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In this paper, we prove that there are no Hopf hypersurfaces in com-
plex two-plane Grassmannians G2(Cm+2) with Killing shape operator with
respect to the generalized Tanaka–Webster connection.
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1. Introduction

A complex two-plane Grassmannian G2(Cm+2) is defined as the set of all two-
dimensional linear subspaces in Cm+2 which is identified with the homogeneous
space SU(m+2)/S(U(2)×U(m)). Throughout this paper, we assume that m ≥ 3.
A complex two-plane Grassmannian G2(Cm+2) is known as a compact irreducible
Hermitian symmetric space of rank two equipped with both a Kähler structure J
and a quaternionic Kähler structure J with a canonical basis {J1, J2, J3} which
does not contain J (see [1]). Let M be a real hypersurface in G2(Cm+2) with
N and A a unit normal vector field and the shape operator respectively, and g
and ∇ be the induced metric and the corresponding Levi-Civita connection on
M , respectively. In general, ξ := −JN is said to be the structure or Reeb vector
field. The almost contact metric 3-structure vector fields ξν are defined by ξν =
−JνN for ν ∈ {1, 2, 3}. We denote by D⊥ the distribution defined by D⊥ =
Span{ξ1, ξ2, ξ3} and D its orthogonal complement distribution satisfying TpM =
Dp ⊕ D⊥

p at each point p ∈ M . A real hypersurface in G2(Cm+2) is said to be
Hopf if ξ is an eigenvector field of the shape operator, i.e., Aξ = αξ and α =
g(Aξ, ξ) is said to be the Hopf principal curvature.

The above definition for Hopf hypersurfaces is still valid if the ambient space
is a complex space form, i.e., a complete and simply connected Kähler manifold
of constant holomorphic sectional curvature c. For the first time the Hopf hyper-
surfaces was studied in a complex space form by T.E. Cecil and P.J. Ryan in [6].
In this paper, both local and global structures of Hopf hypersurfaces in complex
space forms with constant rank of the focal map were investigated. We remark
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that complete description of the global structures of Hopf hypersurfaces in com-
plex space forms without restriction on the rank of the focal map was obtained
by A.A. Borisenko in [5]. Now back to our subject, classification result for Hopf
hypersurfaces in G2(Cm+2) under certain condition was obtained by J. Berndt
and Y.J. Suh in [2].

Theorem 1.1 ([2]). Let M be a Hopf hypersurface in G2(Cm+2), m ≥ 3.
Then D⊥ is invariant under the shape operator if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic quaternionic projective space HPm in G2(Cm+2).

With the help of Theorem 1.1, many characterization theorems for Hopf hy-
persurfaces listed above were obtained. Among others, we focus on those charac-
terizations in terms of the extrinsic properties such as the shape operator. It is
well known that there are no real hypersurfaces in nonflat complex space forms
with parallel shape operators (see [7]). Similar situation was considered by Y. J.
Suh in [20] in which the author proved that there are no real hypersurfaces in a
complex two-plane Grassmannian with parallel shape operators. Following this
step, some other generalizations of results in [20] were obtained. For example, Y.
J. Suh in [21] proved that there do not exist such kinds of real hypersurfaces in
complex two-plane Grassmannians with parallel second fundamental tensor on a
distribution defined by F = ξ∪D⊥, where D⊥ = Span{ξ1, ξ2, ξ3}. Recently, Jang,
Suh and Woo in [12] proved that there exist no real hypersurfaces in complex two-
plane Grassmannians with Killing shape operator, i.e., (∇XA)Y + (∇YA)X = 0
for any vector fields X,Y . Obviously, this extends Suh’s results in [20] because a
parallel shape operator must be of Killing type.

