Scattering from Sparse Potentials on Graphs
Анотація
We study the spectral structure of Schrödinger operators $H=\Delta+V$ for random potentials supported on sparse sets. In the past years examples of such operators whose spectra almost surely satisfy the following properties have been exhibited: Anderson localization holds outside spec($\Delta$), while the wave operators $\Omega^{\pm}(H,\Delta)$ exist inside this last set. We continue this program by presenting sparseness conditions under which $\Omega^{\pm}(\Delta,H)$ also exist.
Mathematics Subject Classification: 81Q10, 47B80.
Ключові слова:
random Schrödinger operators, spectral analysis, scattering theoryDownloads
Як цитувати
(1)
Poulin, P. Scattering from Sparse Potentials on Graphs. Журн. мат. фіз. анал. геом. 2008, 4, 151-170.
Номер
Розділ
Статті
Завантаження
Дані завантаження ще не доступні.