Admissible transformations of measures

Автор(и)

  • S. S. Gabriyelyan Kharkov National Technic University "KPI", 21 Frunze Str., Kharkov, 61002, Ukraine

Анотація

Let a topological semigroup $G$ acts on a topological space $X$. A transformation $g\in G$ is called an admissible (partially admissible, singular, equivalent, invariant) transform for $\mu$ relative to $\nu$ if $\mu_g\ll\nu$ (accordingly: $\mu_g\not\perp\nu$, $\mu_g\perp\nu$, $\mu_g\sim\nu$, $\mu_g=c\cdot \nu$), where $\mu_g(E):=\mu(g^{-1}E)$. We denote its collection by $A(\mu\!\!\mid\!\!\nu)$ (accordingly: $AP(\mu\!\!\mid\!\!\nu)$, $S(\mu\!\!\mid\!\!\nu)$, $E(\mu\!\!\mid\!\!\nu)$, $I(\mu\!\!\mid\!\!\nu)$). The algebraic and the measure theoretical properties of these sets are studied. It is done the Lebesgue-type decomposition. If $G=X$ is a locally compact group, we give some informations about the measure theoretical size of $A(\mu)$.

Mathematical Subject Classification: 28C99, 37A99.

Ключові слова:

topological G-space, measure, admissible transformation, Lebesgue-type decomposition

Як цитувати

(1)
Gabriyelyan, S. S. Admissible transformations of measures. Журн. мат. фіз. анал. геом. 2005, 1, 155-181.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.

Статті цього автора (авторів), які найбільше читають