Global Weak Solutions of the Navier-Stokes/Fokker-Planck/Poisson Linked Equations

Автор(и)

  • O. Anoshchenko Механико-математический факультет, Харьковский национальный университет им. В.Н. Каразина пл. Свободы, 4, Харьков, 61077, Украина
  • S. Iegorov EPAM Systems ул. Коломенская, 63, Харьков, 61166, Украина
  • E. Khruslov Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, Харьков, 61103, Украина

DOI:

https://doi.org/10.15407/mag10.03.267

Ключові слова:

уравнение Навье-Стокса, уравнение Фоккера-Планка, уравнение Пуассона, глобальное слабое решение, модифицированный метод Галеркина, теорема Шаудера о неподвижной точке, компактность приближений.

Анотація

Рассматривается начально-краевая задача для системы связанных уравнений Навье-Стокса/Фоккера-Планка/Пуассона, описывающей течение вязкой несжимаемой жидкости с высокодисперсной примесью твердых заряженных частиц, подверженных случайным воздействиям, обусловленным тепловым движением молекул жидкости. Доказано существование слабых глобальных решений этой задачи и изучены их свойства.

Mathematics Subject Classification: 35A01, 35Q30, 35Q84.

Посилання

A.I. Grigor’ev and T.I. Sidorova, Some Laws Governing the Settling and Accumulation of an Industrial Aerosol Over a Region. — Techn. Phys. 43 (1998), No. 3, 283–287.

C.W. Gardiner, Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences. Springer–Verlag, Berlin, 1983.

N.G. van Kampen, Stochastic Processes in Physics and Chemistry. North-Holland Publishing Co., Amsterdam–New York, 1981.

K. Hamdache, Global Existence and Large Time Behaviour of Solutions for the Vlasov–Stokes Equations. — Japan J. Indust. Appl. Math. 15 (1998), No. 1, 51–74.

A. Mellet and A. Vasseur, Global Weak Solutions for a Vlasov–Fokker– Planck/Navier–Stokes System of Equations. — Math. Models Methods Appl. Sci. 17 (2007), No. 7, 1039–1063.

O. Anoshchenko, E. Khruslov, and H. Stephan, Global Weak Solutions to the Navier–Stokes–Vlasov–Poisson System. — J. Math. Phys., Anal., Geom. 6 (2010), No. 2, 143–182.

S. Egorov and E.Ya. Khruslov, Global Weak Solutions of the Navier–Stokes–Fokker– Planck System. — Ukrainian Math. J. 65 (2013), No. 2, 212–248.

A.A. Arsenev, Existence in the Large of a Weak Solution of Vlasov’s System of Equations. — Zh. Vycisl. Mat. i Mat. Fiz. 15 (1975), 136–147.

J. Schaeffer, Global Existence of Smooth Solutions to the Vlasov–Poisson System in Three Dimensions. — Comm. Part. Differ. Eqs. 16 (1991), Nos. 8–9, 1313–1335.

P. Degond, Global Existence of Smooth Solutions for the Vlasov–Fokker–Planck Equation in 1 and 2 Space Dimensions. — Ann. Sci. École Norm. Sup. 19 (1986), No. 4, 519–542.

K. Pfaffelmoser, Global Classical Solutions of the Vlasov–Poisson System in Three Dimensions for General Initial Data. — J. Differ. Eqs. 95 (1992), No. 2, 281–303.

R. Alexandre, Weak Solutions of the Vlasov–Poisson Initial-Boundary Value Problem. — Math. Methods Appl. Sci. 16 (1993), No. 8, 587–607.

F. Bouchut, Existence and Uniqueness of a Global Smooth Solution for the Vlasov– Poisson–Fokker–Planck System in Three Dimensions. — J. Funct. Anal. 111 (1993), No. 1, 239–258.

J.A. Carrillo and J. Soler, On the Initial Value Problem for the Vlasov–Poisson– Fokker–Planck System with Initial Data in Lp Spaces. — Math. Methods Appl. Sci. 18 (1995), No. 10, 825–839.

C. Bardos and P. Degond, Global Existence for the Vlasov–Poisson Equation in 3 Space Variables with Small Initial Data. — Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), No. 2, 101–118.

A.I. Košelev, A Priori Estimates in Lp and Generalized Solutions of Elliptic Equations and Systems. — Uspehi Mat. Nauk 13 (1958), No. 4 (82), 29–88.

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Gauthier–Villars, Paris, 1969.

O. Anoshchenko, O. Lysenko, and E. Khruslov, On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems. — J. Math. Phys., Anal., Geom. 5 (2009), No. 2, 115–122.

M.A. Krasnoselskii, P.P. Zabreiko, E.I. Pustylnik, and P.E. Sobolevskii, IntegralOperators in Spaces of Summable Functions. Nauka, Moscow, 1966.

Downloads

Опубліковано

2014-06-23

Як цитувати

(1)
Anoshchenko, O.; Iegorov, S.; Khruslov, E. Global Weak Solutions of the Navier-Stokes/Fokker-Planck/Poisson Linked Equations. J. Math. Phys. Anal. Geom. 2014, 10, 267-299.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.