On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. II. Abstract Theory

Автор(и)

  • V. I. Khrabustovsky Ukrainian State Academy of Railway Transport, 7 Feyerbakh Sq., Kharkov, 61050, Ukraine

Анотація

Special maximal semi-definite subspaces (maximal dissipative and accumulative relations) are considered. Particular cases of those arise in studying boundary problems for systems mentioned in the title. We provide a description of such subspaces and list their properties. A criterion is found that condition of semi-definiteness of sum of indefinite quadratic forms reduces to semi-definiteness of each of the summand forms, i.e it is separated. In the case when the forms depend on a parameter $\lambda$ (e.g., a spectral parameter) within a domain $\Lambda \subset \mathbb{C}$, a condition is found under which separation of the semi-definiteness property at a single $\lambda$ implies its separation for all $\lambda$.

Mathematics Subject Classification: 34B07, 34G10, 46C20, 47A06, 47B50.

Ключові слова:

maximal semi-definite subspace, maximal dissipative (accumulative) relation, idempotent

Downloads

Як цитувати

(1)
Khrabustovsky, V. I. On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. II. Abstract Theory. Журн. мат. фіз. анал. геом. 2006, 2, 299-317.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.