Fourier Uniqueness and Non-Uniqueness Pairs
Анотація
Мотивовані недавніми роботами Радченка і В'язовської, а також Рамоса і Соузи, ми знаходимо умови на пари дискретних множин на дійсній осі достатні для єдиності цих пар для перетворення Фур’є. Ці умови близькі одна до одної. Результат про єдиність може бути посилений до інтерполяційної формули, яка в свою чергу дає багато прикладів дискретних мір з дискретним перетворенням Фур’є.
Mathematical Subject Classification 2020: 42A99
Ключові слова:
єдиність, пари Фур’є, інтерполяція Фур’єПосилання
A. Adve, Density criteria for Fourier uniqueness phenomena in $ R^d$, preprint, https://arxiv.org/abs/2306.07475
W.O. Amrein and A.M. Berthier, On support properties of $L_p$-functions and their Fourier transforms, J. Functional Analysis 24 (1977), 258--267. https://doi.org/10.1016/0022-1236(77)90056-8
M. Benedicks, On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), 180--183. https://doi.org/10.1016/0022-247X(85)90140-4
A. Beurling and P. Malliavin, On Fourier transforms of measures with compact support, Acta Math. 107 (1962), 291--309. https://doi.org/10.1007/BF02545792
A. Beurling and P. Malliavin, On the closure of characters and the zeros of entire functions, Acta Math. 118 (1967), 79--93. https://doi.org/10.1007/BF02392477
A. Bondarenko, D. Radchenko, and K. Seip, Fourier interpolation with zeros of zeta and $L$-functions, Constr. Approx. 57 (2023), 405--461. https://doi.org/10.1007/s00365-022-09599-w
R.J. Duffin and A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341--366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
H. Dym and H.P. McKean, Fourier Series and Integrals, Academic Press, New York-London, 1972.
F. Dyson, Birds and frogs, Notices Amer. Math. Soc. 56 (2009), 212--223.
K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
A. Kulikov, Fourier interpolation and time-frequency localization, J. Fourier Anal. Appl. 27 (2021), Paper No. 58, 8 pp. https://doi.org/10.1007/s00041-021-09861-y
P. Kurasov and P. Sarnak, Stable polynomials and crystalline measures, J. Math. Phys. 61 (2020), Paper No. 083501, 13 pp. https://doi.org/10.1063/5.0012286
N. Lev and G. Reti, Poisson summation formulas involving the sum-of-squares function, Isr. J. Math. 246 (2021), 403--421. https://doi.org/10.1007/s11856-021-2252-8
N. Lev and G. Reti, Crystalline temperate distributions with uniformly discrete support and spectrum, J. Funct. Anal. 281 (2021), Paper No. 109072, 12 pp. https://doi.org/10.1016/j.jfa.2021.109072
B.Ya. Levin, Distribution of Zeros of Entire Functions, Revised edition, Amer. Math. Soc., Providence, RI, 1980.
B.Ya. Levin, Lectures on Entire Function, Amer. Math. Soc., Providence, RI, 1996. https://doi.org/10.1090/mmono/150
Y. Meyer, Measures with locally finite support and spectrum, Proc. Natl. Acad. Sci. USA 113 (2016), 3152--3158. https://doi.org/10.1073/pnas.1600685113
Y. Meyer, Crystalline measaures and mean-periodic functions, Trans. R. Norw. Soc. Sci. Lett. 2021(2), 5--30.
F. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, St. Petersburg Math. J. 5 (1994), 663--717.
A. Olevskii and A. Ulanvoskii, A Simple crystalline measure, preprint, https://arxiv.org/abs/2006.12037
A. Olevskii and A. Ulanvoskii, Fourier quasicrystals with unit masses, C. R. Math. Acad. Sci. Paris 358 (2020), 1207--1211. https://doi.org/10.5802/crmath.142
A. Olevskii and A. Ulanovskii, Functions with Disconnected Spectrum. Sampling, Interpolation, Translates, University Lecture Series, 65, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/ulect/065
D. Radchenko and M. Viazovska, Fourier interpolation on the real line, Publ. Math. IHES 129 (2019), 51--81. https://doi.org/10.1007/s10240-018-0101-z
J. Ramos and M. Sousa, Fourier uniqueness pairs of powers of integers, J. Eur. Math. Soc. (JEMS) 24 (2022), 4327--4351. https://doi.org/10.4171/jems/1194
J. Ramos and M. Sousa, Perturbed interpolation formulae and applications, Anal. PDE 16 (2023), 2327--2384. https://doi.org/10.2140/apde.2023.16.2327
J. Ramos and M. Stoller, Perturbed Fourier uniqueness and interpolation results in higher dimensions, J. Func. Anal. 282 (2022), Paper No. 109448, 34 pp. https://doi.org/10.1016/j.jfa.2022.109448
M. Viazovska, On discrete Fourier uniqueness sets in Euclidean space, ICM-International Congress of Mathematicians, I, Prize lectures, EMS Press, Berlin, 2023, 270--283. https://doi.org/10.4171/icm2022/207