The so called Tanaka–Webster connection, introduced independently by N.
Tanaka in [23] and S.W. Webster in [25], is a unique affine connection on a
non-degenerate pseudo-Hermitian CR-manifold. S. Tanno in [24] introduced the
notion of the generalized Tanaka–Webster connection (in short, GTW connec-
tion) on a contact Riemannian manifold and such a connection is the same with
the Tanaka–Webster connection when the associated CR-structure is integrable.
J.T. Cho in [8,9] introduced the generalized Tanaka–Webster connection on real
hypersurfaces in Kähler manifolds, that is,

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (1.1)

for any vector fields X,Y and certain non-zero constant k, where ∇ is the Levi-
Civita connection of the hypersurface. The generalized Tanaka–Webster connec-
tion on real hypersurfaces coincides with the Tanaka–Webster connection when
φA+Aφ = 2kφ. Together with (1.1), we have

Theorem 1.2 ([14]). There exist no Hopf hypersurfaces in G2(Cm+2), α 6=
2k, such that the shape operator is parallel with respect to the generalized Tanaka–
Webster connection.
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In this paper, we consider Killing type shape operator with respect to the
generalized Tanaka–Webster connection for real hypersurfaces inG2(Cm+2) which

is defined by (∇̂(k)
X A)X = 0 for any vector field X and this is also equivalent to(

∇̂(k)
X A

)
Y +

(
∇̂(k)
Y A

)
X = 0 (1.2)

for any vector fields X,Y . The notion of Killing tensor fields with respect to
the Levi-Civita connection was first introduced by D.E. Blair in [4]. By applying
such a notion, in [4] a characterization for an almost contact metric manifold to
be a cosymplectic manifold was obtained. In the present paper, as an corollary
of our main result (cf. Theorem 3.8), we have

Theorem 1.3. There exist no Hopf hypersurfaces in G2(Cm+2), α 6= 2k, such
that the shape operator is Killing with respect to the generalized Tanaka–Webster
connection.

As a parallel shape operator with respect to the generalized Tanaka–Webster
connection must be of Killing type, but in general the converse is not necessarily
true. Thus we have

Remark 1.4. Theorem 1.3 extends Theorem 1.2 in [14].

Before giving detailed proof of Theorem 1.3 in Section 3, we consider a condi-
tion weaker than (1.2) and obtain another characterization for Hopf hypersurfaces
of type (A) in G2(Cm+2).

2. Preliminaries

In this section, we collect some fundamental formulas shown in [1–3,22]. Let
M be a real hypersurface in G2(Cm+2) with real codimension one and N be a
unit normal vector field. On M there exists an almost contact metric structure
(φ, ξ, η, g) induced from the Kähler structure J of G2(Cm+2). Let {J1, J2, J3} be
a canonical local basis of quaternionic Kähler structure J of G2(Cm+2). In this
paper we put

JX = φX + η(X)N, JνX = φνX + ην(X)N (2.1)

for any vector field X, ν ∈ {1, 2, 3}. From the first term of (2.1), it follows that

φ2 = −id + η ⊗ ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ), (2.2)

where the Reeb vector field ξ is determined by ξ := −JN . According to the con-
dition JνJν+1 = Jν+2 = −Jν+1Jν we have an almost contact metric 3-structure
(φν , ξν , ην , g) as the following

φ2ν = −id + ην ⊗ ξν , ην(ξν) = 1, φνξν = 0,

φνξν+1 = ξν+2, φν+1ξν = −ξν+2,

φνφν+1 = φν+2 + ην+1 ⊗ ξν ,
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φν+1φν = −φν+2 + ην ⊗ ξν+1, (2.3)

where the index is taken modulo three. According to condition JνJ = JJν , the
relationships between two almost contact metric structures are given by

φφν = φνφ+ ην ⊗ ξ − η ⊗ ξν ,
φξν = φνξ, ην(φX) = η(φνX) (2.4)

for any vector field X. Because J is parallel with respect to the Riemannian
connection of G2(Cm+2), we have

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX (2.5)

for any vector fields X and Y , where we have applied the Gauss and Weingarten
formulas. The Codazzi equation for real hypersurfaces in G2(Cm+2) is given by

(∇XA)Y − (∇YA)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν}

+
3∑

ν=1

{ην(φX)φνφY − ην(φY )φνφX}

+

3∑
ν=1

{η(X)ην(φY )− η(Y )ην(φX)}ξν (2.6)

for any vector fields X,Y .

