On the CLT for Linear Eigenvalue Statistics of a Tensor Model of Sample Covariance Matrices

Автор(и)

  • Alicja Dembczak-Kołodziejczyk University of Opole, 48 Oleska, Opole, 45-052, Poland
  • Anna Lytova University of Opole, 48 Oleska, Opole, 45-052, Poland

DOI:

https://doi.org/10.15407/mag19.02.374

Ключові слова:

вибiрковi коварiацiйнi матрицi, центральна гранична теорема, лiнiйна статистика власних значень

Анотація

В [18] було доведено центральну граничну теорему (ЦГТ) для лiнiйних статистик власних значень ${Tr} \varphi(M_n)$ вибiркових коварiацiйних матриць $M_{n}=\sum_{\alpha=1}^m {\bf y}_{\alpha}^{(1)} \otimes {\bf y}_{\alpha}^{(2)}({\bf y}_{\alpha}^{(1)} \otimes {\bf y}_{\alpha}^{(2)})^T$, де $({\bf y}_{\alpha}^{(1)},\, {\bf y}_{\alpha}^{(2)})_{\alpha}$ є незалежними копiями вектора ${\bf y}\in \mathbb{R}^n$ , що задовольняє умови ${\bf E} {\bf y}{\bf y}^T=n^{-1} I_n$, ${\bf E} {\bf y}^2_i{\bf y}^2_j(1+\delta_{ij}d)n^{-2}+a(1+\delta_{ij}d_1)n^{-3}+O(n^{-4})$ для деяких $a, d,d_1\in \mathbb{R}$. Було показано, що для достатньо гладких тестових функцiй $\varphi$ маємо ${\bf Var} {Tr} \varphi(M_n)=O(n)$, коли $m, n\to\infty $, $m/n^2\to c>0$, крiм того $({Tr} \varphi(M_n)-{\bf E} {Tr} \varphi(M_n))/\sqrt{n}$ збiгається за розподiлом до гаусiвської випадкової величини з нульовим середнiм та дисперсiєю $V[\varphi]$ пропорцiйною $a+d$. Зокрема, якщо ${\bf y}$ рiвномiрно розподiлено на одиничнiй сферi, то $a+d=0$ i $V[\varphi]$. У цiй роботi ми показуємо, що в цьому випадку ${\bf Var}  {Tr}(M_n-zI_n)^{-1}=O(1)$, так що ЦГТ має бути справедливою для самих лiнiйних статистик власних значень без нормалiзувального коефiцiєнта (на вiдмiну вiд випадку вiдповiдних гаусiвських вибiркових коварiацiйних матриць).

Mathematical Subject Classification 2020: 60B12, 60B20, 60F05, 47A75

Посилання

G.W. Anderson and O. Zeitouni, CLT for a band matrix model. Probab. Theory Related Fields 134 (2006), 283--338. https://doi.org/10.1007/s00440-004-0422-3

L.V. Arharov,Limit theorems for the characteristic roots of a sample covariance matrix. Doklady Akademii Nauk SSSR 12 (1971), 1206--1209.

Z.D. Bai and J.W. Silverstein, CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann. Prob. 32 (2004), 553--605. https://doi.org/10.1214/aop/1078415845

Z.D. Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, Springer, New York, 2010. https://doi.org/10.1007/978-1-4419-0661-8

Z.D. Bai and W. Zhou, Large sample covariance matrices without independence structures in columns, Statistica Sinica 18 (2008), No. 2, 425--442.

