Existence of a Renormalized Solution for a Class of Parabolic Problems
Анотація
У цій статті ми доводимо існування ренормалізованого розв'язку для нелінійного виродженого параболічного рівняння $\frac{\partial b(u)}{\partial t}-\textrm{div}(A(t,x,u)Du)=f,$ де матриця $A\left( t,x,s\right) =\left(a_{ij}(t,x,s)\right)_{1\leq i\leq N \atop 1\leq j\leq N}$ не контролюється за $u$, $f\in L^{1}(Q) $, а $b$ є строго зростальною $C^{1}$-функцією.
Mathematical Subject Classification 2020: 47A15, 46A32
Ключові слова:
ренормалізований розв'язок, вибух, $L^{1}$-даніПосилання
M. Abdellaoui, Regularizing effect for some parabolic problems with perturbed terms and irregular data, J. Elliptic Parabol. Equ. 8 (2022), 443--468. https://doi.org/10.1007/s41808-022-00158-9
M. Abdellaoui and H. Redwane, Existence and regularity results for degenerate parabolic problems in the presence of strongly increasing regularizing lower-order terms and $ L^{m} $-data/Dirac, Ukr. Math. J. 75 (2024), 1493--1525. https://doi.org/10.1007/s11253-024-02274-2
Y. Akdim, J. Bennouna, M. Mekkour, and H. Redwane, Existence of a renormalised solutions for a class of nonlinear degenerated parabolic problems with $L^{1}$-Data, J. Partial Differ. Equ. 26 (2013), 76--98. https://doi.org/10.4208/jpde.v26.n1.6
D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Differential Equations 210 (2005), 383--428. https://doi.org/10.1016/j.jde.2004.06.012
D. Blanchard and H. Redwane, Renormalized solutions for a class of nonlinear parabolic evolution problems, J. Math. Pures Appl. 77 (1998), 117--151. https://doi.org/10.1016/S0021-7824(98)80067-6
D. Blanchard, O. Guibé, and H. Redwane, Renormalized solutions for a class of nonlinear parabolic evolution problems, Commun. Pure Appl. Anal. 15 (2016), 197--217.
D. Blanchard, O. Guibé, and H. Redwane, Nonlinear equations with unbounded heat conduction and integrable data, Ann. Mat. Pura Appl. 187 (2008), 405--433. https://doi.org/10.1007/s10231-007-0049-y
L. Boccardo, D. Giachetti, and F.Murat. Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Differential Equations 106 (1993), 215--237. https://doi.org/10.1006/jdeq.1993.1106
H. Brezis, M. Marcus, and A.C. Ponce. Nonlinear elliptic equations with measures revisited, mathematical aspects of nonlinear dispersive equations, Ann. Math. Stud. 163 (2007), 55--109. https://doi.org/10.1515/9781400827794.55
L. Dupaigne, A.C. Ponce, and A. Porretta, Elliptic equations with vertical asymptotes in the nonlinear term, J. Anal. Math. 98 (2006), 349--396. https://doi.org/10.1007/BF02790280
R.-J DiPerna and P.-L Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann of Math. 130 (1989), 321--366. https://doi.org/10.2307/1971423
P. J. Martínez-Aparicio and F. Petitta, Parabolic equations with nonlinear singularities, Nonlinear Anal. 74 (2011), 114--131. https://doi.org/10.1016/j.na.2010.08.023
P.-L.Lions, Mathematical Topics in Fluid Mechanics. I: Incompressible Models, 3, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford, UK, 1996.
A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. 177 (1999), 143--172. https://doi.org/10.1007/BF02505907
J. Droniou, A. Porretta, and A. Prignet, Parabolic capacity and soft measures for nonlinear equations, Potential Anal. 19 (2003), 99--161. https://doi.org/10.1023/A:1023248531928
J. Droniou and A. Prignet, Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data, NoDEA Nonlinear Differential Equations Appl. 14 (2007), 181--205. https://doi.org/10.1007/s00030-007-5018-z
F. Petitta, Renormalized solutions of nonlinear parabolic equations with general measure data, Ann. Mat. Pura ed Appl. 187 (2008), 563--604. https://doi.org/10.1007/s10231-007-0057-y
F. Murat, Equations elliptiques non linèaires avec second membre L1 ou mesure, In Compte Rendus du 26ème Congrès d’Analyse Numérique, les Karellis, 1994, A12--A24.
F. Murat, Soluciones renormalizadas de EDP elipticas non lineales, Technical Report R93023 (Cours à l’Université de Séville), Laboratoire d’Analyse Numérique, Paris VI, 1993.