3. Proof of Theorem 1.3

Suppose M is a Hopf hypersurface in G2(Cm+2). On M , according to (1.1),
by a direct calculation we have(
∇̂(k)
X A

)
Y = (∇XA)Y + g(φAX,AY )ξ − η(AY )φAX

− kη(X)φAY − g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY (3.1)

for any vector fields X,Y . Suppose the shape operator is Killing with respect to

the generalized Tanaka–Webster connection, from (1.2) we obtain
(
∇̂(k)
ξ A

)
ξ =

0. Applying this on (3.1), with the help of (2.5) and Aξ = αξ, we obtain

ξ(α)ξ = 0, (3.2)

where α = η(Aξ). Taking the inner product of (3.2) with ξ gives ξ(α) = 0.
It has been proved in [16] that for a Hopf hypersurface in G2(Cm+2) the Hopf

principal curvature is invariant along the Reeb flow, i.e., ξ(α) = 0 if and only if
the D and D⊥-components of the Reeb vector field are invariant under the shape
operator. Now we have
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Lemma 3.1. If a Hopf hypersurface in G2(Cm+2) has Killing shape operator
with respect to the generalized Tanaka–Webster connection, then the D and D⊥-
components of the Reeb vector field are invariant under the shape operator.

Before showing the next key lemma, we need the following

Lemma 3.2 ([3]). If M is a connected and oriented Hopf real hypersurface
in G2(Cm+2), then we have

gradα = ξ(α)ξ + 4
3∑

ν=1

ην(ξ)φνξ, (3.3)

2AφAX7 = αAφX + αφAX + 2φX + 2
3∑

ν=1

{ην(X)φξν + ην(φX)ξν

+ ην(ξ)φνX − 2η(X)ην(ξ)φξν − 2ην(φX)ην(ξ)ξ} (3.4)

for any vector field X, where grad denotes the gradient operator.

Replacing X by ξ and Y by X in (3.1) respectively, with the aid of Aξ = αξ,
we obtain (

∇̂(k)
ξ A

)
X = (∇ξA)X − kφAX + kAφX.

Similarly, replacing Y by ξ in (3.1) and using Aξ = αξ, we obtain(
∇̂(k)
X A

)
ξ = (∇XA)ξ − αφAX +AφAX

for any vector field X. Form now on suppose that the shape operator is of Killing
type with respect to the generalized Tanaka–Webster connection. According to
(1.2) and the above two equations we get

(∇ξA)X + (∇XA)ξ − (k + α)φAX + kAφX +AφAX = 0

for any vector field X. On the other hand, replacing Y by ξ in Codazzi equation
(2.6) and using (2.4) and Aξ = αξ we obtain

(∇XA)ξ − (∇ξA)X =
3∑

ν=1

{ην(X)φνξ − ην(ξ)φνX − 3ην(φX)ξν} − φX

for any vector field X. The addition of the above equation to the previous one
implies

2(∇XA)ξ =

3∑
ν=1

{ην(X)φνξ − ην(ξ)φνX − 3ην(φX)ξν}

− φX + (k + α)φAX − kAφX −AφAX

for any vector field X. Applying Aξ = αξ and (2.5) in the left hand side of the
previous equation we obtain

AφAX − φX + (k − α)φAX − kAφX
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−2X(α)ξ +
3∑

ν=1

{ην(X)φνξ − ην(ξ)φνX − 3ην(φX)ξν} = 0 (3.5)

for any vector field X.

Lemma 3.3. If a Hopf hypersurface in G2(Cm+2) has Killing shape operator
with respect to the generalized Tanaka–Webster connection, then either ξ ∈ D or
ξ ∈ D⊥.

Proof. Without loss of generality, we assume ξ = η(X0)X0 + η(ξ1)ξ1 with X0

is a unit vector field orthogonal to D⊥. When either η(X0) = 0 or η(ξ1) = 0,
Lemma 3.3 is necessarily true. In what follows, we shall suppose η(X0)η(ξ1) 6= 0.
Now, applying Lemma 3.1, because the D and D⊥-components of the Reeb vector
field are invariant under the shape operator, the action of A on ξ = η(X0)X0 +
η(ξ1)ξ1 implies AX0 = αX0. Using this and the fact φX0 ∈ D, replacing X by
X0 in (3.4) we obtain αAφX0 = (α2 + 4η2(X0))φX0. When α = 0, Lemma 3.3
follows directly from (3.3). Therefore, we need to consider only such a case that
α 6= 0 holds on certain open subset. Now we write

AX0 = αX0, AφX0 = ρφX0, (3.6)

where for simplicity we set ρ = α + 4
αη

2(X0). Taking into account (3.6), with
the help of (2.2), and by a direct calculation we obtain AφAφX0 = Aφ(ρφX0) =
ρAφ2X0 = −αρ(X0 − η(X0)ξ) and φAφX0 = φ(ρφX0) = −ρ(X0 − η(X0)ξ).

