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In the present paper, we introduce the concepts of atomic systems for
operators and K-frames in separable quaternionic Hilbert spaces. These
concepts lead to a generalization of frames that have recently been studied
in [18], and allow us to reconstruct elements from the range of a linear
bounded operator in a separable quaternionic Hilbert space.
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1. Introduction

Frames, which are systems that provide robust, stable and usually non-unique
representations of vectors, have been well studied in literature. In fact, the no-
tion of frames dates backs to 1952 and was introduced in the pioneeristic paper of
R.J. Duffin and A.C. Schaeffer [12] in the context of nonharmonic Fourier series.
After some decades, I. Daubechies et al. [10] announced formally the characteriza-
tion of frames in the abstract Hilbert spaces. This characterization has attracted
a significant interest and has been generalized in many remarkable ways by several
authors such as O. Christensen [6–9], A. Jeribi [17], and R.M. Young [19].

In fact, frames can be viewed as generalization of orthonormal and Riesz
bases studied in [2–5,13,14,17]. They are a redundant set of vectors which yield
a representation for each vector in the space and have nice properties making
them very useful in wavelet analysis, irregular sampling theory, signal processing
and many other fields.

In 2012, frames were generalized by L. Găvruţa [15] who introduced the notion
of K-frames in order to study the atomic systems with respect to a bounded linear
operator K in a separable Hilbert space. This generalization of frames allows to
reconstruct elements from the range of a linear bounded operator which is not
a closed subspace. Moreover, many properties for ordinary frames may not hold
for K-frames, such as the corresponding synthesis operator for K-frames is not
surjective, the frame operator for K-frames is not isomorphic and the alternate
dual reconstruction pair for K-frames is not interchangeable.
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Recently, in [18] S.K. Sharma and S. Goel introduced and studied the ex-
istence of frames in separable quaternionic Hilbert spaces. They also gave a
characterization of frames in terms of frame operators in a quaternionic Hilbert
setting.

In this paper, we extend the study of frames in quaternionic Hilbert spaces
by the notion of K-frames in the sense that the lower frame bound holds only
for the elements in the range of a bounded linear operator K. The motivation
of these systems is given by some specific problems where we may not find any
possible frame, but we can find a K-frame because this notion is weaker and we
would want to decompose just the range of K, R(K). Indeed, if we consider in a
three dimensional right quaternionic Hilbert space VR(Q) and the operator K ∈
L(VR(Q)) defined by

Ke1 = e1, Ke2 = e1, Ke3 = e2,

where {en}3n=1 is a Hilbert basis, then, clearly, {fn}3n=1 := {e1, e1, e2} is not a
frame for VR(Q) since it does not possess a lower frame bound. However, it is a
K-frame (see Example 4.2).

The results in this paper are organized as follows. In Section 2, we recall
basic definitions, known results in quaternionic Hilbert spaces. In Section 3, we
present basic notions about atomic systems and we extend, in Section 4, the
concept of K-frames to quaternionic Hilbert spaces. In the last section, we close
this paper by applications of the obtained results in Sections 3 and 4, to give new
characterizations of families of local atoms.

2. Quaternionic Hilbert space

As quaternions are non-commutative in nature, therefore there are two dif-
ferent types of quaternionic Hilbert spaces, the left quaternionic Hilbert space
and the right quaternionic Hilbert space depending on positions of quaternions.
This fact can entail several problems. For example, when a Hilbert space H is
one-sided (either left or right), the set of linear operators acting on it does not
have a quaternionic linear structure. In this section, we will study some basic
notations about the algebra of quaternions, right quaternionic Hilbert space and
operators on right quaternionic Hilbert spaces.

Next, we denote by Q the skew field of quaternions, whose elements are in
the form q = x0 + x1i+ x2j + x3k, where x0, x1, x2 and x3 are real numbers and
i, j, k are called imaginary units and obey the following multiplication rules:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j.

For more information about the properties of quaternions, we refer the readers
to [1, 16].

Let VR(Q) be a linear vector space over the skew field of quaternions under
right scalar multiplication. It is called a quaternionic pre-Hilbert space if there
exists a Hermitian quaternionic scalar product, that is, a map

〈·, ·〉 : VR(Q)× VR(Q)→ Q
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satisfying, for every u, v, w ∈ VR(Q) and p, q ∈ Q, the following properties:

(i) 〈u, v〉 = 〈v, u〉, the quaternionic hermiticity,

(ii) 〈u, u〉 > 0 unless u = 0,

(iii) 〈u, vp+ wq〉 = 〈u, v〉p+ 〈u,w〉q.

