Positive Solutions of a Nonlinear Elliptic Equation Involving a Singular Term
Анотація
У цій роботі ми досліджуємо існування та єдиність додатних розв'язків рівняння $\Delta_p\, u=f(\vert x \vert)/u(x)$, $x\in \mathbb{R}^{N}$, де $N > p > 2$. Точніше, за певних припущень щодо функції $f$ ми даємо відповідь на питання про глобальне існування, сформульоване в роботі [14], використовуючи теорію інваріантних многовидів у динамічних системах та енергетичний метод. Крім того, ми проводимо детальний аналіз асимптотичної поведінки розв'язків за допомогою логарифмічних перетворень.
Mathematical Subject Classification 2020: 35A01, 35A02, 35B08, 35B09, 35B40, 35J60, 35J65
Ключові слова:
існування, єдиність, додатний розв'язок, асимптотична поведінка, тотожність Похожаєва, динамічна системаПосилання
H. Amann, Ordinary Differential Equations, Walter de Gruyter, Belin-New York, 1996.
A. Bouzelmate and A. Gmira, On the radial solutions of a nonlinear singular elliptic equation, Inter. J. Math. Anal. 9 (2015), 1279--1297. https://doi.org/10.12988/ijma.2015.412413
A. Bouzelmate and A. Gmira, Singular solutions of an inhomogeneous elliptic equation, Nonlinear Funct. Anal. Appl. 26 (2021), 237--272.
H. Chen, Y. Wang, and F. Zhou, On semi-linear elliptic equation arising from Micro-Electromechanical Systems with contacting elastic membrane, Z. Angew. Math. Mech. 99 (2019), Paper No. e201700333, 18 pp. https://doi.org/10.1002/zamm.201700333
J. Dàvila, and A.C. Ponce, Hausdorff dimension of ruptures sets and removable singularities, CRAS 346 (2008), 27--32. https://doi.org/10.1016/j.crma.2007.11.007
Y. Du, and Z.M. Guo, Positive solutions of an elliptic equation with negative exponent: stability and critical power, J. Differential Equations 246 (2009), 2387--2414. https://doi.org/10.1016/j.jde.2008.08.008
P. Esposito, N. Ghoussoub, and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math. 60 (2007), 1731--1768. https://doi.org/10.1002/cpa.20189
P. Esposito, Compactness of a nonlinear eigenvalue problem with a singular nonlinearity, Comm. Contemp. Math. 10 (2008), 17--45. https://doi.org/10.1142/S0219199708002697
P. Esposito, N. Ghoussoub, and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Courant Lecture Notes in Mathematics 20, Amer. Math. Soc., Providence, RI, 2010. https://doi.org/10.1090/cln/020
C. Esteve and P. Souplet, Quantitative touchdown localization for the MEMS problem with variable dielectric permittivity, Nonlinearity 31 (2018), 4883--4934. https://doi.org/10.1088/1361-6544/aad526
C. Esteve and P. Souplet, No touchdown at points of small permittivity and nontrivial touchdown sets for the MEMS problem, Adv. Differential Equations 24 (2019), 465--500. https://doi.org/10.57262/ade/1556762456
N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math. Anal. 38 (2006), 1423--1449. https://doi.org/10.1137/050647803
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1980), 525--598. https://doi.org/10.1002/cpa.3160340406
H.X. Guo, Z.M. Guo, and K. Li, Positive solutions of a semilinear elliptic equation with singular nonlinearity, J. Math. Anal. Appl. 323 (2006), 344--359. https://doi.org/10.1016/j.jmaa.2005.10.035
Y. Guo, Y. Zhang, and F. Zhou, Singular behavior of an electrostatic-elastic membrane system with an external pressure, Nonlinear Analysis 190 (2020), Paper No. 111611, 30 pp. https://doi.org/10.1016/j.na.2019.111611
Z.M. Guo and J.C. Wei, Symmetry of non-negative solutions of a semilinear elliptic equation with singular nonlinearity, Proc. R. Soc. Edinb. 137 (2007), 963--994. https://doi.org/10.1017/S0308210505001083
Z.M. Guo and J.C. Wei, On the Cauchy problem for a reaction-diffusion equation with a singular nonlinearity, J. Differential Equations 240 (2007), 279--323. https://doi.org/10.1016/j.jde.2007.06.012
Z.M. Guo, and J. C. Wei, Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Anal. 7 (2008), 765--786. https://doi.org/10.3934/cpaa.2008.7.765
Z.M. Guo, D. Ye, and F. Zhou, Existence of singular positive solutions for some semilinear elliptic equations, Pacific J. Math. 236 (2008), 57--71. https://doi.org/10.2140/pjm.2008.236.57
H.Q. Jiang and W.M. Ni, On steady states of Van der Waals force driven thin film equations, European J. Appl. Math. 18 (2007), 153--180. https://doi.org/10.1017/S0956792507006936
A. Meadows, Stable and singular solutions of the equation $Delta u = 1/u$, Indiana Univ. Math. J. 53 (2004), 1419--1430. https://doi.org/10.1512/iumj.2004.53.2560
A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math. 62 (2002), 888--908. https://doi.org/10.1137/S0036139900381079
L. Simon, Some Examples of Singular Minimal Hypersurfaces, 2001.
D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. Partial Differential Equations 37 (2010), 259--274. https://doi.org/10.1007/s00526-009-0262-1