Three-Dimensional Almost Contact Metric Manifolds with a New Approach
Анотація
Ми доводимо, що, виходячи з глобального одиничного векторного поля на тривимірному рімановому многовиді, можна побудувати майже контактну метричну структуру. Крім того, розуміння природи цих структур досягається через співвідношення, що пов'язує компоненти цього векторного поля та компоненти зв'язності Леві-Чівіти. Наведено ілюстративні приклади.
Mathematical Subject Classification 2020: 53D15, 53C25, 22E25 17B30
Ключові слова:
майже контактна метрична структура, структура Сасакі, структура Кенмоцу, косимплектична структура, кутова структураПосилання
B. Bayour and G. Beldjilali, Ricci solitons on 3-dimensional $C_{12}$-manifolds, Balkan J. Geom. Appl. 27 (2022), No. 2, 26--36. https://doi.org/10.46298/cm.10390
B. Bayour, G. Beldjilali, and M. L. Sinacer, Almost contact metric manifolds with certain condition, Research Square, preprint. Available from: https://doi.org/10.21203/rs.3.rs-2622224/v2
G. Beldjilali, 3-dimensional $C_{12}$-manifolds, Rev. Un. Mat. Argentina 67 (2024), No. 1, 1--14. https://doi.org/10.33044/revuma.3088
G. Beldjilali, Classification of almost contact metric structures on 3D Lie algebra, J. Math. Sci. 271 (2023), 210--222. https://doi.org/10.1007/s10958-023-06374-5
D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhäuser, Boston, 2002. https://doi.org/10.1007/978-1-4757-3604-5
D.E. Blair, T. Koufogirgos, and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q ϕ = ϕ Q$, Kodai Math. J. 13 (1990), 391--401. https://doi.org/10.2996/kmj/1138039284
W.M. Boothby and H.C. Wang, On contact manifolds, Ann. Math. 68, (1958), 721--734. https://doi.org/10.2307/1970165
H. Bouzir, G. Beldjilali, and B. Bayour, On three dimensional $C_{12}$-manifolds, Mediterr. J. Math. 18 (2021), Paper No. 239. https://doi.org/10.1007/s00009-021-01921-3
C. P. Boyer, K. Galicki, and P. Matzeu, On eta-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), 177--208. https://doi.org/10.1007/s00220-005-1459-6
S. de Candia and M. Falcitelli, Curvature of $C_5 ⊕ C_{12}$-manifolds, Mediterr. J. Math. 16 (2019), Paper No. 105. https://doi.org/10.1007/s00009-019-1382-2
F.M. Cabrera, On the classification of almost contact metric manifolds,Differential Geom. Appl. 64 (2019), 13--28. https://doi.org/10.1016/j.difgeo.2019.02.002
D. Chinea and C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1990), 15--36. https://doi.org/10.1007/BF01766972
I. Hideki and M. Satsuki, Solutions to the Einstein-Maxwell-current system with Sasakian maifolds, preprint, https://arxiv.org/abs/2012.02432v1
Z. Olszak, Normal almost contact manifolds of dimension three, Annales Pol. Math. XLVII (1986), 41--50. https://doi.org/10.4064/ap-47-1-41-50
B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
J. A., Oubiña, New classes of almost contact metric structures. Publ. Math. Debrecen 32 (1985), 187--193. https://doi.org/10.5486/PMD.1985.32.3-4.07
A. Sarkar and A. Mondal, Certain curves on some classes of of three-dimensional almost contact metric manifolds, Rev. Un. Mat. Argentina 58 (2017), 107--125.
M. Spivak, A Comprehensive Introduction to Differential Geometry, I, Publisher Perish, Inc., Boston, 1970.
K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3, World Sciences, 1984. https://doi.org/10.1142/0067
G. Yilmaz and M.A. Akyol, Conformal slant submersions from cosymplectic manifolds, Turkish J. Math. 42 (2018), No. 5, 2672--2689. https://doi.org/10.3906/mat-1803-106