Suppose that VR(Q) is equipped with such a Hermitian quaternionic scalar
product. Then we can define the quaternionic norm ‖·‖ : VR(Q)→ R+ by setting

‖u‖ =
√
〈u, u〉, u ∈ VR(Q). (2.1)

It has been mentioned in [16] that the quaternionic norm satisfies all properties
of a norm including Cauchy–Schwarz inequality and parallelogram identity.

The right quaternionic pre-Hilbert space VR(Q) is said to be a right quater-
nionic Hilbert space if it is complete with respect to the norm (2.1).

Throughout this paper, we denote an index set by I and assume that the space
VR(Q) is always separable. Thus, it shares many of the standard properties of
complex separable Hilbert spaces such as Hilbert basis. Let us recall the following
results:

Proposition 2.1 ([16]). Let VR(Q) be a right quaternionic Hilbert space and
N be a subset of VR(Q) such that for z, z′ ∈ N , 〈z, z′〉 = 0 if z 6= z′ and 〈z, z′〉 =
1. Then, the following assertions are equivalent:

(i) for every u, v ∈ VR(Q), the series
∑

z∈N 〈u, z〉〈z, v〉 converges absolutely and
it holds that

〈u, v〉 =
∑
z∈N
〈u, z〉〈z, v〉,

(ii) ‖u‖2 =
∑

z∈N |〈z, u〉|2 for every u ∈ VR(Q),

(iii) N⊥ := {v ∈ VR(Q) : 〈v, z〉 = 0, ∀z ∈ N} = {0},

(iv) span(N) is dense in VR(Q).

Remark 2.2. The subset N in Proposition 2.1 is called a Hilbert basis.

Proposition 2.3. A quaternionic Hilbert space turns out to be separable as
a metrical space if and only if it admits a finite or countable Hilbert basis.

Proof. The necessary condition is clear. Now, we will show that the sufficient
condition holds. Suppose that VR(Q) is separable, then we can choose a sequence
{fk}k∈I in VR(Q) such that span{fk}k∈I = VR(Q). By extracting a subsequence,
if necessary, we can assume that for each n ∈ I, fn+1 /∈ span{fk}k∈In , where
In ⊆ I and |In| < +∞. By applying the Gram–Schmidt process to {fk}k∈I ,
we obtain an orthonormal system {ek}k∈I in VR(Q) for which span{ek}k∈I =
span{fk}k∈I = VR(Q).
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Proposition 2.4 ( [16]). Every right quaternionic Hilbert space admits a
Hilbert basis, and two Hilbert bases have the same cardinality. Furthermore, if N
is a Hilbert basis of VR(Q), then every u ∈ VR(Q) can be uniquely decomposed as
follows:

u =
∑
z∈N

z〈z, u〉,

where the series
∑

z∈N z〈z, u〉 converges absolutely in VR(Q).

Remark 2.5. It is worth mentioning that the absolute convergence of the series
given in Proposition 2.4 relies on the fact that absolute convergence is equivalent
to unconditional convergence. For more details, see [16,18].

Next, we will define right linear operators and recall some basis properties as
needed for the development of this manuscript.

Definition 2.6. Let VR(Q) and UR(Q) be two quaternionic Hilbert spaces.
A right linear operator is a map T : D(T ) ⊆ VR(Q)→ UR(Q) such that

T (up+ v) = (Tu)p+ Tv if u, v ∈ D(T ) and p ∈ Q,

where the domain D(T ) of T is a (not necessarily closed) right Q-linear subspace
of VR(Q).

As in the complex case, if T : D(T ) ⊆ VR(Q) → UR(Q) is any right linear
operator, we define ‖T‖ by setting

‖T‖ : = sup
u∈D(T )\{0}

‖Tu‖UR(Q)

‖u‖VR(Q)

= inf{K > 0 | ∀u ∈ D(T ) ‖Tu‖UR(Q) ≤ K‖u‖VR(Q)}. (2.2)

The right linear operator T is bounded if ‖T‖ < +∞.
We close this section with the following definition of the notion of adjoint

operator which is similar to that for complex Hilbert spaces.

