On Perturbative Hardy-Type Inequalities

Автор(и)

  • Fritz Gesztesy Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. 4th Street, Waco, TX 76706, USA
  • Roger Nichols Department of Mathematics (Dept. 6956), The University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN 37403, USA
  • Michael M. H. Pang Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

DOI:

https://doi.org/10.15407/mag19.01.128

Анотація

Для даного трьохкоефiцiєнтного диференцiального виразу Штурма–Лiувiлля $\tau_0 = r_0^{-1}[-(d/dx)p_0(d/dx)+q_0]$ та його збурення $\tau_{q_1}=\tau_0+r_0q^{-1}$ на iнтервалi $(a,b)\subset\mathbb{R}$, ми використовуємо iснування строго додатного розв’язку $u_0(\lambda_0,\cdot)>0$ на  $(a,b)$ для $\tau_0u_0=\lambda_0u_0$ для того, щоб одержати для $\tau_{q_1}$ нерiвнiсть у квадратичнiй формi, яка природно узагальнює добре вiдому нерiвнiсть Хардi i зводиться до неї в окремому випадку $p_0=r_0=u_0(0,\cdot)=1$, $q_0=\lambda_0=0$, $a\in \mathbb{R}, b=\infty.$

Mathematical Subject Classification 2020: 34A40, 34B24, 34C10, 47E05,
26D20, 34L05

Ключові слова:

нерiвнiсть Хардi, головнi i неголовнi розв’язки, теорiя коливань, оператори Штурма–Лiувiлля

Посилання

A.A. Balinsky, W.D. Evans, and R.T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-22870-9

R.S. Chisholm, W.N. Everitt, and L.L. Littlejohn, An integral operator inequality with applications, J. Inequal. Appl. 3 (1999), 245--266. https://doi.org/10.1155/S1025583499000168

E.B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, Vol. 42, Cambridge University Press, Cambridge, UK, 1995.

F. Gesztesy, L.L. Littlejohn, I. Michael, and M.M.H. Pang, A sequence of weighted Birman--Hardy--Rellich inequalities with logarithmic refinements, Integral Equations Operator Theory 94 (2022), 13. https://doi.org/10.1007/s00020-021-02682-0

F. Gesztesy, L.L. Littlejohn, I. Michael, and R. Wellman, On Birman's sequence of Hardy--Rellich-type inequalities, J. Diff. Eq. 264 (2018), 2761--2801. https://doi.org/10.1016/j.jde.2017.11.002

F. Gesztesy and M. Ünal, Perturbative oscillation criteria and Hardy-type inequalities, Math. Nachr. 189 (1998), 121--144. https://doi.org/10.1002/mana.19981890108

G.R. Goldstein, J.A. Goldstein, R.M. Mininni, and S. Romanelli, Scaling and variants of Hardy's inequality, Proc. Amer. Math. Soc. 147 (2019), 1165--1172. https://doi.org/10.1090/proc/14295

G.H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger Math. 54 (1925), 150--156.

G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, UK, reprinted, 1988.

A. Kufner, L. Maligranda, and L.-E. Persson, The Hardy Inequality: About its History and Some Related Results, Vydavatelskу́ Servis, Pilsen, 2007. https://doi.org/10.2307/27642033

A. Kufner, L.-E. Persson, and N. Samko, Weighted Inequalities of Hardy Type, 2nd ed., World Scientific, Singapore, 2017. https://doi.org/10.1142/10052

E. Landau, A note on a theorem concerning series of positive terms: extract from a letter of Prof. E. Landau to Prof. I. Schur, J. London Math. Soc. 1 (1926), 38--39. https://doi.org/10.1112/jlms/s1-1.1.38

B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31--38. https://doi.org/10.4064/sm-44-1-31-38

B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series, 219, Longman Scientific & Technical, Harlow, 1990.

L.-E. Persson and S.G. Samko, A note on the best constants in some Hardy inequalities, J. Math. Inequalities 9 (2015), 437--447. https://doi.org/10.7153/jmi-09-37

Downloads

Як цитувати

(1)
Gesztesy, F.; Nichols, R.; Pang, M. M. H. On Perturbative Hardy-Type Inequalities. Журн. мат. фіз. анал. геом. 2023, 19, 128-149.

Завантаження

Дані завантаження ще не доступні.