According to the assumption ξ = η(ξ1)ξ1 + η(X0)X0, we also have η2(ξ1) +
η2(X0) = 1. Moreover, with the aid of (3.2), from (3.3) we get

−2φX0(α)ξ = 8η2(ξ1)η(X0)ξ = 8η3(ξ1)η(X0)ξ1 + 8η2(ξ1)η
2(X0)X0,

where we have employed the fact η2(ξ1)+η2(X0) = 1 and ξ = η(X0)X0+η(ξ1)ξ1.
By a direct calculation, from (3.6) we also have

kφAφX0 = −kβη2(ξ1)X0 + kβη(X0)η(ξ1)ξ1

and
−kAφ2X0 = kαη2(ξ1)X0 − kαη(X0)η(ξ1)ξ1,

where we have applied again η2(ξ1) + η2(X0) = 1 and ξ = η(X0)X0 + η(ξ1)ξ1.
Finally, by a direct calculation, we obtain

3∑
ν=1

{ην(φX0)φνξ − ην(ξ)φνφX0 − 3ην(φ2X0)ξν} = −η2(ξ1)X0 − 3η(X0)η(ξ1)ξ1,

where we have used η(X0)φX0 + η(ξ1)φ1ξ = 0 and the fact φX0 ∈ D. Replacing
X by φX0 in (3.5) we obtain an equation, and taking the inner product of the
resulting equation with ξ1 and X0, respectively, we obtain

8η2(ξ1) + k(ρ− α)− 4 = 0 (3.7)
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and
8η2(X0) + k(α− ρ) = 0, (3.8)

respectively, where we have applied again the assumption η(X0)η(ξ1) 6= 0 and
η2(ξ1) + η2(X0) = 1. Applying the previous relation again, the addition of (3.8)
to (3.7) gives 4 = 0, i.e., a contradiction.

In view of Lemma 3.3, next we consider the case ξ ∈ D⊥. In this case, it
follows that JN ∈ JN . Without loss of generality, we assume that J1 is the
almost Hermitian structure of J such that JN = J1N . Then, it follows from
(2.3) that

ξ = ξ1, φξ2 = −ξ3, φξ3 = ξ2, φD ⊂ D. (3.9)

According to the above relations, with the aid of (3.2), (3.3) becomes

X(α) = ξ(α)ξ − 4η1(φX) = 0

for any vector field X, i.e., α is a constant. Substituting the above equation in
(3.5) we get

AφAX − φX + (k − α)φAX − kAφX

+
3∑

ν=1

{ην(X)φνξ − ην(ξ)φνX − 3ην(φX)ξν} = 0

for any vector field X. Making use of (3.9) in the above equation we obtain

AφAX − φX + (k − α)φAX

− kAφX − φ1X + 2η2(X)ξ3 − 2η3(X)ξ2 = 0 (3.10)

for any vector field X. Similarly, using (3.9) in (3.4) we obtain

AφAX =
α

2
AφX +

α

2
φAX + φX + 2η3(X)ξ2 − 2η2(X)ξ3 + φ1X

for any vector field X, which is subtracted from (3.10) implying that

(2k − α)(φAX −AφX) = 0

for any vector field X. If we suppose α 6= 2k, it follows that A commutes with φ
and hence we have

Lemma 3.4. If a Hopf hypersurface in G2(Cm+2) has Killing shape operator
with respect to the generalized Tanaka–Webster connection and ξ ∈ D⊥, α 6= 2k,
then Aφ = φA.

