On the Construction and Integration of a Hierarchy for the Kaup System with a Self-Consistent Source in the Class of Periodic Functions
DOI:
https://doi.org/10.15407/mag17.02.233Анотація
У цій статті ми виводимо багату ієрархію для системи Каупа iз самоузгодженим джерелом в класі періодичних функцій. Ми обговорюємо повну інтегровність побудованих систем, яка заснована на трансформуванні у спектральні дані асоційованого квадратичного пучка рівнянь Штурма–Ліувілля з перiодичними коефіцієнтами. Зокрема, одержано рiвняння типу Дубровіна для часової еволюції спектральних даних для розв’язкiв будь-якої системи в ієрархії. Крім того, на прикладі окремої системи з ієрархії ми демонструємо переваги інтегровності, доводячи існування глобальних розв'язків для задачі Коші та надаючи явний розв'язок.Mathematics Subject Classification: 39A23, 35Q51, 34K13, 34K29
Ключові слова:
система рівнянь Каупа, ієрархія, самоузгоджене джерело, квадратичний пучок рівнянь Штурма-Ліувілля, обернена спектральна задача, формули слідів, періодичний потенціалПосилання
B.A. Babadzhanov, A.B. Khasanov, and A.B. Yakhshimuratov, On the inverse problem for a quadratic pencil of Sturm–Liouville operators with periodic potential, Differ. Equ. 41 (2005), 310–318. https://doi.org/10.1007/s10625-005-0163-9
B.A. Babadzhanov and A.B. Khasanov, Inverse problem for a quadratic pencil of Shturm–Liouville operators with finite-gap pereodic potential on the half-line, Differ. Equ. 43 (2007), 723–730. https://doi.org/10.1134/S0012266107060018
B.A. Babajanov, M. Fechkan, and G.U. Urazbaev, On the periodic Toda lattice with self-consistent source, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 379–388. https://doi.org/10.1016/j.cnsns.2014.10.013
B.A. Babajanov, M. Fechkan, and G.U. Urazbaev, On the periodic Toda lattice hierarchy with an integral source, Comm. Nonlinear Sci. Numer. Simul. 52 (2017), 110–123. https://doi.org/10.1016/j.cnsns.2017.04.023
B.A. Babajanov and A.B. Khasanov, Periodic Toda chain with an integral source, Theoret. Math. Phys. 184 (2015), 1114–1128. https://doi.org/10.1007/s11232-015-0321-z
A. Cabada and A. Yakhshimuratov, The system of Kaup equations with a selfconsistent source in the class of periodic functions, Zh. Mat. Piz., Anal., Geom. 9 (2013), 287–303.
C. Claude, J. Leon, and A. Latifi, Nonlinear resonant scattering and plasma instability: an integrable model, J. Math. Phys. 32 (1991), 3321–3330. https://doi.org/10.1063/1.529443
B.A. Dubrovin, The periodic problem for the Korteweg-de Vries equation in the class of finite-gap potentials, Anal. Funct. Its Appl. 9 (1975), No. 3, 41–51. https://doi.org/10.1007/BF01075598
B.A. Dubrovin and S.P. Novikov, Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation, J. Exp. Theor. Phys. 40 (1975), No. 6, 1058–1063
P.G. Grinevich and I.A. Taimanov, Spectral conservation laws for periodic nonlinear equations of the Melnikov type Amer. Math. Soc. Transl. Ser. 2 224 (2008), 125–138. https://doi.org/10.1090/trans2/224/05
G.Sh. Guseinov, On a quadratic pencil of Sturm–Liouville operators with periodic coefficients, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3 (1984), No. 2, 14–21.
G.Sh. Guseinov, Asymptotic formulas for solutions and eigenvalues of quadratic pencil of Sturm–Liouville equations, Preprint No. 113, Inst. Phys. Akad. Nauk Azerb. SSR, Baku, 1984 (Russian).
G.Sh. Guseinov, Spectrum and eigenfunction expansions of a quadratic pencil of Sturm–Liouville operators with periodic coefficients, Spectral Theory of Operators and its Applications, No. 6, Elm, Baku, 1985, 56–97.
G.Sh. Guseinov, On spectral analysis of a quadratic pencil of Sturm–Liouville operators, Soviet Math. Dokl. 32 (1985), No. 3, 1859–1862.
G.Sh. Guseinov, Inverse problems for a quadratic pencil of Sturm–Liouville operators on a finite interval, Spectral Theory of Operators and its Applications, No. 7, Elm, Baku, 1986, 51–101.
B. Hu and T. Xia, The Binary Nonlinearization of the Super Integrable System and Its Self-Consistent Sources, Int. J. Nonlinear Sci. Numer. Simul. 18 (2017), No. 3-4, 281–297. https://doi.org/10.1515/ijnsns-2016-0158
B. Hu and T. Xia, A Riemann–Hilbert approach to the initial-boundary value problem for Kundu–Eckhaus equation on the half line, Complex Var. Elliptic. 64 (2019), 2019–2039. https://doi.org/10.1080/17476933.2019.1571047
A.R. Its, Inversion of hyperelliptic integrals and integration of nonlinear differential equations, Vestn. Lening. Univ. Mat. 9 (1981), 121–129.
