Radial Positive Solutions for Problems Involving φ-Laplacian Operators with Weights

Автор(и)

  • Sywar Belkahla University of Tunis El Manar, Faculty of Sciences of Tunis, Department of Mathematics, 2092 Tunis, Tunisia
  • Bilel Khamessi University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES09 Mathematical modelling, harmonic analysis and potential theory, 2092 Tunis, Tunisia
    Department of Mathematics, College of Sciences, Taibah University, P.O.Box 30002, Al Madinah Al Munawarah, Saudi Arabia
  • Zagharide Zine El Abidine LR16ES13, Higher School of Sciences and Technology of Hammam Sousse, University of Sousse, Tunisia

DOI:

https://doi.org/10.15407/mag20.02.153

Анотація

Використовуючи теорiю потенцiалу, встановлюємо iснування та асимптотичну поведiнку радiальних розв’язкiв наступної крайової задачі:
\begin{equation*}
\left\{
\begin{aligned}
&-\dfrac{1}{A}(A\phi(\mid u' \mid) u')'=a(t)u^\sigma & \mbox{on } (0,1),\\
&A \phi(\mid u'\mid )u'(0)=0, \\
&u(1)=0,
\end{aligned}
\right.
\end{equation*}
де $\sigma>0$, $A$ є додатною диференційовною функцією на $(0,1)$, а невід’ємна функція $\phi$ є неперервно диференційовною на $[0,\infty)$ так, що для кожного $t>0$, $$k_1 \le \dfrac{(t\phi(t))'}{\phi(t)} \le k_2,$$ де $k_1>0$ і $k_2>0$. Невід'ємна нелінійність $a$ повинна задовольняти деякі відповідні припущення, пов’язані з теорією регулярних варіацій Карамати. Ми закінчуємо цю роботу розглядом застосувань.

Mathematical Subject Classification 2020: 26A12, 34A34, 34B15, 34B18, 34B27

Ключові слова:

додатнi розв’язки, асимптотична поведiнка, φ-лапласiан, клас Карамати

Посилання

R.P. Agarwal, H. Lu, and D. O'Regan, Existence theorems for the one-dimensional singular $p$-Laplacian equation with sign changing nonlinearities, Appl. Math. Comput. 143 (2003), 15--38. https://doi.org/10.1016/S0096-3003(02)00342-9

I. Bachar, S. Ben Othman, and H. Mâagli, Radial solutions for the $p$-Laplacian equation, Nonlinear Anal. 70 (2009), 2198--2205. https://doi.org/10.1016/j.na.2008.02.119

V. Benci, D. Fortunato, and L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension 3, Rev. Math. Phys. 10 (1998), 315--344. https://doi.org/10.1142/S0129055X98000100

S. Ben Othman and H. Mâagli, Asymptotic behavior of positive solutions for the radial $p$-Laplacian equation, Electron. J. Differential Equations, 2012 (2012), No. 240, 1--10.

S. Ben Othman, R. Chemmam, and H. Mâagli, Asymptotic behavior of ground state radial soloutions for $p$-Laplacian problems, J. Math. 2013 (2013), 1--7. https://doi.org/10.1155/2013/409329

C. Bereanu and J. Mawhin, Boundary value problems for some nonlinear systems with singular φ-Laplacian, J. Fixed Point Theory Appl. 4 (2008), 57--75. https://doi.org/10.1007/s11784-008-0072-7

R. Chemmam, H. Mâagli, S. Masmoudi, and M. Zribi, Combined effects in nonlinear singular elliptic problems in a bounded domain, Adv. Nonlinear Anal. 4 (2012), 301--318. https://doi.org/10.1515/anona-2012-0008

A. Chinni, B. Di Bella, P. Jebelean, and R. Precup, A four-point boundary value problem with singular φ-Laplacian, J. Fixed Point Theory Appl. 2 (2019), 1--16. https://doi.org/10.1007/s11784-019-0703-1

H. Dang and S.F. Oppenheimer, Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl. 98 (1996), 35--48. https://doi.org/10.1006/jmaa.1996.0066

A. Dhifli, R. Chemmam, and S. Masmoudi. Asymptotic behavior of ground state radial solutions for problems involving the φ-Laplacian, Positivity, 24 (2020), 957--971. https://doi.org/10.1007/s11117-019-00715-y

S. Dridi, B. Khamessi, S. Turki, and Z. Zine El Abidine, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Stud. 22 (2015), 87--103.

N. Fukagai and K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann. di Mat. Pura ed Appl. 186 (2007), 539--564. https://doi.org/10.1007/s10231-006-0018-x

X. He and W. Ge, Twin positive solutions for the one-dimensional $p$-Laplacian boundary value problems, Nonlinear Anal. Theory Methods Appl. 56 (2004), 975--984. https://doi.org/10.1016/j.na.2003.07.022

H. Lü, D. O'regan, and R. P. Agrawal, Existence theorems for the one dimensional singular $p$-Laplacian equations with a nonlinear boundary condition, J. Comput. Appl. Math. 182 (2005), 188--210. https://doi.org/10.1016/j.cam.2004.10.022

M. Maric, Regular Variation and Differential Equations, Lecture notes in mathematics, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0103952

R. Precup and J. Rodriguez-Lopez, Positive solutions for discontinuous problems with applications to φ-Laplacian equations , J. Fixed Point Theory Appl. 20 (2018), 1--17. https://doi.org/10.1007/s11784-018-0636-0

P. Pucci, M. Garcia-Huidobro, R. Manásevich, and J. Serrin, Qualitative properties of ground states for singular elliptic equations with weights, Ann. di Mat. Pura ed Appl. 5 (2006), 205--243. https://doi.org/10.1007/s10231-004-0143-3

W. Reichel and W. Walter, Radial solutions of equations and inequalities involving the $p$-Laplacian, J. Inequal. Appl. 1 (1997), 47--71. https://doi.org/10.1155/S1025583497000040

C. A. Santos, J. Zhou, and J. Abrantes Santos, Necessary and sufficient conditions for existence of blow-up solutions for elliptic problems in Orlicz-Sobolev spaces, Math. Nachr. 291 (2018), 160--177. https://doi.org/10.1002/mana.201600231

R. Seneta, Regular Varying Functions, Lectures in Mathematics, Springer-Verlag, Berlin, 1976. https://doi.org/10.1007/BFb0079658

Downloads

Як цитувати

(1)
Belkahla, S.; Khamessi, B.; Zine El Abidine, Z. Radial Positive Solutions for Problems Involving φ-Laplacian Operators with Weights. Журн. мат. фіз. анал. геом. 2024, 20, 153–171.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.

Статті цього автора (авторів), які найбільше читають