Local Minimizers of the Magnetic Ginzburg-Landau Functional with S1-valued Order Parameter on the Boundary

Автор(и)

  • V. Rybalko Физико-технический институт низких температур им. Б.И. Веркина пр. Ленина, 47, Харьков, 61103, Украина

DOI:

https://doi.org/10.15407/mag10.01.134

Ключові слова:

сверхпроводимость, функционал Гинзбурга-Ландау, вариационные задачи с отсутствием компактности.

Анотація

В работе [L. Berlyand and V. Rybalko, Solution with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg-Landau Equation, J. Eur. Math. Soc. 12 (2010), 1497-1531] было показано, что в двусвязных областях существуют локальные минимизанты упрощенного функционала Гинзбурга-Ландау, имеющие модуль один и заданные степени отображения на границе, в отличие от глобальных минимизантов, которые обычно не существуют. Результаты и методы упомянутой выше статьи обобщаются на случай "магнитного" функционала Гинзбурга-Ландау.

Mathematics Subject Classification: 35A01, 35J20, 35Q56.

Посилання

L. Berlyand and P. Mironescu, Ginzburg–Landau Minimizers with Prescribed Degrees. Capacity of the Domain and Emergence of Vortices. Preprint, available at http://desargues.univ-lyon1.fr.

L. Berlyand and P. Mironescu, Ginzburg–Landau Minimizers with Prescribed Degrees. Capacity of the Domain and Emergence of Vortices. — J. Funct. Anal. 239 (2006), 76–99. https://doi.org/10.1016/j.jfa.2006.03.006

L. Berlyand, D. Golovaty, and V. Rybalko, Nonexistence of Ginzburg–Landau Minimizers with Prescribed Degree on the Boundary of a Doubly Connected Domain. — C. R. Math. Acad. Sci. Paris 343 (2006), 63–68. https://doi.org/10.1016/j.crma.2006.05.013

L. Berlyand, O. Misiats, and V. Rybalko, Near Boundary Vortices in a Magnetic Ginzburg–Landau Model: their Locations Via Tight Energy Bounds. — J. Func. Analysis 258 (2010), 1728–1762. https://doi.org/10.1016/j.jfa.2009.08.017

L. Berlyand, O. Misiats, and V. Rybalko, Minimizers of the Magnetic Ginzburg– Landau Functional in Simply Connected Domain with Prescribed Degree on the Boundary. — Commun. Contemp. Math. 13 (2011), 53–66. https://doi.org/10.1142/S0219199711004130

L. Berlyand and V. Rybalko, Solutions with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg–Landau Equation. — J. Eur. Math. Soc. 12 (2010), 1497– 1531. https://doi.org/10.4171/JEMS/239

F. Bethuel, H. Brezis, and F. Helein, Ginzburg–Landau Vortices. Birkhauser, 1994. https://doi.org/10.1007/978-1-4612-0287-5

E.B. Bogomol’nyi, The Stability of Classical Solutions. — Sov. J. Nuclear Phys. 24 (1976), 449–454.

A. Boutet de Monvel-Berthier, V. Georgescu, and R. Purice, A Boundary Value Problem Related to the Ginzburg–Landau Model. — Comm. Math. Phys. 142 (1991), 1–23. https://doi.org/10.1007/BF02099170

A. Contreras and S. Serfaty, Large Vorticity Stable Solutions to the Ginzburg– Landau Equations. to appear in Indiana Univ. Math. J.

M. Del Pino and P.-L. Felmer, Local Minimizers for the Ginzburg–Landau Energy. — Math. Zh. 225 (1997), 671–684. https://doi.org/10.1007/PL00004324

M. Del Pino, M. Kowalczyk, and M. Musso, Variational Reduction for Ginzburg– Landau Vortices. — J. Funct. Anal. 239 (2006), 497–541. https://doi.org/10.1016/j.jfa.2006.07.006

M. Dos Santos, Local Minimizers of the Ginzburg–Landau Functional with Prescribed Degrees. — J. Funct. Anal. 257 (2009), 1053–1091. https://doi.org/10.1016/j.jfa.2009.02.023

S. Jimbo, Y. Morita, and J. Zhai, Ginzburg–Landau Equation and Stable Steady State Solutions in a Nontrivial Domain. — Comm. Part. Diff. Eq. 20 (1995), 2093– 2112.

S. Jimbo and P. Sternberg Nonexistence of Permanent Currents in Convex Planar Samples. — SIAM J. Math. Anal. 33 (2002), 1379–1392. https://doi.org/10.1137/S0036141001386027

F.-H. Lin and T.-Ch. Lin, Minimax Solutions of the Ginzburg–Landau Equations. — Selecta Math. (N.S.) 3 (1997), 99-113. https://doi.org/10.1007/s000290050007

P. Mironescu and A. Pisante, A Variational Problem with Lack of Compactness for H 1/2 (S1 ; S1 ) Maps of Prescribed Degree. — J. Funct. Anal. 217 (2004), 249–279. https://doi.org/10.1016/j.jfa.2003.12.007

J. Rubinstein and P. Sternberg, Homotopy Classification of Minimizers of the Ginzburg–Landau Energy and the Existence of Permanent Currents. — Comm. Math. Phys. 179 (1996), 257–263. https://doi.org/10.1007/BF02103722

E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg–Landau Model. Progress in Nonlinear Differential Equations and their Applications. Birkhauser, 2007.

S. Serfaty, Local Minimizers for the Ginzburg–Landau Energy near Critical Magnetic Field. I, II. — Commun. Contemp. Math. 1 (1999), 213–254, ibid 1 (1999), 295–333.

S. Serfaty, Stability in 2D Ginzburg–Landau Passes to the Limit. — Indiana Univ. Math. J. 54 (2005), 199–221. https://doi.org/10.1512/iumj.2005.54.2497

S. Serfaty, Stable Configurations in Superconductivity: Uniqueness, Multiplicity and Vortex-Nucleation. — Arch. Ration. Mech. Anal. 149 (1999), 329–365. https://doi.org/10.1007/s002050050177

C. Taubes, Arbitrary N -vortex Solutions to the First Order Ginzburg–Landau Equa-tions. — Comm. Math. Phys. 72 (1980), 277–292. https://doi.org/10.1007/BF01197552

Downloads

Як цитувати

(1)
Rybalko, V. Local Minimizers of the Magnetic Ginzburg-Landau Functional with S1-valued Order Parameter on the Boundary. Журн. мат. фіз. анал. геом. 2014, 10, 134-151.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.