Before stating proof of our main results, we also need Berndt and Suh’s

Lemma 3.5 ([3]). Let M be a connected orientable real hypersurface in com-
plex two-plane Grassmannians G2(Cm+2). Then A commutes with φ if and only
if M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2).
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Proposition 3.6 ([2]). Let M be a connected Hopf hypersurface in G2(Cm+2)
with AD ⊂ D and ξ is tangent to D⊥. Let J1 ∈ J be the almost Hermitian struc-
ture such that JN = J1N . Then M has three

(
if r = π

2
√
8

)
or four (otherwise)

distinct constant principal curvatures

α =
√

8 cot
(√

8r
)
, β =

√
2 cot

(√
2r
)
, λ = −

√
2 tan

(√
2r
)
, µ = 0,

with some r ∈
(

0, π√
8

)
. The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = m(µ) = 2m− 2

and the corresponding eigenspaces are

Tα = Rξ = Rξ1 = RJN = Span{ξ} = Span{ξ1},
Tβ = C⊥ξ = C⊥N = Rξ2 ⊕ Rξ3 = Span{ξ2, ξ3},
Tλ = {X : X ⊥ Hξ, JX = J1X},
Tµ = {X : X ⊥ Hξ, JX = −J1X},

where Rξ, Cξ and Hξ denote the real, complex and quaternionic span of the Reeb
vector field ξ, respectively, and C⊥ξ denotes the orthogonal complement of Cξ in
Hξ.

Proposition 3.7 ([2]). Let M be a connected Hopf hypersurface in G2(Cm+2)
with AD ⊂ D and ξ ∈ D. Then the quaternionic dimension m of G2(Cm+2) is
even, say m = 2n, and M has five distinct constant principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r),

with some r ∈ (0, π4 ). The corresponding multiplicities are

m(α) = 1, m(β) = m(γ) = 3, m(λ) = m(µ) = 4n− 4

and the corresponding eigenspaces are

Tα = Rξ = Span{ξ}
Tβ = JJξ = Span{ξ1, ξ2, ξ3},
Tγ = Jξ = Span{φ1ξ, φ2ξ, φ3ξ},
Tλ, Tµ,

where Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

One of our main results in this paper is given as follows.

Theorem 3.8. Let M be a Hopf hypersurface in G2(Cm+2). Then, the shape
operator satisfies (

∇̂(k)
X A

)
ξ +

(
∇̂(k)
ξ A

)
X = 0 (3.11)

for any vector fields X with α 6= 2k if and only if M is locally congruent to an
open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2).
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Proof. According to all the above statements, we observe that Lemmas 3.1,
3.3 and 3.4 are true if (3.11) holds. Therefore, according to Lemmas 3.1 and 3.3,
on a Hopf hypersurface M in G2(Cm+2), α 6= 2k, satisfying (3.11), either ξ ∈ D
or ξ ∈ D⊥. It has been proved that a Hopf hypersurface in G2(Cm+2) is of type
(B) when ξ ∈ D (see [11]). Also, according to Lemmas 3.4 and 3.5 we observe
that the hypersurface is of type (A) when ξ ∈ D⊥.

First, suppose that the hypersurface is of type (A). It has been proved in [13,
Remark 2] that a Hopf hypersurface of type (A) in G2(Cm+2) has Reeb parallel
shape operator with respect to the generalized Tanaka–Webster connection. In
this case, (3.11) becomes (

∇̂(k)
X A

)
ξ = 0 (3.12)

for any vector fields X. According to (3.1) and (2.4), with the aid of ξ ∈ D⊥,
(3.12) reduces to an identity. This implies that (3.11) is true if and only if M is
of type (A), and it is locally congruent to an open part of a tube around a totally
geodesic G2(Cm+1) in G2(Cm+2).

Second, suppose that the hypersurface is of type (B). Next we shall show
that this case cannot occur. Notice that α is a constant due to Proposition 3.7.
If (3.11) holds, we see that (3.5) becomes

AφAX − φX + (k − α)φAX − kAφX

+
3∑

ν=1

{ην(X)φνξ − ην(ξ)φνX − 3ην(φX)ξν} = 0 (3.13)

for any vector field X. Applying Proposition 3.7, replacing X by ξ1 in (3.13) we
obtain β(k − α)φξ1 = 0. Because β = 2 cot(2r) satisfying r ∈ (0, π4 ) cannot be
zero, it follows that k = α, which is used in (3.13) giving

AφAX − φX − kAφX +

3∑
ν=1

{ην(X)φνξ − ην(ξ)φνX − 3ην(φX)ξν} = 0 (3.14)

for any vector field X. Let Xλ be an eigenvector field of the shape operator with
eigenvalue λ. With the aid of k = α, replacing X by Xλ in (3.14) and applying
Proposition 3.7 again, we obtain

λµ− 1− αµ = 0.

