Controllability Problems for the Heat Equation on a Half-Plane Controlled by the Neumann Boundary Condition with a Point-Wise Control

Автор(и)

  • Larissa Fardigola B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine
    V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
  • Kateryna Khalina B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine

Анотація

У роботі досліджено проблеми керованості та наближеної керованості для керованої системи $w_t=\Delta w$, $w_{x_1}(0,x_2,t)=u(t)\delta(x_2)$, $x_1>0$, $x_2\in\mathbb R$, $t\in(0,T)$, де $u\in L^\infty(0,T)$ є керуванням. Для цього досліджено множину $\mathcal{R}_T(0)\subset L^2((0,+\infty)\times\mathbb R)$ її кінцевих станів, які є досяжними з 0. Установлено, що функція $f\in\mathcal{R}_T(0)$ може бути подана у вигляді $f(x)=g\big(|x|^2\big)$ м.с. в $(0,+\infty)\times\mathbb R$, де $g\in L^2(0,+\infty)$. Фактично, ми зводимо задачу для функцій з $L^2((0,+\infty)\times\mathbb R)$ до задачі для функцій з $L^2(0,+\infty)$. Необхідну і достатню умову керованості та достатню умову наближеної керованості за заданий час $T$ за допомогою керувань $u$, обмежених заданою сталою, одержано в термінах розв'язності степеневої проблеми моментів Маркова. Застосовуючи функції Лаґерра (які утворюють ортонормований базис в $L^2(0,+\infty)$), одержано необхідні і достатні умови наближеної керованості та числові розв'язки проблеми наближеної керованості. Також показано, що не існує ненульового початкового стану системи, який був би нуль керованим за заданий час $T$. Результати проілюстровано прикладами.

Mathematical Subject Classification 2020: 93B05, 35K05, 35B30

Ключові слова:

рівняння теплопровідності, керованість, наближена керованість, півплощина

Посилання

P. Antosik, J. Mikusinski, and R. Sikorski, Theory of Distributions. The Sequential Approach, Elsevier, Amsterdam, 1973.

V. Barbu, Exact null internal controllability for the heat equation on unbounded convex domains, ESAIM Control Optim. Calc. Var. 20 (2014), No. 1, 222--235. https://doi.org/10.1051/cocv/2013062

J. A. Bárcena-Petisco, Null controllability of the heat equation in pseudo-cylinders by an internal control. ESAIM Optim. Calc. Var. 26 (2020), Art. No. 122, 1--34. https://doi.org/10.1051/cocv/2020048

K. Bhandari, J. Lemoine, and A. Münch, Global boundary null-controllability of one-dimensional semilinear heat equations, Discrete Contin. Dyn. Syst. Ser. S 17 (2024), No. 7, 2298--2322. https://doi.org/10.3934/dcdss.2024003

C. Bombach, D. Gallaun, C. Seifert, and M. Tautenhahn, Observability and null-controllability for parabolic equations in $L_p$-spaces, Math. Control Relat. Fields 13 (2023), No. 4, 1484--1499. https://doi.org/10.3934/mcrf.2022046

J. Dardé, S. Ervedoza, and R. Morales, Uniform null controllability for parabolic equations with discontinuous diffusion coefficients. ESAIM Optim. Calc. Var. 27 (2021), Art. No. 66, 29 pp. https://doi.org/10.1051/cocv/2021063

Y. Duan, L.Wang, and C. Zhang, Observability inequalities for the heat equation with bounded potentials on the whole space, SIAM J. Control Optim. 58 (2020), No. 4, 1939--1960. https://doi.org/10.1137/19M1296847

V.R. Cabanillas, S.B. De Menezes, and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl. 110 (2001), 245--264. https://doi.org/10.1023/A:1017515027783

P. Cannarsa, P. Martinez, and J. Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region, ESAIM Control Optim. Calc. Var. 10 (2004), 381--408. https://doi.org/10.1051/cocv:2004010

R.A. Capistrano-Filho, V. Komornik, and A.F. Pazoto, Pointwise control of the linearized Gear-Grimshaw system, Evol. Equ. Control Theory 9 (2020), 693--719. https://doi.org/10.3934/eect.2020029

J. Droniou and J.-P. Raymond, Optimal pointwise control of semilinear parabolic equations, Nonlinear Anal. 39 (2000), 135--156. https://doi.org/10.1016/S0362-546X(98)00170-9

L.V. Fardigola, On controllability problems for the wave equation on a half-plane, J. Math. Phys. Anal. Geom. 1 (2005), 93--115.

L.V. Fardigola, Modified Sobolev spaces in controllability problems for the wave equation on a half-plane, J. Math. Phys. Anal. Geom. 11 (2015), 18--44. https://doi.org/10.15407/mag11.01.018

L.V. Fardigola, Transformation Operators and Influence Operators in Control Problems, Thesis (Dr. Hab.), Kharkiv, 2016 (Ukrainian).