Z. D. Bai, X. Wang, and W. Zhou,Functional CLT for sample covariance matrices, Bernoulli 16 (2010), No. 4, 1086--1113. https://doi.org/10.3150/10-BEJ250

S.G. Bobkov, Remarks on the growth of $L^p$-norms of polynomials, Geometric Aspects of Functionnal Analysis, Lecture Notes in Math., 1745, Springer, Berlin, 2000, 27--35. https://doi.org/10.1007/BFb0107206

J. Bourgain, On the distribution of polynomials on high dimensional convex sets, Lecture Notes in Math., 1469, 1991, 127--137. https://doi.org/10.1007/BFb0089219

T. Cabanal-Duvillard, Fluctuations de la loi empirique de grandes matrices aléatoires, Ann. Inst. H. Poincaré Probab. Statist. 37 (2001), No. 3, 73--402. https://doi.org/10.1016/S0246-0203(00)01071-2

S.W. Dharmadhikari, V. Fabian, and K. Jogdeo, Bounds on the moments of martingales, Ann. Math. Statist. 39 (1968), 1719--1723. https://doi.org/10.1214/aoms/1177698154

V. Girko, Theory of Stochastic Canonical Equations,I, II, Kluwer, Dordrecht, 2001. https://doi.org/10.1007/978-94-010-0989-8

O. Guédon, A. Lytova, A. Pajor, and L. Pastur,The Central Limit Theorem for linear eigenvalue statistics of the sum of rank one projections on independent vectors, Spectral Theory and Differential Equations, V.A. Marchenko 90th Anniversary Collection (Eds.: E.Khruslov and L.Pastur, Amer. Math. Soc., Providence, RI, 2014).

A. Guionnet, Large deviations, upper bounds, and central limit theorems for non-commutative functionals of Gaussian large random matrices, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), 341--384. https://doi.org/10.1016/S0246-0203(01)01093-7

K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J. 91 (1998), 151--204. https://doi.org/10.1215/S0012-7094-98-09108-6

D. Jonsson, Some limit theorems for the eigenvalues of a sample covariance matrix, J. Multivariate Anal. 12 (1982), 1--38. https://doi.org/10.1016/0047-259X(82)90080-X

B. Khoruzhenko, A. Khorunzhy, and L. Pastur, Asymptotic properties of large random matrices with independent entries, J. Physics A: Math. and General 28 (1995), 31--35. https://doi.org/10.1088/0305-4470/28/1/006

B. Landon, P. Sosoe, Almost-optimal bulk regularity conditions in the CLT for Wigner matrices, preprint, https://arxiv.org/abs/2204.03419.

A. Lytova, Central limit theorem for linear eigenvalue statistics for a tensor product version of sample covariance matrices, J. Theoret. Probab. 31 (2018), No. 2, 1024--1057. https://doi.org/10.1007/s10959-017-0741-9

A. Lytova and L. Pastur, Central limit theorem for linear eigenvalue statistics of random matrices with independent entries, Ann. Prob. 37 (2009), No. 5, 1778--1840. https://doi.org/10.1214/09-AOP452

V. Marchenko and L. Pastur, The eigenvalue distribution in some ensembles of random matrices, Math. USSR Sbornik, 1 (1967), 457--483. https://doi.org/10.1070/SM1967v001n04ABEH001994

J. Najim and J. Yao, Gaussian fluctuations for linear spectral statistics of large random covariance matrices. Ann. Appl. Probab. 26 (2016), No. 3, 1837--1887. https://doi.org/10.1214/15-AAP1135

A. Pajor and L. Pastur, On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution, Studia Math. 195 (2009), No. 1, 11--29. https://doi.org/10.4064/sm195-1-2

G.M. Pan and W. Zhou, Central limit theorem for signal-to-interference ratio of reduced rank linear receiver, Ann. Appl. Probab., 18 (2008), 1232--1270. https://doi.org/10.1214/07-AAP477

L. Pastur and M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs., Amer. Math. Soc., 171, 2011. https://doi.org/10.1090/surv/171

M. Shcherbina, Central limit theorem for linear eigenvalue statistics of Wigner and sample covariance random matrices, J. Math. Phys. Anal. Geom. 7 (2011), No. 2, 176--192.

P. Sosoe and P. Wong, Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices, Adv. Math. 249 (2013), 37--87. https://doi.org/10.1016/j.aim.2013.09.004

Downloads

Як цитувати

(1)
Dembczak-Kołodziejczyk, A.; Lytova, A. On the CLT for Linear Eigenvalue Statistics of a Tensor Model of Sample Covariance Matrices. Журн. мат. фіз. анал. геом. 2023, 19, 374–395.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.