References
[1] G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007. CrossRef
[2] N. Akhmediev, A. Ankiewicz, and M. Taki, Waves that appear from nowhere and disappear without a trace, Phys. Lett. A 373 (2009), 675–678. CrossRef
[3] A. Ankiewicz, J.M. Soto-Crespo, and N. Akhmediev, Rogue waves and rational solutions of the Hirota equation, Phys. Rev. E 81 (2010), 046602. CrossRef
[4] D.J. Benney and A.C. Newell, The propagation of nonlinear wave envelopes, J. Math. Phys. 46 (1967), 133–139. CrossRef
[5] D.J. Benney and G.J. Roskes, Wave instabilities, Stud. Appl. Math. 48 (1969), 377–385. CrossRef
[6] H.H. Chen, Y.C. Lee, and C.S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Physica Scripta 20 (1979), 490–492. CrossRef
[7] G. Darboux, Sur une proposition relative aux équations linéaires C. R. Acad. Sci. 94 (1882), 1456–1459.
[8] I. Gelfand and V. Retakh, Determinants of the matrices over noncomutative rings, Funct. Anal. App. 25 (1991), 91–102. CrossRef
[9] I. Gelfand, S. Gelfand, V. Retakh, and R.L. Wilson, Quasideterminants, Adv. Math. 193 (2005), 56–141. CrossRef
[10] C.R. Gilson and J.J.C. Nimmo, On a direct approach to quasideterminant solutions of a noncommutative KP equation, J. Phys. A: Math. Theor. 40 (2007), 3839–3850. CrossRef
[11] C.R. Gilson, M. Hamanaka, and S.C. Huang and J. J. C. Nimmo, Soliton Solutions of Noncommutative Anti-Self-Dual Yang–Mills Equations, J. Phys. A: Math. Theor. 53 (2020) 404002. CrossRef
[12] C.R. Gilson and S.R. Macfarlane, Dromion solutions of noncommutative Davey– Stewartson equations, J. Phys. A: Math. Theor. 42 (2009), 235232. CrossRef
[13] B.L. Guo, L.M. Ling, and Q.P. Liu, Nonlinear Schrödinger Equation: Generalized Darboux Transformation and Rogue Wave Solutions, Phys. Rev. E 85 (2012), 026607. CrossRef
[14] A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres I. Anomalous dispersion, Appl. Phys. Lett. 23 (1973), 142 . CrossRef
[15] A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres II. Normal dispersion, Appl. Phys. Lett. 23 (1973), 171. CrossRef
[16] R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys. 14 (1973), 805–809. CrossRef
[17] D.J. Kaup and A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys. 19 (1978), 798–801. CrossRef
[18] Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, 2003. CrossRef
[19] Y. Kodama, Optical solitons in a monomode fiber, J. Stat. Phys. 39 (1985), 597–614. CrossRef
[20] Y. Kodama and A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide, IEEE J. Quantum Electron. 23 (1987), 510–524. CrossRef
[21] C.X. Li and J.J.C. Nimmo, Darboux transformations for a twisted derivation and quasideterminant solutions to the super KdV equation, Proc. R. Soc. A 466 (2010), 2471–2493. CrossRef
[22] L. Li, Z. Wu, L. Wang, and J. He, Higher-order rogue waves for the Hirota equation, Ann. Phys. 334 (2013), 198-211. CrossRef
[23] B.A. Malomed and D. Mihalache, Nonlinear waves in optical and matter-wavemedia: A topical survey of recent theoretical and experimental results, Rom. J. Phys. 64 (2019), 106.
[24] V.B. Matveev, Darboux transformation and explicit solutions of the Kadomtcev– Petviaschvily equation, depending on functional parameters, Lett. Math. Phys. 3 (1979), 213–216. CrossRef
[25] V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991. CrossRef
[26] D. Mihalache, N. Truta, and L.-C. Crasovan, Painlevé analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term, Phys. Rev. E 56 (1997), 1064–1070. CrossRef
[27] J.J.C. Nimmo, C.R. Gilson, and Y. Ohta, Applications of Darboux transformations to the self-dual Yang–Mills equations, Theor. Math. Phys. 122 (2000), 239–246. CrossRef
[28] J.J.C. Nimmo and H. Yilmaz, On Darboux Transformations for the derivative nonlinear Schrödinger equation, J. Nonlinear Math. Phys. 21 (2014), 278–293. CrossRef
[29] J.J.C. Nimmo and H. Yilmaz, Binary Darboux transformation for the Sasa–Satsuma equation, J. Phys. A: Math. Theor. 48 (2015), 425202. CrossRef
[30] D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. Ser. B 25 (1983), 16–43. CrossRef
[31] H.W.A. Riaz, Noncommutative coupled complex modified Korteweg–de Vries equation: Darboux and binary Darboux transformations, Mod. Phys. Lett. A 34 (2019), 1950054. CrossRef
[32] Y. Tao and J. He, Multisolitons, breathers and rogue waves for the Hirota equation generated by the Darboux transformation, Phys. Rev. E 85 (2012), 026601. CrossRef
[33] N. Sasa and J. Satsuma, New type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Japan 60 (1991), 409–417. CrossRef
[34] M. Wadati, The exact solution of the modified Korteweg–de Vries equation, J. Phys. Soc. Japan 32 (1972), 1681. CrossRef
[35] H. Wu, J. Liu, and C. Li, Quasideterminant solutions of the extended noncommutative Kadomtsev–Petviashvili hierarchy, Theor Math Phys 192 (2017), 982–999. CrossRef
[36] Z. Yan and C. Dai, Optical rogue waves in the generalized inhomogeneous higherorder nonlinear Schrödinger equation with modulating coefficients, J. Opt. 15 (2013), 064012. CrossRef
[37] H. Yilmaz, Exact solutions of the Gerdjikov–Ivanov equation using Darboux transformations, J. Nonlinear Math. Phys. 22 (2015), 32–46. CrossRef
[38] V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9 (1968), 190–194. CrossRef
[39] V.E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972), 908–914.
[40] V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62–69.
[41] H.Q. Zhang, Y. Wang, and W.X. Ma, Binary Darboux transformation for the coupled Sasa–Satsuma equations, Chaos 27 (2017), 073102. CrossRef