Scattering from Sparse Potentials on Graphs

Автор(и)

  • Ph. Poulin Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Анотація

We study the spectral structure of Schrödinger operators $H=\Delta+V$ for random potentials supported on sparse sets. In the past years examples of such operators whose spectra almost surely satisfy the following properties have been exhibited: Anderson localization holds outside spec($\Delta$), while the wave operators $\Omega^{\pm}(H,\Delta)$ exist inside this last set. We continue this program by presenting sparseness conditions under which $\Omega^{\pm}(\Delta,H)$ also exist.

Mathematics Subject Classification: 81Q10, 47B80.

Ключові слова:

random Schrödinger operators, spectral analysis, scattering theory

Downloads

Як цитувати

(1)
Poulin, P. Scattering from Sparse Potentials on Graphs. Журн. мат. фіз. анал. геом. 2008, 4, 151-170.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.