Long-Time Asymptotics for the Modified Camassa–Holm Equation with Nonzero Boundary Conditions


  • Iryna Karpenko B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine image/svg+xml




Ми розглядаємо модифiковане рiвняння Камаси–Хольма (мКХ) mt +(( u2 - ux2 )m)x =0, m := u − uxx на осi −∞ < x < +∞, де u(x,t) задовiльняє ненульовi крайовi умови на нескiнченностi: u(x,t) → 1 при x → ±∞. Метою роботи є дослiдження асимптотики за великим часом розв’язкiв початкової задачi, застосовуючи формалiзм задачi Рiмана–Гiльберта, що був нещодавно розроблений у [3]. Основна увага придiляється одержанню асимптотики у двох секторах пiвплощини (x,t) (t > 0), де основнi асимптотичнi члени мають вигляд модульованих та спадаючих (як t−1/2  ) тригонометричних осциляцiй, а також асимптотицi у секторi, де у поведiнцi розв’язку початкової задачi домiнують солiтони.

Mathematical Subject Classification 2010: 35Q53, 37K15, 35Q15, 35B40,
35Q51, 37K40

Ключові слова:

задача Рiмана–Гiльберта, нелiнiйний метод найшвидшого спуску, солiтони


S. Anco and D. Kraus, Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation, Discrete Contin. Dyn. Syst. 38 (2018), No. 9,4449-4465. https://doi.org/10.3934/dcds.2018194

A. Boutet de Monvel, A. Its, and D. Shepelsky, Painlevé-type asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal. 42 (2010), 1854-1873. https://doi.org/10.1137/090772976

A. Boutet de Monvel, I. Karpenko, and D. Shepelsky, A Riemann-Hilbert approach to the modified Camassa-Holm equation with nonzero boundary conditions, J. Math. Phys. 61 (2020), 031504, 24. https://doi.org/10.1063/1.5139519

A. Boutet de Monvel, I. Karpenko, and D. Shepelsky, The modified Camassa-Holm equation on a nonzero background: large-time asymptotics for the Cauchy problem, to appear in: Pure and Applied Functional Analysis 7 (2022).

A. Boutet de Monvel, A. Kostenko, D. Shepelsky, and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal. 41 (2009), 1559-1588. https://doi.org/10.1137/090748500

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert problem in the inverse scattering for the Camassa-Holm equation on the line, Probability, geometry and integrable systems, Math. Sci. Res. Inst. Publ. 55, Cambridge Univ. Press, Cambridge, 2008, 53-75.

A. Boutet de Monvel and D. Shepelsky, Long-time asymptotics of the Camassa-Holm equation on the line, Integrable systems and random matrices, Contemp. Math. 458, Amer. Math. Soc., Providence, RI, 2008, 99-116. https://doi.org/10.1090/conm/458/08932

A. Boutet de Monvel, D. Shepelsky, and L. Zielinski, The short pulse equation by a Riemann-Hilbert approach, Lett. Math. Phys. 107 (2017), 1345-1373. https://doi.org/10.1007/s11005-017-0945-z

R. Camassa and D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664. https://doi.org/10.1103/PhysRevLett.71.1661

R. Camassa, D.D. Holm, and J.M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1-33. https://doi.org/10.1016/S0065-2156(08)70254-0

X. Chang and J. Szmigielski, Liouville integrability of conservative peakons for a modified CH equation, J. Nonlinear Math. Phys. 24 (2017), 584-595. https://doi.org/10.1080/14029251.2017.1375693

X. Chang and J. Szmigielski, Lax integrability and the peakon problem for the modified Camassa-Holm equation, Comm. Math. Phys. 358 (2018), 295-341. https://doi.org/10.1007/s00220-017-3076-6

R.M. Chen, F. Guo, Y. Liu, and Ch. Qu, Analysis on the blow-up of solutions to a class of integrable peakon equations, J. Funct. Anal. 270 (2016), 2343-2374. https://doi.org/10.1016/j.jfa.2016.01.017

R.M. Chen, Y. Liu, Ch. Qu, and Sh. Zhang, Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion, Adv. Math. 272 (2015), 225-251. https://doi.org/10.1016/j.aim.2014.12.003

A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), No. 2008, 953-970. https://doi.org/10.1098/rspa.2000.0701

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal. 192 (2009), 165-186. https://doi.org/10.1007/s00205-008-0128-2

P. A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. https://doi.org/10.1090/cln/003

P. Deift and X. Zhou, A steepest descend method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. 137 (1993), 295-368. https://doi.org/10.2307/2946540

P. Deift and X. Zhou, A priori Lp-estimates for solutions of Riemann-Hilbert problems, Int. Math. Res. Not. (2002), No. 40, 2121-2154. https://doi.org/10.1155/S1073792802205103

J. Eckhardt, Unique solvability of a coupling problem for entire functions, Constr. Approx. 49 (2019), 123-148. https://doi.org/10.1007/s00365-017-9394-2

J. Eckhardt and G. Teschl, On the isospectral problem of the dispersionless Camassa-Holm equation, Adv. Math. 235 (2013), 469-495. https://doi.org/10.1016/j.aim.2012.12.006