Definition 2.7 ( [16]). Let VR(Q) and UR(Q) be two right quaternionic
Hilbert spaces and let T : D(T ) ⊆ VR(Q) → UR(Q) be an operator with dense
domain. The adjoint T ∗ : D(T ∗) ⊆ UR(Q)→ VR(Q) of T is the unique operator
with the following properties:

D(T ∗) := {u ∈ UR(Q) | ∃wu ∈ VR(Q) ∀v ∈ D(T ) 〈wu, v〉 = 〈u, Tv〉}

and
〈T ∗u, v〉 = 〈u, Tv〉 for all v ∈ D(T ), u ∈ D(T ∗). (2.3)

Until further notice we will consider only operators T with D(T ) = VR(Q).
We denote the set of all bounded right linear operators from VR(Q) to UR(Q)
by L(VR(Q), UR(Q)). Moreover, if VR(Q) = UR(Q), then L(VR(Q), UR(Q)) is
replaced by L(VR(Q)).
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Remark 2.8.

(i) It was shown in [16] that the set of all bounded right linear operators is a
complete normed space with the norm defined by (2.2).

(ii) If T ∈ L(VR(Q), UR(Q)), then requirement (2.3) automatically determines
T ∗ as an element of L(UR(Q), VR(Q)).

3. Atomic systems in quaternionic Hilbert spaces

In this section, we define the concept of atomic system and present some
properties relative to this notion. We begin with the following definitions of
frames and Bessel sequences in separable right quaternionic Hilbert spaces VR(Q).

Definition 3.1 ( [18]). A family {fn}n∈I is said to be a frame for VR(Q) if
there exist two positive constants 0 < A ≤ B such that

A‖x‖2 ≤
∑
n∈I
|〈fn, x〉|2 ≤ B‖x‖2 for all x ∈ VR(Q). (3.1)

The numbers A and B are called a lower and an upper frame bounds.

Definition 3.2 ([18]). A family {fn}n∈I is said to be a Bessel sequence for
VR(Q) with bound B if {fn}n∈I satisfies the right-most inequality in the right-
hand side of equation (3.1).

Now, let us define the space l2(Q) by

l2(Q) :=

{
{qi}i∈I ⊂ Q |

∑
i∈I
|qi|2 < +∞

}

equipped with the quaternionic inner product

〈p, q〉 =
∑
i∈I

piqi, p = {pi}i∈I , and q = {qi}i∈I ∈ l2(Q). (3.2)

It is easy to see that l2(Q) is a right quaternionic Hilbert space with respect to
the above inner product.

Bellow, we will introduce the concept of atomic system.

Definition 3.3. A family {fn}n∈I of VR(Q) is called an atomic system for
K ∈ L(VR(Q)) if the following statements hold:

(i) the series
∑

n∈I fncn converges unconditionally for all c = {cn}n∈I ∈ l2(Q),

(ii) there exists C > 0 such that for every x ∈ VR(Q) there exists ax = {an}n∈I ∈
l2(Q) such that ‖ax‖l2(Q) ≤ C‖x‖ and Kx =

∑
n∈I fnan.

Proposition 3.4. If {fn}n∈I is a sequence in VR(Q) and the series∑
n∈I fncn converges unconditionally for all {cn}n∈I ∈ l2(Q), then {fn}n∈I is

a Bessel sequence.
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Proof. Let us consider the linear operator

T : l2(Q)→ VR(Q), T{ck}k∈I :=
∑
k∈I

fkck

and the sequence of bounded linear operators

Tn : l2(Q)→ VR(Q), Tn{ck}k∈I :=
∑
k∈In

fkck,

where In ⊆ I and |In| < +∞. Clearly Tn → T pointwise as n→∞. Therefore, by
the uniform boundedness principle (which holds for quaternionic Hilbert spaces
[16]), T is bounded.

To complete the proof of our result, we need to determine the adjoint operator
T ∗ of T . To this interest, let f ∈ VR(Q) and {cn}n∈I ∈ l2(Q). Then we have

〈T ∗f, {cn}n∈I〉 = 〈f, T{cn}n∈I〉 =

〈
f,
∑
n∈I

fncn

〉
=
∑
n∈I
〈f, fn〉cn. (3.3)

On the other hand, T ∗ ∈ L(VR(Q), l2(Q)) since T ∈ L(l2(Q), VR(Q)). Hence, the
kth coordinate function is bounded from VR(Q) to Q. Using the Riesz represen-
tation Theorem [16], we have

T ∗f = {〈gn, f〉}n∈I for some {gn}n∈I ∈ VR(Q).