Consequently, substituting α = −2 tan(2r), λ = cot(r) and µ = − tan(r) into the
above equation gives 1 + tan2(r) = 0; a contradiction.

With regard to the assumption α 6= 2k employed in Theorem 3.8, we give the
following explanation.

Remark 3.9. Let M be a Hopf hypersurface in G2(Cm+2) such that (3.11) is
true. If ξ ∈ D, as mentioned before in proof of Theorem 3.8, M is of type (B) (see
Main Theorem in [11]). If ξ ∈ D⊥ and α = 2k, as pointed out in Proposition 1
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of [13], the shape operator is necessarily parallel along the Reeb vector field with
respect to the generalized Tanaka–Webster connection. On the other hand, under
the assumption α = 2k, from (3.1) and the Hopf condition Aξ = αξ, with the

help of the second term of (2.5), it is easy to check that
(
∇̂(k)
X A

)
ξ vanishes

identically for any vector field X. This means that under the assumption α =
2k, (3.11) is meaningless for ξ ∈ D⊥. Because (3.11) is critical for proofs of our
main theorems, then we need the assumption α 6= 2k. The same situation occur
in many literature (see for example [10,14,15,17,18]).

Finally, as an corollary of Theorem 3.8, now we give proof of Theorem 1.3.

Proof of Theorem 1.3. If the shape operator is Killing with respect to the
generalized Tanaka–Webster connection, then (3.11) is necessarily true. There-
fore, the proof of Theorem 1.3 for the case of ξ ∈ D follows immediately from
Theorem 3.8. Therefore, next we need only to consider the case of ξ ∈ D⊥ and
in this case by Theorem 3.8 the hypersurface is of type (A).

Suppose that shape operator is Killing with respect to the generalized Tanaka–
Webster connection, with the aid of Aξ = αξ, from (3.1) and (1.2) we obtain

(∇XA)Y + (∇YA)X − αη(Y )φAX − αη(X)φAY

− kη(X)φAY − kη(Y )φAX − αg(φAX, Y )ξ − αg(φAY,X)ξ

+ η(Y )AφAX + η(X)AφAY + kη(X)AφY + kη(Y )AφX = 0 (3.15)

for any vector fields X,Y . As seen in Lemma 3.5, on a Hopf hypersurface of type
(A), the shape operator commutes with φ. Applying this in (3.15) we obtain

(∇XA)Y + (∇YA)X − αη(Y )φAX − αη(X)φAY

+ η(Y )AφAX + η(X)AφAY = 0 (3.16)

for any vector fields X,Y . Notice that the shape operator is Reeb parallel with
respect to the Levi-Civita connection for any type (A) hypersurface in G2(Cm+2)
(see [19, Remark 4.5]). Applying this, we observe that (3.16) is necessarily true
if either X or Y was replaced by ξ because of (2.5) and Aξ = αξ. According to
this and (3.16), if the shape operator is Killing with respect to the generalized
Tanaka–Webster connection, then it is also Killing with respect to the Levi-Civita
connection. However, as proved in [12, Theorem 1], this is impossible.
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Гiперповерхнi Гопфа в комплексних двоповерхневих
ґрассманiанах з кiлiнговим оператором другої
квадратичної форми вiдносно узагальненої

зв’язностi Танаки–Вебстера
Yaning Wang

У цiй роботi ми доводимо, що не iснує гiперповерхонь Гопфа в ком-
плексних ґрассманiанах G2(Cm+2) з кiлiнговим оператором другої ква-
дратичної форми вiдносно узагальненої зв’язностi Танаки–Вебстера.

Ключовi слова: гiперповерхня Гопфа, комплексний ґрассманiан, кi-
лiнговий оператор другої квадратичної форми, узагальнена зв’язнiсть
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