J. Eckhardt and G. Teschl, A coupling problem for entire functions and its application to the long-time asymptotics of integrable wave equations, Nonlinearity 29 (2016), 1036-1046. https://doi.org/10.1088/0951-7715/29/3/1036

A.S. Fokas, On a class of physically important integrable equations, Phys. D 87 (1995), 145-150. https://doi.org/10.1016/0167-2789(95)00133-O

A.S. Fokas, A.R. Its, A.A. Kapaev, and V.Yu. Novokshenov, Painlevé transcendents. The Riemann-Hilbert approach, Mathematical Surveys and Monographs 128, American Mathematical Society, Providence, RI, 2006. https://doi.org/10.1090/surv/128

Y. Fu, G. Gui, Y. Liu, and Ch. Qu, On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity, J. Differential Equations 255 (2013), 1905-1938. https://doi.org/10.1016/j.jde.2013.05.024

B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Phys. D 95 (1996), 229-243. https://doi.org/10.1016/0167-2789(96)00048-6

Yu. Gao and J.-G. Liu, The modified Camassa-Holm equation in Lagrangian coordinates, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 2545-2592. https://doi.org/10.3934/dcdsb.2018067

G. Gui, Y. Liu, P.J. Olver and Ch. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys. 319 (2013), 731-759. https://doi.org/10.1007/s00220-012-1566-0

Yu. Hou, E. Fan and Zh. Qiao, The algebro-geometric solutions for the Fokas-Olver-Rosenau-Qiao (FORQ) hierarchy, J. Geom. Phys. 117 (2017), 105-133. https://doi.org/10.1016/j.geomphys.2017.03.004

A.R. Its and A.F. Ustinov, Time asymptotics of the solution of the Cauchy problem for the nonlinear Schrödinger equation with boundary conditions of finite density type, Dokl. Akad. Nauk SSSR 291 (1986), No. 1, 91-95 (Russian); Engl. transl.: Soviet Phys. Dokl. 31 (1986), No. 11, 893-895. https://doi.org/10.1016/0013-4686(86)85025-3

R.S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech. 455 (2002), 63-82. https://doi.org/10.1017/S0022112001007224

J. Kang, X. Liu, P.J. Olver, and Ch. Qu, Liouville correspondence between the modified KdV hierarchy and its dual integrable hierarchy, J. Nonlinear Sci. 26 (2016), 141-170. https://doi.org/10.1007/s00332-015-9272-7

J. Lenells, The nonlinear steepest descent method for Riemann-Hilbert problems of low regularity, Indiana Univ. Math. J. 66 (2017), 1287-1332. https://doi.org/10.1512/iumj.2017.66.6078

Y. Liu, P.J. Olver, Ch. Qu, and Sh. Zhang, On the blow-up of solutions to the integrable modified Camassa-Holm equation, Anal. Appl. (Singap.) 12 (2014), 355-368. https://doi.org/10.1142/S0219530514500274

P.J. Olver and P. Rosenau, Tri-hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E 53 (1996), 1900. https://doi.org/10.1103/PhysRevE.53.1900

Zh. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys. 47 (2006), 112701, 9. https://doi.org/10.1063/1.2365758

Ya. Rybalko and D. Shepelsky, Defocusing nonlocal nonlinear Schrödinger equation with step-like boundary conditions: long-time behavior for shifted initial data, J. Math. Phys. Anal. Geom. 16 (2020), No. 4, 418-453. https://doi.org/10.15407/mag16.04.418

Ya. Rybalko and D. Shepelsky, Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrödinger equation for a family of step-like initial data, Commun. Math. Phys. 382 (2021), 87-121. https://doi.org/10.1007/s00220-021-03941-2

J. Schiff, Zero curvature formulations of dual hierarchies, J. Math. Phys. 37 (1996), 1928-1938. https://doi.org/10.1063/1.531486

A.H. Vartanian, Large-time continuum asymptotics of dark solitons, Inverse Problems 16 (2000), L39-L46. https://doi.org/10.1088/0266-5611/16/4/102

A.H. Vartanian, Exponentially small asymptotics of solutions to the defocusing nonlinear Schrödinger equation, Appl. Math. Lett. 16 (2003), 425-434. https://doi.org/10.1016/S0893-9659(03)80068-X

G. Wang, Q.P. Liu, and H. Mao, The modified Camassa-Holm equation: Bäcklund transformation and nonlinear superposition formula, J. Phys. A 16 (2020), 294003-294018. https://doi.org/10.1088/1751-8121/ab7136

K. Yan, Zh. Qiao, and Y. Zhang, On a new two-component b-family peakon system with cubic nonlinearity, Discrete Contin. Dyn. Syst. 38 (2018), 5415-5442. https://doi.org/10.3934/dcds.2018239

X. Zhou, The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal. 20 (1989), 966-986. https://doi.org/10.1137/0520065


Як цитувати

Karpenko, I. Long-Time Asymptotics for the Modified Camassa–Holm Equation with Nonzero Boundary Conditions. Журн. мат. фіз. анал. геом. 2022, 18, 224-252.





Дані завантаження ще не доступні.