Ricci Solitons on Lorentzian Four-Dimensional Generalized Symmetric Spaces
DOI:
https://doi.org/10.15407/mag14.02.132Анотація
Доведено iснування нетривiальних (тобто, неейнштейнiвських) солiтонiв Рiччi на чотиривимiрних лоренцевих узагальнених симетричних просторах. Бiльш того, показано, що тiльки стiйкi солiтони Рiччi можуть бути градiєнтними.
Mathematical Subject Classification: 53C20, 53C21.
Ключові слова:
лоренцева метрика, солiтони Рiччi, градiєнтнi солiтони Рiччi, узагальненi симетричнi просториПосилання
P. Baird and L. Danielo, Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math. 608 (2007), 65–91. https://doi.org/10.1515/CRELLE.2007.053
W. Batat, M. Brozos-Vazquez, E. Garcı́a-Rı́o, and S. Gavino-Fernández, Ricci solitons on Lorentzian manifolds with large isometry groups, Bull. Lond. Math. Soc. 43 (2011), 1219–1227. https://doi.org/10.1112/blms/bdr057
W. Batat and K. Onda, Four-dimensional pseudo-Riemannian generalized symmetric spaces which are algebraic Ricci solitons, Results Math. 64 (2013), 254–267. https://doi.org/10.1007/s00025-013-0312-z
W. Batat and K. Onda, Ricci and Yamabe solitons on second-order symmetric, and plane wave 4-dimensional Lorentzian manifolds, J. Geom. 105 (2014), 561–575. https://doi.org/10.1007/s00022-014-0220-8
M. Brozos-Vázquez, G. Calvaruso, E. Garcı́a-Rı́o, and S. Gavino-Fernández, Threedimensional Lorentzian homogeneous Ricci solitons, Israel J. Math. 188 (2012), 385–403. https://doi.org/10.1007/s11856-011-0124-3
G. Calvaruso, Oscillator spacetimes are Ricci solitons, Nonlinear Anal. 140 (2016), 254–269. https://doi.org/10.1016/j.na.2016.03.008
G. Calvaruso and B. De Leo, Curvature properties of four-dimensional generalized symmetric spaces, J. Geom. 90 (2008), 30–46. https://doi.org/10.1007/s00022-008-2046-8
G. Calvaruso and B. De Leo, Ricci solitons on Lorentzian Walker three-manifolds, Acta Math. Hungar. 132 (2011), 269–293. https://doi.org/10.1007/s10474-010-0049-z
G. Calvaruso and A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci solitons, Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550056, 21 pp.
G. Calvaruso and E. Rosado, Ricci solitons on low-dimensional generalized symmetric spaces, J. Geom. Phys. 112 (2017), 106–117. https://doi.org/10.1016/j.geomphys.2016.11.008
L.F. Cerbo, Generic properties of homogeneous Ricci solitons, Adv. Geom. 14 (2014), 225–237. https://doi.org/10.1515/advgeom-2013-0031
J. Cerny and O. Kowalski, Classification of generalized symmetric pseudo-Riemannian spaces of dimension n ≤ 4, Tensor (N.S.) 38 (1982), 256–267.
J. Lauret, Ricci soliton solvmanifolds, J. Reine Angew. Math. 650 (2011), 1–21. https://doi.org/10.1515/crelle.2011.001
K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata 147 (2010), 313–322. https://doi.org/10.1007/s10711-009-9456-0
T.L. Payne, The existence of soliton metrics for nilpotent Lie groups, Geom. Dedicata 145 (2010), 71–88. https://doi.org/10.1007/s10711-009-9404-z