A Thermo-Viscoelastic Fractional Contact Problem with Normal Compliance and Coulomb’s Friction
DOI:
https://doi.org/10.15407/mag17.03.280Анотація
Дослiдження стосується аналiзу задачi квазiстатичного контакту з тертям мiж термов’язкопружним тiлом i термопровiдною основою. Рiвняння стану побудоване з використанням моделi Кельвiна–Фойгта з дробовою похiдною. Теплопровiднiсть моделюється дробовою похiдною вiдносно часу температурного параметру θ. Контакт описується за припущеннями нормальної пiддатливостi та кулонiвського тертя. Ми отримуємо варiацiйне формулювання задачi i доводимо iснування слабкого розв’язку для моделi, використовуючи теорiю монотонного оператора, похiдну Капуто, субдиференцiал Кларка, метод Гальоркiна та теорему Банаха про нерухому точку.Mathematics Subject Classification: 35J85, 76B03, 65M60, 47H10
Ключові слова:
термов’язкопружний контакт, нормальна пiддатливiсть, кулонiвське тертя, похiдна Капуто, слабкий розв’язок, метод Гальоркiна, теорема Банаха про нерухому точкуПосилання
A. Amassad, K.L. Kuttler, M. Rochdi, and M. Shillor, Quasi-static thermoviscoelastic contact problem with slip dependent friction coefficient, Math. Comput. Model. 36 (2002), 839–854. https://doi.org/10.1016/S0895-7177(02)00231-5
B. Awbi, EL H. Essoufi, and M. Sofonea, A viscoelastic contact problem with normal damped response and friction, Ann. Polon. Math. 75 (2000), 233–246. https://doi.org/10.4064/ap-75-3-233-246
O. Chau, D. Motreanu, and M. Sofonea, Quasistatic frictional problems for elastic and viscoelastic materials, Appl. Math. 47 (2002), 341–360. https://doi.org/10.1023/A:1021753722771
F.H. Clarke, Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, 5, SIAM, 1990. https://doi.org/10.1137/1.9781611971309
Z. Denkowski, S. Migórski, and N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer, Boston-Dordrecht-London-New York, 2003.
K. Diethelm, The Analysis of Fractional Differential Equations, 2004, Lecture Notes in Mathematics. Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-14574-2
J. Han, S. Migórski, and H. Zeng, Weak solvability of a fractional viscoelastic frictionless contact problem, Appl. Math. Comput. 303 (2017), 1–18. https://doi.org/10.1016/j.amc.2017.01.009
R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific, Singapore, 2011. https://doi.org/10.1142/8072
G. L’Hôpital, Analyse des infinement petits, François Montalant, Paris, 1715.
A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and applications of fractional differential equations, 204, Elsevier, New York, 2006.
Z. Lerguet, M. Shillor, and M. Sofonea, A frictional contact problem for an electroviscoelastic body, Electron. J. Differential Equations 2007 (2007), No. 170, 1–16.
L. Li and J.-G. Liu, A generalized definition of Caputo derivatives and its application to fractional odes, SIAM J. Math. Anal. 50 (2018), 2867–2900. https://doi.org/10.1137/17M1145549
L. Li and J.-G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal. 50 (2018), 3963–3995. https://doi.org/10.1137/17M1145549
S. Migórski, A. Ochal, M. Sofonea, Nonlinear inclusions and hemivariational inequalities: models and analysis of contact problems, Advances in Mechanics and Mathematics, 26, Springer, New York-Heidelberg-Dordrecht-London, 2013. https://doi.org/10.1007/978-1-4614-4232-5_7
I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, New York, 1998.
I. Podlubny, Fractional Differential Equations, Academic, San Diego, 1999.
B. Riemann, Versuch einer Allgemeinen Auffassung der Integration und Differentiation (1847), In: R. Dedekind and H. Weber (Eds.), Bernard Riemann’s Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass (Cambridge Library Collection—Mathematics), Cambridge University Press, Cambridge, 2014, 331–344 (German). https://doi.org/10.1017/CBO9781139568050.020
M. Rochdi, M. Shillor, and M. Sofonea, A quasistatic contact problem with directional friction and damped response, Appl. Math. 68 (1998), 409-422. https://doi.org/10.1080/00036819808840639
F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35 (2013), 2976–3000. https://doi.org/10.1137/130910865
S. Zeng, Z. Liu, and S. Migórski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys. 69 (2018), Article Number: 36. https://doi.org/10.1007/s00033-018-0929-6
S. Zeng and S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Commun. Nonlinear Sci. Numer. Simul. 56 (2018), 34–48. https://doi.org/10.1016/j.cnsns.2017.07.016