L. Fardigola and K. Khalina, Reachability and controllability problems for the heat equation on a half-axis, J. Math. Phys. Anal. Geom. 15 (2019), 57--78. https://doi.org/10.15407/mag15.01.057

L. Fardigola and K. Khalina, Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition, Math. Control Relat. Fields 11 (2021), 211--236. https://doi.org/10.3934/mcrf.2020034

L. Fardigola and K. Khalina, Controllability problems for the heat equation in a half-plane controlled by the Dirichlet boundary condition with a point-wise control, J. Math. Phys. Anal. Geom. 18 (2022), 75--104. https://doi.org/10.15407/mag18.01.075

L. Fardigola and K. Khalina, Controllability problems for the heat equation with variable coefficients on a half-axis, ESAIM Control Optim. Calc. Var. 28 (2022), Art. No. 41. https://doi.org/10.1051/cocv/2022041

L. Fardigola and K. Khalina, Controllability problems for the heat equation with variable coefficients on a half-axis controlled by the Neumann boundary condition, J. Math. Phys. Anal. Geom. 19 (2023), 616--641. https://doi.org/10.15407/mag19.03.616

H. O. Fattorini, Boundary control of temperature distributions in a parallelepipedon, SIAM J. Control 13, (1975), 1--13. https://doi.org/10.1137/0313001

H. Gao, W. Yang and M. Zhang, Hierarchical control for the semilinear parabolic equations with interior degeneracy, J. Math. Anal. Appl. 534 (2024), No. 1, Paper No. 128092, 21 pp. https://doi.org/10.1016/j.jmaa.2024.128092

S.G. Gindikin and L.R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992.

W. Gong and B. Li, Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems, IMA J. Numer. Anal. 40 (2020), No. 4, 2898--2939. https://doi.org/10.1093/imanum/drz029

M. González-Burgos and L. de Teresa, Some results on controllability for linear and nonlinear heat equations in unbounded domains, Adv. Differential Equations 12 (2007), No. 11, 1201--1240. https://doi.org/10.57262/ade/1355867413

L. Gosse and O. Runberg, Resolution of the finite Markov moment problem, C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 775--789. https://doi.org/10.1016/j.crma.2005.10.009

Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables, Eds. M. Abramowitz and I.A. Stegun, National Bureau of Standards, Applied Mathematics Series, 55, Washington, DC, 1972.

A. Henrot and J. Sokołowski, Shape optimization problem for heat equation, Rapport de Recherche, 3185, Institut National de Recherche en Informatique et en Automatique, Lorrain, 1997. Available from: url{https://inria.hal.science/inria-00073504/document}

V.I. Korobov and G.M. Sklyar, Time optimality and the power moment problem, Sb. Math. 134 (1987), No. 2, 186--206.

J.-L. Lions, Pointwise control for distributed systems, Control and Estimation in Distributed Parameter Systems (Ed. H.T. Banks), SIAM, 1992, 1--39. https://doi.org/10.1137/1.9781611970982.ch1

S.B. De Menezes and V.R. Cabanillas, Null controllability for the semilinear heat equation in unbounded domains, Pesquimat 4 (2001), 35--54.

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc. 353 (2001), No. 4, 1635--1659. https://doi.org/10.1090/S0002-9947-00-02665-9

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space, Port. Math. (N.S.) 58 (2001), No. 1, 1--24.

L. Miller, On the null-controllability of the heat equation in unbounded domains, Bull. Sci. Math. 129 (2005), 175--185. https://doi.org/10.1016/j.bulsci.2004.04.003

P.A. Nguyen and J.-P. Raymond, Pointwise control of the Boussinesq system, Systems Control Lett. 60 (2011), 249--255. https://doi.org/10.1016/j.sysconle.2011.01.006

L.L.D. Njoukoue and G. Deugoue, Stackelberg control in an unbounded domain for a parabolic equation, J. Nonl. Evol. Equ. Appl. 5 (2021), 95--118.

I. Oner, Null controllability for a heat equation with periodic boundary conditions, U.P.B. Sci. Bull., Series A, 83 (2021), No. 4, 13--22.

X. Qin and Sh. Li, The null controllability for a singular heat equation with variable coefficients, Applicable Analysis 101 (2022), No. 3, 1052--1076. https://doi.org/10.1080/00036811.2020.1769076

L. Schwartz, Théorie des Distributions, I, II, Hermann, Paris, 1950--1951.

L. de Teresa, Approximate controllability of a semilinear heat equation in $R^N$, SIAM J. Control Optim. 36 (1998), No. 6, 2128--2147. https://doi.org/10.1137/S036012997322042

L. de Teresa and E. Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains, Nonlinear Anal. 37 (1999), No. 8, 1059--1090. https://doi.org/10.1016/S0362-546X(98)00085-6

V.S. Vladimirov, Equations of Mathematical Physics, Imported Pubn., 1985.

G. Wang, M. Wang, C. Zhang, and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in $ R^n$, J. Math. Pures Appl. 126 (2019), 144--194. https://doi.org/10.1016/j.matpur.2019.04.009

E.H. Zerrik and A. El Kabouss, Bilinear Boundary Control Problem of an Output of Parabolic Systems, In: Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications (Eds. E. Zerrik, S. Melliani, O. Castillo). Studies in Systems, Decision and Control, 243, Springer, Cham., 2020. https://doi.org/10.1007/978-3-030-26149-8_15

Downloads

Як цитувати

(1)
Fardigola, L.; Khalina, K. Controllability Problems for the Heat Equation on a Half-Plane Controlled by the Neumann Boundary Condition with a Point-Wise Control. Журн. мат. фіз. анал. геом. 2025, 21, 23–55.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.