Thus, we get

〈T ∗f, {cn}n∈I〉 = 〈{〈gn, f〉}n∈I , {cn}n∈I〉 =
∑
n∈I
〈f, gn〉cn. (3.4)

Consequently, (3.3) and (3.4) imply that gn = fn.
As ‖T‖ = ‖T ∗‖, we obtain∑

n∈I
|〈fn, f〉|2 = ‖T ∗f‖2 ≤ ‖T ∗‖2‖f‖2 = ‖T‖2‖f‖2.

Therefore, {fn}n∈I is a Bessel sequence for VR(Q).

The existence result of the atomic systems for an operator is presented in the
following theorem.

Theorem 3.5. Let K ∈ L(VR(Q)), then K has an atomic system.

Proof. Let {en}n∈I be a Hilbert basis in VR(Q) and x ∈ VR(Q). Then we
have

x =
∑
n∈I

en〈en, x〉.

Therefore, we get

Kx =
∑
n∈I

Ken〈en, x〉.
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Now, by setting fn = Ken and an = 〈en, x〉 for all n ∈ I, we obtain∑
n∈I
|〈fn, x〉|2 =

∑
n∈I
|〈Ken, x〉|2 =

∑
n∈I
|〈en,K∗x〉|2 = ‖K∗x‖2 ≤ ‖K∗‖2‖x‖2.

So, {fn}n∈I is a Bessel sequence for VR(Q). Further, we have∑
n∈I
|an|2 =

∑
n∈I
|〈en, x〉|2 = ‖x‖2.

Hence, {fn}n∈I is an atomic system for K.

Next, we give the characterization of atomic systems.

Theorem 3.6. Let {fn}n∈I ⊂ VR(Q) and K ∈ L(VR(Q)). Then the following
statements are equivalent:

(i) {fn}n∈I is an atomic system for K,

(ii) there exists A,B > 0 such that

A‖K∗x‖2 ≤
∑
n∈I
|〈fn, x〉|2 ≤ B‖x‖2 for any x ∈ VR(Q),

(iii) {fn}n∈I is a Bessel sequence and there exists a Bessel sequence {gn}n∈I such
that

Kx =
∑
n∈I

fn〈gn, x〉.

To prove the above theorem, we need the following lemma. We omit its proof
as it follows the lines of the complex case given in [11, Theorem 1].

Lemma 3.7. Let L1 ∈ L(VR(Q)1, VR(Q)), L2 ∈ L(VR(Q)2, VR(Q)) be two
bounded operators. The following statements are equivalent:

(i) R(L1) ⊂ R(L2),

(ii) L1L
∗
1 ≤ λ2L2L

∗
2 for some λ ≥ 0,

(iii) there exists a bounded operator M ∈ L(VR(Q)1, VR(Q)2) such that L1 =
L2M .

Proof of Theorem 3.6. (i) ⇒ (ii). Let x ∈ VR(Q). As {fn}n∈I is an atomic
system for K, it follows from Definition 3.3 and Proposition 3.4 that {fn}n∈I is
a Bessel sequence. More precisely, there exists B > 0 such that∑

n∈I
|〈fn, x〉|2 ≤ B‖x‖2 for any x ∈ VR(Q). (3.5)

Further, there exists C > 0 such that for every g ∈ VR(Q) there exists ag =
{an}n∈I ∈ l2(Q) satisfying ‖ag‖l2(Q) ≤ C‖g‖ and

Kg =
∑
n∈I

fnan.
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Therefore, we get

‖K∗x‖ = sup
‖g‖=1

|〈K∗x, g〉| = sup
‖g‖=1

|〈x,Kg〉| = sup
‖g‖=1

∣∣∣∣∣
〈
x,
∑
n∈I

fnan

〉∣∣∣∣∣
= sup
‖g‖=1

∣∣∣∣∣∑
n∈I
〈x, fn〉an

∣∣∣∣∣ ≤ sup
‖g‖=1

(∑
n∈I
|〈fn, x〉|2

) 1
2 (
|an|2

) 1
2

≤ C sup
‖g‖=1

‖g‖

(∑
n∈I
|〈fn, x〉|2

) 1
2

= C

(∑
n∈I
|〈fn, x〉|2

) 1
2

.

