Scattering from Sparse Potentials on Graphs
Анотація
We study the spectral structure of Schrödinger operators H=\Delta+V for random potentials supported on sparse sets. In the past years examples of such operators whose spectra almost surely satisfy the following properties have been exhibited: Anderson localization holds outside spec(\Delta), while the wave operators \Omega^{\pm}(H,\Delta) exist inside this last set. We continue this program by presenting sparseness conditions under which \Omega^{\pm}(\Delta,H) also exist.
Mathematics Subject Classification: 81Q10, 47B80.
Ключові слова:
random Schrödinger operators, spectral analysis, scattering theoryDownloads
Як цитувати
(1)
P. Poulin, Scattering from Sparse Potentials on Graphs, Журн. мат. фіз. анал. геом. 4 (2008), 151-170.
Номер
Розділ
Статті