Scattering from Sparse Potentials on Graphs

  • Ph. Poulin Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Анотація

We study the spectral structure of Schrödinger operators H=\Delta+V for random potentials supported on sparse sets. In the past years examples of such operators whose spectra almost surely satisfy the following properties have been exhibited: Anderson localization holds outside spec(\Delta), while the wave operators \Omega^{\pm}(H,\Delta) exist inside this last set. We continue this program by presenting sparseness conditions under which \Omega^{\pm}(\Delta,H) also exist.

Mathematics Subject Classification: 81Q10, 47B80.

Ключові слова:

random Schrödinger operators, spectral analysis, scattering theory

Downloads

Як цитувати

(1)
P. Poulin, Scattering from Sparse Potentials on Graphs, Журн. мат. фіз. анал. геом. 4 (2008), 151-170.

Номер

Розділ

Статті

Завантаження