So, we obtain
1

C2
‖K∗x‖2 ≤

∑
n∈I
|〈fn, x〉|2. (3.6)

Combining (3.5) and (3.6), we get the first implication.
(ii) ⇒ (iii). It follows from (ii) that {fn}n∈I is a Bessel sequence for VR(Q).

Then, in view of [18, Theorem 3.4], there exists a bounded linear operator T :
l2(Q) → VR(Q) and a Hilbert basis {en}n∈I of l2(Q), such that fn = Ten.
Consequently, (ii) entails the estimate

A‖K∗x‖2 ≤
∑
n∈I
|〈Ten, x〉|2 =

∑
n∈I
|〈en, T ∗x〉|2 = ‖T ∗x‖2 for any x ∈ VR(Q).

Hence, Lemma 3.7 implies that there exists a bounded linear operator M :
VR(Q)→ l2(Q) such that K = TM .

Now we consider

Fn : VR(Q)→ Q, Fnx := {Mx}n = an(x).

We denote a := Mx = {Mx}n. Clearly,

|an| ≤

(∑
n∈I
|an|2

) 1
2

= ‖a‖l2(Q) ≤ ‖M‖‖x‖.

Hence, we have
|an(x)| ≤ ‖M‖‖x‖.

As the Riesz representation theorem holds true also for quaternionic Hilbert
spaces, thus there exists gn ∈ VR(Q) such that an = an(x) = 〈gn, x〉. Hence,

Kx = TMx = T ({an}) =
∑
n∈I

fnan =
∑
n∈I

fn〈gn, x〉.

Further, ∑
n∈I
|〈gn, x〉|2 =

∑
n∈I
|an|2 ≤ ‖M‖2‖x‖2

implies that {gn}n∈I is a Bessel sequence.
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(iii) ⇒ (i). We have ∑
n∈I
|〈gn, x〉|2 ≤ B‖x‖2.

It suffices to take x ∈ VR(Q), ax = {〈gn, x〉}.

Corollary 3.8. Let {fn}n∈I be a frame for VR(Q) with bounds A,B > 0 and
K ∈ L(VR(Q)). Then {fn}n∈I is an atomic system for K with bounds 1

A−1‖K‖2
and B.

Proof. Let S be the frame operator of {fn}n∈I . It follows from [18, Theorem
2.7] that {S−1fn}n∈I is a frame for VR(Q) with bounds B−1, A−1 > 0. Further,
we have

x =
∑
n∈I

S−1fn〈fn, x〉 for all x ∈ VR(Q).

Thus, we get

‖K∗x‖ = sup
‖y‖=1

|〈K∗x, y〉| = sup
‖y‖=1

∣∣∣∣∣
〈∑

n∈I
K∗S−1fn〈fn, x〉, y

〉∣∣∣∣∣
= sup
‖y‖=1

∣∣∣∣∣
〈∑

n∈I
K∗S−1fn〈x, fn〉, y

〉∣∣∣∣∣ = sup
‖y‖=1

∣∣∣∣∣∑
n∈I
〈x, fn〉〈K∗S−1fn, y〉

∣∣∣∣∣
≤ sup
‖y‖=1

∑
n∈I
|〈x, fn〉|

∣∣〈K∗S−1fn, y〉∣∣
≤ sup
‖y‖=1

(∑
n∈I
|〈x, fn〉|2

) 1
2
(∑

n∈I

∣∣〈K∗S−1fn, y〉∣∣2)
1
2

≤ sup
‖y‖=1

(∑
n∈I
|〈fn, x〉|2

) 1
2
(∑

n∈I

∣∣〈S−1fn,Ky〉∣∣2)
1
2

≤
√
A−1 sup

‖y‖=1
‖Ky‖

(∑
n∈I
|〈fn, x〉|2

) 1
2

=
√
A−1‖K‖

(∑
n∈I
|〈fn, x〉|2

) 1
2

.

Consequently,

1

A−1‖K‖2
‖K∗x‖2 ≤

∑
n∈I
|〈fn, x〉|2 ≤ B‖x‖2, x ∈ VR(Q).

Hence, Theorem 3.6 (ii) implies that {fn}n∈I is an atomic system for K.

The converse of the above corollary holds if the operator K is onto.

