therefore,

f(x) = f(0)
Eaxq
[x]q!

and g(y) = g(0)

(
1	q p
p

)y Eayq
[y]q!

.

We suppose that

Eaq = λ and
(1	q p)Eaq

p
= µ.
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Hence we get

f(x) = E−λq
λx

[x]q!
and g(y) = E−µq

µy

[y]q!
.

The theorem is proved.

Conclusion

In this paper, we characterized the B-q-binomial and the q-Poisson distri-
butions based on the q-addition operator and the conditional q-distribution.
These results generalize the well-known Patil and Seshadri characterizations.
The approval of the results is confirmed by comparing with the binomial dis-
tribution. The more q approaches 1, the more B-q-distribution approaches the
binomial distribution. These results reveal the relationships between the discrete
q-distributions and should be nominated as a primordial step in data processing
and simulation studies.
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Характеризацiйнi теореми для B-q-бiномiального i
q-пуассонiвского розподiлiв

Imed Bouzida

У цiй роботi заново перевизначено i заново введено в компа-
ктнiй формi q-бiномiальний i q-гiпергеометричний розподiли. Цi переви-
значенi розподiли названо B-q-бiномiальним i B-q-гiпергеометричним.
Крiм того, узагальнення добре вiдомих характерiзацiй Патiла i Се-
шадрi наведено в q-аналiзi. Характеризацiї B-q-бiномiального i B-q-
гiпергеометричного розподiлiв зображено з використанням умовного
q-розподiлу. Наведено необхiднi i достатнi умови, якi визначають q-
пуасонiвський розподiл.

Ключовi слова: q-аналiз, q-оператор додавання, характеризацiйна те-
орема
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