M. Jaulent and I. Miodek, Nonlinear Evolution Equation Associated with EnergyDependent Schrodinger Potentials, Lett. Math. Phys. 1 (1976), No. 3, 243–250. https://doi.org/10.1007/BF00417611
D.J. Kaup, A higher-order water-wave equation and the method for solving it, Prog. Theor. Phys. 54 (1975), 396–408. https://doi.org/10.1143/PTP.54.72
A.B. Khasanov and A.B. Yakhshimuratov, The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions, Theor. Math. Phys. 164 (2010), 1008–1015. https://doi.org/10.1007/s11232-010-0081-8
P.D. Lax, Periodic solutions of the KdV equations, Nonlinear Wave Motion, Lecture in Appl. Math., 15, Amer Math. Soc., Providence, RI, 1974, 85-96.
J. Leon and A. Latifi, Solution of an initial-boundary value problem for coupled nonlinear waves, J. Phys. A: Math. Gen. 23 (1990), 1385–1403. https://doi.org/10.1088/0305-4470/23/8/013
Q. Li, D.J. Zhang, and D.Y. Chen, Solving the hierarchy of the nonisospectral KdV equation with self-consistent sources via the inverse scattering transform, J. Phys. A Math. Theor. 41 (2008), 355209. https://doi.org/10.1088/1751-8113/41/35/355209
R.L. Lin, Y.B. Zeng, and W.X. Ma, Solving the KdV hierarchy with self-consistent sources by inverse scattering method Physics, J. Phys. A Math. Theor. 291 (2001), 287–298. https://doi.org/10.1016/S0378-4371(00)00519-7
V.B. Matveev and M.I. Yavor, Solutions presque périodiques et a N -solitons de l’équation hydrodynamique nonlinéaire de Kaup, Ann. Inst. Henri Poincaré, Sect. A 31 (1979), 25–41.
V.K. Melnikov, A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x, y plane, Commun. Math. Phys. 112 (1987), 639– 652. https://doi.org/10.1007/BF01225378
V.K. Melnikov, Integration method of the Korteweg-de Vries equation with a selfconsistent source, Phys. Lett. A 133 (1988), 493–506. https://doi.org/10.1016/0375-9601(88)90522-1
V.K. Melnikov, Integration of the Korteweg-de Vries equation with a source. Inverse Problems, 6 (1990), 233–246. https://doi.org/10.1088/0266-5611/6/2/007
V.K. Melnikov, Integration of the nonlinear Schroedinger equation with a selfconsistent source, Commun. Math. Phys. 137 (1991), 359–381. https://doi.org/10.1007/BF02431884
Yu.A. Mitropol’skii, N.N. Bogolyubov (Jr.), A.K. Prikarpatskii, and V.G. Samoilenko, Integrable Dynamical Systems: Spectral and Differential Geometric Aspects, Naukova Dumka, Kiev, 1987 (Russian).
A.O. Smirnov, Real finite-gap regular solutions of the Kaup-Boussinesq equation, Theor. Math. Phys. 66 (1986), 19–31. https://doi.org/10.1007/BF01028935
A.O. Smirnov, A matrix analogue of Appell’s theorem and reductions of multidimensional Riemann theta-functions Math. USSR-Sb. 61 (1988), 379–388. https://doi.org/10.1070/SM1988v061n02ABEH003213
V.S. Shchesnovich and E.V. Doktorov, Modified Manakov system with selfconsistent source, Phys. Lett. A 213 (1996), 23–31. https://doi.org/10.1016/0375-9601(96)00090-4
G. Urazboev and A. Babadjanova, On the integration of the matrix modified Korteweg-de Vries equation with self-consistent source, Tamkang J. Math. 50 (2019), No. 3, 281–291. https://doi.org/10.5556/j.tkjm.50.2019.3355
A.B. Yakhshimuratov, The nonlinear Schrodinger equation with a self-consistent source in the class of periodic functions, Math. Phys., Anal. and Geom. 14 (2011), 153–169. https://doi.org/10.1007/s11040-011-9091-5
A.B. Yakhshimuratov and B.A. Babajanov, Integration of equation of Kaup system kind with a self-consistent source in the class of periodic functions, Ufa Math. J. 12 (2020), No. 1, 104–114. https://doi.org/10.13108/2020-12-1-103
R. Yamilov, Symmetries as integrability criteria for differential difference equations, J. Phys. A: Math. Gen. 39 (2006), R541–R623. https://doi.org/10.1088/0305-4470/39/45/R01
Y. Zeng, W.X. Ma, and Runliang Lin, Integration of the soliton hierarchy with self-consistent sources, J. Math. Phys. 41 (2000), 5453–5488. https://doi.org/10.1063/1.533420
Y.B. Zeng, W.X. Ma, and Y. J. Shao, Two binary Darboux transformations for the KdV hierarchy with self-consistent sources, J. Math. Phys. 42 (2001), 2113–2128. https://doi.org/10.1063/1.1357826
Y.B. Zeng, Y.J. Shao, and W.M. Xue, Negaton and positon solutions of the soliton equation with self-consistent sources, J. Phys. A: Math. Gen. 36 (2003), 5035–5043. https://doi.org/10.1088/0305-4470/36/18/308
D.J. Zhang and D.Y. Chen, The N -soliton solutions of the sine-Gordon equation with self-consistent sources, Physics A 321 (2003), 467–481. https://doi.org/10.1016/S0378-4371(02)01742-9