Corollary 3.9. Let {fn}n∈I be an atomic system for K. If K ∈ L(VR(Q))
is onto, then {fn}n∈I is a frame for VR(Q).
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Proof. It is easy to see that K ∈ L(VR(Q)) is onto if and only if there is M >
0 such that

M‖x‖ ≤ ‖K∗x‖, x ∈ VR(Q).

As {fn}n∈I is an atomic system for K, Theorem 3.6 entails the existence of A,B >
0 such that

A‖K∗x‖2 ≤
∑
n∈I
|〈fn, x〉|2 ≤ B‖x‖2.

Consequently, we get

AM2‖x‖2 ≤
∑
n∈I
|〈fn, x〉|2 ≤ B‖x‖2 for all x ∈ VR(Q).

4. K-frames in quaternionic Hilbert spaces

In this section, we extend the concept of K-frames from complex Hilbert
spaces to separable quaternionic Hilbert spaces. To this interest, we begin with
the following definition.

Definition 4.1. Let K ∈ L(VR(Q)). A family {fn}n∈I is said to be a K-
frame for VR(Q) if there exist positive constants A,B > 0 such that

A‖K∗x‖2 ≤
∑
n∈I
|〈fn, x〉|2 ≤ B‖x‖2 for all x ∈ VR(Q).

Example 4.2. Let {en}3n=1 be a Hilbert basis for a three-dimensional right
quaternionic Hilbert space VR(Q) and let K ∈ L(VR(Q)) be defined as

Ke1 = e1, Ke2 = e1, Ke3 = e2.

Let also {fn}3n=1 = {e1, e1, e2}. We have

3∑
n=1

|〈fn, f〉|2 ≤ 2‖f‖2. (4.1)

Further, by simple calculations, we can see that the adjoint of K is given by

K∗e1 = e1 + e2, K∗e2 = e3, K∗e3 = 0.

Therefore, we get

1

4
‖K∗f‖2 ≤

3∑
n=1

|〈fn, f〉|2. (4.2)

Hence, (4.1) and (4.2) imply that {fn}3n=1 is a K-frame for VR(Q). However,
{fn}3n=1 is not a frame for VR(Q) since it does not possess a lower frame bound.

Now, using linear bounded operators, we characterize K-frames.
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Theorem 4.3. A sequence of vectors {fn}n∈I is a K-frame if and only if
there exists a linear bounded operator L : l2(Q)→ VR(Q) such that fn = Len and
R(K) ⊂ R(L), where {en}n∈I is a Hilbert basis for l2(Q).

Proof. Suppose that {fn}n∈I is a K-frame. Then we get

A‖K∗x‖2 ≤
∑
n∈I
|〈fn, x〉|2 ≤ B‖x‖2 for all x ∈ VR(Q). (4.3)

Let us consider the mapping θ : VR(Q)→ l2(Q) such that

θ(x) =
∑
n∈I

en〈fn, x〉. (4.4)

Clearly, this mapping is a bounded linear operator. Further, for y ∈ VR(Q) we
have

〈θ∗en, y〉 = 〈en, θy〉 = 〈fn, y〉.

Hence, we get that θ∗en = fn. Combining (4.3) and (4.4), we obtain

A‖K∗x‖2 ≤ ‖θ(x)‖2.

Hence, AKK∗ ≤ LL∗, where L = θ∗. Using Lemma 3.7, we get that R(K) ⊂
R(L).

Now, suppose that fn = Len, where L ∈ L(l2(Q), VR(Q)) and R(K) ⊂ R(L).
We have

L∗x =
∑
n∈I

en〈fn, x〉.

In fact,

〈L∗x, g〉 =

〈
L∗x,

∑
n∈I

encn

〉
=
∑
n∈I
〈x, Len〉cn =

∑
n∈I
〈x, fn〉〈en, g〉

=
∑
n∈I
〈fn, x〉〈en, g〉 =

〈∑
n∈I

en〈fn, x〉, g

〉
, g ∈ VR(Q).

On the other hand, we have∑
n∈I
|〈fn, x〉|2 =

∑
n∈I
|〈en, L∗x〉|2 = ‖L∗x‖2 ≤ ‖L∗‖2‖x‖2.

So, {fn}n∈I is a Bessel sequence. Further, as R(K) ⊂ R(L), Lemma 3.7 yields
the existence of a positive constant A > 0 such that AKK∗ ≤ LL∗. Therefore,
we obtain

A‖K∗x‖2 ≤ ‖L∗x‖2 =
∑
n∈I
|〈fn, x〉|2 .

