Finding a Positive Constrained Control for a Linear System to Reach a Given Point within a Finite Time
Анотація
У цій роботі розглядається лінійна система з керуванням $u \in \Omega$, де $\Omega$~- деяка область, яка не містить початку координат, як внутрішньої точки. Зокрема, початок координат може не належати множині $\omega$.
Розв'язано задачу синтезу, тобто за допомогою методу функції керованості побудоване керування $u(x) \in \Omega$, яке переводить точку $x$, що належить околу $V(0)$, до $0$ за кінцевий час. Крім того, цю функцію можна знайти, як час руху від точки $x\in V(0)$ до початку координат.
Також розглянуто задачу синтезу для керованої лінійної системи з неавтономним членом.
Mathematical Subject Classification 2020: 93B05, 93B50, 93B52, 93C28,
93D05, 93D40
Ключові слова:
керована система, задача синтез, функція керованості, позиційне керування, додатне обмежене керуванняПосилання
M. Bebiya, On the bounded control synthesis for three-dimensional high-order nonlinear systems, Bukovinian Math. J. 11 (2023), 11--23. https://doi.org/10.31861/bmj2023.02.01
S. Bowong and F.M.M. Kakmeni, Chaos control and duration time of a class of uncertain chaotic systems, Phys. Lett. A, 316 (2003), 206--217. https://doi.org/10.1016/S0375-9601(03)01152-6
R. Brammer, Controllability in linear autonomous systems with positive controllers, SIAM J. Contr. 10 (1972), 339--353. https://doi.org/10.1137/0310026
A.E. Choque Rivero, The controllability function method for the synthesis problem of a nonlinear control system, Internat. Rev. Autom. Control 20 (2008), 441--445.
A.E. Choque-Rivero, Extended set of solutions of a bounded finite-time stabilization problem via the controllability function, IMA J. Math. Control Inform. 38 (2021), 1174--1188. https://doi.org/10.1093/imamci/dnab028
A.E. Choque-Rivero, Korobov's Controllability function as motion time: extension of the solution set of the synthesis problem, J. Math. Phys. Anal. Geom. 19 (2023), 556--586. https://doi.org/10.15407/mag19.03.556
A.E. Choque-Rivero, V.I. Korobov, and V.A. Skorik, The controllability function as the time of motion, I, Mat. Fiz. Anal. Geom. 11 (2004), 208--225 (Russian).
V.I. Korobov, A general approach to the solution of the bounded control synthesis problem in a controllability problem, Mat. Sb. (N.S.), 109(151) (1979), 582--606 (Russian) Engl. transl.: Math. USSR-Sb., 37 (1980), 535--557. https://doi.org/10.1070/SM1980v037n04ABEH002094
V.I. Korobov, Method of Controllability Function, R. Dynamics, Moskow-Ijevsk, 2007 (Russian).
V.I. Korobov, Geometric criterion for controllability under arbitrary constraints on the control, J. Optim. Theory Appl. 134 (2007), 161--176. https://doi.org/10.1007/s10957-007-9212-2
V.I. Korobov, A.P. Marynych, and E.N. Podolskii, Controllability of linear autonomous systems in the presence of constraints on the control, Differ. Equ. 15 (1980), 1136--1142.
V.I. Korobov and T.V. Revina, On the feedback synthesis for an autonomous linear system with perturbations, J. Dyn. Control Syst. 30 (2024), Paper No. 16. https://doi.org/10.1007/s10883-024-09690-4
V.I. Korobov and T.V. Revina, On perturbation range in the feedback synthesis problem for a chain of integrators system, IMA J. Math. Control Inform. 38 (2021), 396--416. https://doi.org/10.1093/imamci/dnaa035
V.I. Korobov and G.M. Sklyar, Methods for constructing positional controls, and a feasible maximum principle, Differ. Equ. 26 (1990), 1422--1431.
A. Polakov, D. Efimov, and W. Perruquetti, Robust stabilisation of MIMO systems in finite/fixed time, Internat. J. Robust Nonlin. Control 26 (2016), 68--90. https://doi.org/10.1002/rnc.3297
S.H. Saperstone and J.A. Yorke, Controllability of linear oscillatory systems using positive controllers, SIAM J. Contr. 10 (2016), 253--262. https://doi.org/10.1137/0309019
G.M. Sklyar, K.V. Sklyar, and S.Yu. Ignatovich, On the extension of the Korobov's class of linearizable triangular systems by nonlinear control systems of the class $C^1$, System Control Lett. 54 (2005), 1097--1108. https://doi.org/10.1016/j.sysconle.2005.04.002
K. Sklyar and S. Yu. Ignatovich, Linearizability of systems of the class $C^1$ with multi-dimensional control, Systems Control Lett. 94 (2016), 92--96. https://doi.org/10.1016/j.sysconle.2016.05.016
K.V. Sklyar, Finding the implicit form of the control and the trajectories solving the problem of controllability for some nonlinear systems, Visnyk Khark. Univ., Math. Applied Math. and Mech. 458 (1999), 43--52 (Russian).
K.V. Sklyar, Mapping of Nonlinear Control Systems to Linear, Ph.D. Thesis, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, 2002, 141 pp. (Russian).
K.V. Sklyar, S.Yu. Ignatovich, and V.O. Skoryk, Conditions of linearizability for multi-control systems of the class $C^1,$ Commun. Math. Anal. 17 (2014), 359--365.
A.M. Zverkin and V.N. Rozova, The structure of a controllability region, Differ. Uravn. 18 (1982), 234--239 (Russian) Engl. transl.: Differ. Equ. 18 (1982), 186--190. https://doi.org/10.1007/BF01239780