On Two Remarkable Groups of Area-Preserving Homeomorphisms
DOI:
https://doi.org/10.15407/mag19.02.339Анотація
Ми доводимо, що на симплектичнiй сферi група гамiльтонових гомеоморфiзмiв в сенсi Ога i Мюллера є власною нормальною пiдгрупою гамiльтонових гомеоморфiзмiв зi скiнченною енергiєю. Бiльш того, ми знаходимо скiнченновимiрнi пласкi модулi, надiленi природною псевдометрикою Гофера, у факторгрупi цих груп.
Mathematical Subject Classification 2020: 53D05
Ключові слова:
гамiльтоновi гомеоморфiзми, гiпотеза Фатi, метрика Гофера, спектральнi iнварiантиПосилання
D. Cristofaro-Gardiner, V. Humilière, and S. Seyfaddini, Proof of the simplicity conjecture , preprint, https://arxiv.org/abs/2001.01792.
D. Cristofaro-Gardiner, V. Humilière, C. Y. Mak, S. Seyfaddini, and I. Smith, Quantitative Heegaard Floer cohomology and the Calabi invariant. Forum of Mathematics, Pi, 10, 2022, e27. https://doi.org/10.1017/fmp.2022.18
D. Cristofaro-Gardiner, V. Humilière, and S. Seyfaddini, PFH spectral invariants on the two-sphere and the large scale geometry of Hofer's metric, preprint, https://arxiv.org/abs/2102.04404.
A. Fathi, Structure of the group of homeomorphisms preserving a good measure on a compact manifold. Ann. Sci. École Norm. Sup. (4), 13 (1980), 45--93. https://doi.org/10.24033/asens.1377
F. Le Roux, Six questions, a proposition and two pictures on Hofer distance for Hamiltonian diffeomorphisms on surfaces. Proceedings of the 2007 AMS-SIAM Summer Research Conference ''Symplectic Topology and Measure preserving Dynamical Systems'', Snowbird, UT, Contemporary Math., 2010. https://doi.org/10.1090/conm/512/10059
C.-Y. Mak and I. Smith, Non-displaceable Lagrangian links in four-manifolds. Geom. Funct. Anal. 31 (2021) 438--481. https://doi.org/10.1007/s00039-021-00562-8
S. Müller, The group of Hamiltonian homeomorphisms in the $ L^∞$-norm, J. Korean Math. Soc. 45 (2008), 1769--1784. https://doi.org/10.4134/JKMS.2008.45.6.1769
Y.-G. Oh and S. Müller, The group of Hamiltonian homeomorphisms and $C^0$-symplectic topology. J. Symplectic Geom., 5 (2007), 167--219. https://doi.org/10.4310/JSG.2007.v5.n2.a2
L. Polterovich, E. Shelukhin, Lagrangian configurations and Hamiltonian maps, preprint, https://arxiv.org/abs/2102.06118.
J.-C. Sikorav, Systèmes hamiltoniens et topologie symplectique, ETS Editrice, Pisa, 1990.