This completes the proof.
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The next theorem provides the sufficient condition assuring the construction
of a frame from a K-frame.

Theorem 4.4. Let {fn}n∈I be a K-frame for VR(Q) with bounds A,B > 0.
If the operator K is onto, then {fn}n∈I is a frame for VR(Q).

Proof. Obviously, K ∈ L(VR(Q)) is onto if and only if there is M > 0 such
that

M‖x‖ ≤ ‖K∗x‖, x ∈ VR(Q).

Since {fn}n∈I is a K-frame, we get that

MA‖x‖2 ≤ A‖K∗x‖2 ≤
∑
n∈I
|〈fn, x〉|2, x ∈ VR(Q).

Proposition 4.5. A Bessel sequence {fn}n∈I of VR(Q) is a K-frame with
bounds A,B > 0 if and only if S ≥ AKK∗, where S is the frame operator for
{fn}n∈I .

Proof. {fn}n∈I is a K-frame for VR(Q) if and only if

〈AKK∗x, x〉 = A‖K∗x‖2 ≤
∑
n∈I
|〈fn, x〉|2 = 〈Sx, x〉 ≤ B‖x‖2, x ∈ VR(Q).

5. Families of local atoms as K-frames

In this section, we build a connection between the results developed in Sections
3 and 4 concerning atomic systems and K-frames and a new family of analysis
and synthesis systems for a closed subspace H0 of VR(Q). Let us begin with the
following formal definition.

Definition 5.1. Let {fn}n∈I ∈ VR(Q) be a Bessel sequence and let H0 be a
closed subspace of VR(Q). Then {fn}n∈I is called a family of local atoms for H0

if there exists a sequence of linear functionals {cn}n∈I such that for all x ∈ H0

we have

(i) ∃C > 0 with
∑

n |cn(x)|2 ≤ C‖x‖2,

(ii) x =
∑

n fncn(x).

We say that the pair {fn, cn}n∈I provides an atomic decomposition for H0 and C
is an atomic bound of {fn}n∈I .

We close this section with some properties of families of local atoms.

Theorem 5.2. Let {fn}n∈I ⊂ VR(Q) be a Bessel sequence. Then the follow-
ing assertions are equivalent:

(i) {fn}n∈I is a family of local atoms for H0,

(ii) {fn}n∈I is an atomic system for PH0, where PH0 is the orthogonal projection
on H0,



206 Salma Charfi and Hanen Ellouz

(iii) there exists A > 0 such that A‖PH0x‖2 ≤
∑

n |〈fn, x〉|2, x ∈ VR(Q),

(iv) there exists a Bessel sequence {gn}n∈I ⊂ VR(Q) such that

PH0x =
∑
n∈I

fn〈gn, x〉 for any x ∈ VR(Q),

(v) there exists a linear bounded operator L : l2(Q) → VR(Q) such that fn =
Len and H0 ⊂ R(L), where {en}n∈I is a Hilbert basis for l2(Q).

Proof. (i) ⇒ (ii). This implication is clear.
(ii) ⇔ (iii) ⇔ (iv). It is sufficient to apply Theorem 3.6 to get the desired

results.
(iv) ⇒ (i). Let x ∈ H0. In view of (iv), we have

x =
∑
n∈I

fn〈gn, x〉.

We denote by cn(x) = 〈gn, x〉. Since {gn}n∈I is a Bessel sequence and cn are
linear functionals on H0, we get∑

n∈I
|cn(x)|2 =

∑
n∈I
|〈gn, x〉|2 ≤ B‖x‖2.

(ii) ⇔ (v) This implication follows from Theorems 3.6 and 4.3. Indeed, it
suffices to take K = PH0 .
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Про характеризацiю фреймiв для операторiв у
кватернiонному гiльбертовому просторi

Salma Charfi and Hanen Ellouz

У цiй роботi ми вводимо поняття атомарних систем для операторiв i
K-фреймiв у сепарабельних кватернiонних гiльбертових просторах. Цi
поняття призводять до узагальнення фреймiв, якi було нещодавно ви-
вчено в [18], i дозволяють нам реконструювати елементи з образа лiнiй-
ного i обмеженого оператора в кватернiонному гiльбертовому просторi.

Ключовi слова: фрейми, атомарнi системи, K-фрейми, кватернiон-
ний гiльбертiв простiр
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