On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube
Анотація
It is proved the existence of a regular hypersimplex inscribed into the $(4n-1)$-dimensional cube under condition that some system of $4n-2$ algebraic equations with $4n-2$ unknown quantities $y_0,y_0',y_1,y_1',\ldots, $ $y_{2n-2},y_{2n-2}'$ has at least one solution with a real value of $y_0$ or any other $y_i\neq 0, i\ge 1$.
Mathematics Subject Classification: 05B20, 52B.
Ключові слова:
multidimensional cube, regular simplex, Hadamard's matrix, circulant matrix, antipodal n-gons, generating polinomial, idempotancy, necessary and sufficient conditionsDownloads
Як цитувати
(1)
A. I. Medianik, On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube, Журн. мат. фіз. анал. геом. 2 (2006), 62-72.
Номер
Розділ
Статті
Завантаження
Дані завантаження ще не доступні.